Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 345 cities in the Massachusetts by Hispanic Black or African American population, as estimated by the United States Census Bureau. It also highlights population changes in each cities over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Falmouth town by race. It includes the population of Falmouth town across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of Falmouth town across relevant racial categories.
Key observations
The percent distribution of Falmouth town population by race (across all racial categories recognized by the U.S. Census Bureau): 86.08% are white, 1.21% are Black or African American, 0.86% are American Indian and Alaska Native, 2.70% are Asian, 2.34% are some other race and 6.80% are multiracial.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Falmouth town Population by Race & Ethnicity. You can refer the same here
From 1966 to January 2024, ** percent of mass public shooters who carried out the shooting at K-12 schools in the United States identified as White, followed by ** percent who were Native American and * percent who were Latinx. For mass public shootings occurring at colleges and universities, the shooter was most likely to identify as Asian, at ** percent, followed by ** percent who were White. In addition, Black and Middle Eastern shooters each made up ** percent. The source defines a mass public shooting as a multiple homicide incident in which 4 or more victims are murdered with firearms—not including the offender(s)—within one event, and at least some of the murders occurred in a public location or locations in close geographical proximity (e.g., a workplace, school, restaurant, or other public settings), and the murders are not attributable to any other underlying criminal activity or commonplace circumstance (armed robbery, criminal competition, insurance fraud, argument, or romantic triangle). Mass shootings attributable to gangs, as well as most domestic homicides, are therefore excluded from this definition.
THIS DATASET WAS LAST UPDATED AT 2:11 AM EASTERN ON JULY 15
2019 had the most mass killings since at least the 1970s, according to the Associated Press/USA TODAY/Northeastern University Mass Killings Database.
In all, there were 45 mass killings, defined as when four or more people are killed excluding the perpetrator. Of those, 33 were mass shootings . This summer was especially violent, with three high-profile public mass shootings occurring in the span of just four weeks, leaving 38 killed and 66 injured.
A total of 229 people died in mass killings in 2019.
The AP's analysis found that more than 50% of the incidents were family annihilations, which is similar to prior years. Although they are far less common, the 9 public mass shootings during the year were the most deadly type of mass murder, resulting in 73 people's deaths, not including the assailants.
One-third of the offenders died at the scene of the killing or soon after, half from suicides.
The Associated Press/USA TODAY/Northeastern University Mass Killings database tracks all U.S. homicides since 2006 involving four or more people killed (not including the offender) over a short period of time (24 hours) regardless of weapon, location, victim-offender relationship or motive. The database includes information on these and other characteristics concerning the incidents, offenders, and victims.
The AP/USA TODAY/Northeastern database represents the most complete tracking of mass murders by the above definition currently available. Other efforts, such as the Gun Violence Archive or Everytown for Gun Safety may include events that do not meet our criteria, but a review of these sites and others indicates that this database contains every event that matches the definition, including some not tracked by other organizations.
This data will be updated periodically and can be used as an ongoing resource to help cover these events.
To get basic counts of incidents of mass killings and mass shootings by year nationwide, use these queries:
To get these counts just for your state:
Mass murder is defined as the intentional killing of four or more victims by any means within a 24-hour period, excluding the deaths of unborn children and the offender(s). The standard of four or more dead was initially set by the FBI.
This definition does not exclude cases based on method (e.g., shootings only), type or motivation (e.g., public only), victim-offender relationship (e.g., strangers only), or number of locations (e.g., one). The time frame of 24 hours was chosen to eliminate conflation with spree killers, who kill multiple victims in quick succession in different locations or incidents, and to satisfy the traditional requirement of occurring in a “single incident.”
Offenders who commit mass murder during a spree (before or after committing additional homicides) are included in the database, and all victims within seven days of the mass murder are included in the victim count. Negligent homicides related to driving under the influence or accidental fires are excluded due to the lack of offender intent. Only incidents occurring within the 50 states and Washington D.C. are considered.
Project researchers first identified potential incidents using the Federal Bureau of Investigation’s Supplementary Homicide Reports (SHR). Homicide incidents in the SHR were flagged as potential mass murder cases if four or more victims were reported on the same record, and the type of death was murder or non-negligent manslaughter.
Cases were subsequently verified utilizing media accounts, court documents, academic journal articles, books, and local law enforcement records obtained through Freedom of Information Act (FOIA) requests. Each data point was corroborated by multiple sources, which were compiled into a single document to assess the quality of information.
In case(s) of contradiction among sources, official law enforcement or court records were used, when available, followed by the most recent media or academic source.
Case information was subsequently compared with every other known mass murder database to ensure reliability and validity. Incidents listed in the SHR that could not be independently verified were excluded from the database.
Project researchers also conducted extensive searches for incidents not reported in the SHR during the time period, utilizing internet search engines, Lexis-Nexis, and Newspapers.com. Search terms include: [number] dead, [number] killed, [number] slain, [number] murdered, [number] homicide, mass murder, mass shooting, massacre, rampage, family killing, familicide, and arson murder. Offender, victim, and location names were also directly searched when available.
This project started at USA TODAY in 2012.
Contact AP Data Editor Justin Myers with questions, suggestions or comments about this dataset at jmyers@ap.org. The Northeastern University researcher working with AP and USA TODAY is Professor James Alan Fox, who can be reached at j.fox@northeastern.edu or 617-416-4400.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset tracks annual black student percentage from 1991 to 2023 for Chelsea School District vs. Massachusetts
How racially diverse are residents in Massachusetts? This topic shows the demographic breakdown of residents by race/ethnicity and the increases in the Non-white population since 2010.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset tracks annual black student percentage from 1994 to 2023 for Ipswich School District vs. Massachusetts
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset tracks annual black student percentage from 1993 to 2023 for Plainville School District vs. Massachusetts
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Wareham town by race. It includes the population of Wareham town across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of Wareham town across relevant racial categories.
Key observations
The percent distribution of Wareham town population by race (across all racial categories recognized by the U.S. Census Bureau): 81.39% are white, 1.47% are Black or African American, 0.09% are American Indian and Alaska Native, 2.04% are Asian, 6.49% are some other race and 8.52% are multiracial.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Wareham town Population by Race & Ethnicity. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Chatham town by race. It includes the population of Chatham town across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of Chatham town across relevant racial categories.
Key observations
The percent distribution of Chatham town population by race (across all racial categories recognized by the U.S. Census Bureau): 95.64% are white, 1.45% are Black or African American, 2.06% are Asian and 0.85% are multiracial.
https://i.neilsberg.com/ch/chatham-ma-population-by-race.jpeg" alt="Chatham town population by race">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Chatham town Population by Race & Ethnicity. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset tracks annual black student percentage from 1992 to 2023 for West Bridgewater School District vs. Massachusetts
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset tracks annual black student percentage from 1991 to 2023 for Desert Sands Academy Of Mass Communication & Journalism vs. Arizona and Cartwright Elementary District (4282) School District
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset tracks annual black student percentage from 1992 to 2023 for Greenfield High School vs. Massachusetts and Greenfield School District
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset tracks annual black student percentage from 1989 to 2023 for Varnum Brook vs. Massachusetts and North Middlesex School District
This layer contains block level 2020 Decennial Census redistricting data as reported by the U.S. Census Bureau for the state of Massachusetts. The attributes come from the 2020 Public Law 94-171 (P.L. 94-171) tables.Data download date: August 12, 2021Census tables: P1, P2, P3, P4, H1, P5, HeaderDownloaded from: Census FTP siteProcessing Notes:Data was downloaded from the U.S. Census Bureau FTP site, imported into SAS format and joined to the 2020 TIGER boundaries. Boundaries are sourced from the 2020 TIGER/Line Geodatabases. Boundaries have been projected into Web Mercator and each attribute has been given a clear descriptive alias name. No alterations have been made to the vertices of the data.Each attribute maintains it's specified name from Census, but also has a descriptive alias name and long description derived from the technical documentation provided by the Census. For a detailed list of the attributes contained in this layer, view the Data tab and select "Fields". The following alterations have been made to the tabular data:Joined all tables to create one wide attribute table:P1 - RaceP2 - Hispanic or Latino, and not Hispanic or Latino by RaceP3 - Race for the Population 18 Years and OverP4 - Hispanic or Latino, and not Hispanic or Latino by Race for the Population 18 Years and OverH1 - Occupancy Status (Housing)P5 - Group Quarters Population by Group Quarters Type (correctional institutions, juvenile facilities, nursing facilities/skilled nursing, college/university student housing, military quarters, etc.)HeaderAfter joining, dropped fields: FILEID, STUSAB, CHARITER, CIFSN, LOGRECNO, GEOVAR, GEOCOMP, LSADC.GEOCOMP was renamed to GEOID and moved be the first column in the table, the original GEOID was dropped.Placeholder fields for future legislative districts have been dropped: CD118, CD119, CD120, CD121, SLDU22, SLDU24, SLDU26, SLDU28, SLDL22, SLDL24 SLDL26, SLDL28.P0020001 was dropped, as it is duplicative of P0010001. Similarly, P0040001 was dropped, as it is duplicative of P0030001.In addition to calculated fields, County_Name and State_Name were added.The following calculated fields have been added (see long field descriptions in the Data tab for formulas used): PCT_P0030001: Percent of Population 18 Years and OverPCT_P0020002: Percent Hispanic or LatinoPCT_P0020005: Percent White alone, not Hispanic or LatinoPCT_P0020006: Percent Black or African American alone, not Hispanic or LatinoPCT_P0020007: Percent American Indian and Alaska Native alone, not Hispanic or LatinoPCT_P0020008: Percent Asian alone, Not Hispanic or LatinoPCT_P0020009: Percent Native Hawaiian and Other Pacific Islander alone, not Hispanic or LatinoPCT_P0020010: Percent Some Other Race alone, not Hispanic or LatinoPCT_P0020011: Percent Population of Two or More Races, not Hispanic or LatinoPCT_H0010002: Percent of Housing Units that are OccupiedPCT_H0010003: Percent of Housing Units that are VacantPlease note these percentages might look strange at the individual block level, since this data has been protected using differential privacy.**To protect the privacy and confidentiality of respondents, data has been protected using differential privacy techniques by the U.S. Census Bureau. This means that some individual blocks will have values that are inconsistent or improbable. However, when aggregated up, these issues become minimized. The pop-up on this layer uses Arcade to display aggregated values for the surrounding area rather than values for the block itself.Additional links:U.S. Census BureauU.S. Census Bureau Decennial CensusAbout the 2020 Census2020 Census2020 Census data qualityDecennial Census P.L. 94-171 Redistricting Data Program
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset tracks annual black student percentage from 1996 to 2023 for Shurtleff Early Childhood vs. Massachusetts and Chelsea School District
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Body condition is a measure of the health and fitness of an organism represented by available energy stores, typically fat. Direct measurements of fat are difficult to obtain non-invasively, thus body condition is usually estimated by calculating body condition indices (BCIs) using mass and length. The utility of BCIs is contingent on the relationship of BCIs and fat, thereby validation studies should be performed to select the best performing BCI before application in ecological investigations. We evaluated 11 BCIs in 883 Argentine black and white tegus (Salvator merianae) removed from their non-native range in South Florida, United States. Because the length-mass relationship in tegus is allometric, a segmented linear regression model was fit to the relationship between mass and length to define size classes. We evaluated percent, residual, and scaled fat and determined percent fat was the best measure of fat, because it was the least-associated with snout-vent length (SVL). We evaluated performance of BCIs with the full dataset and within size classes and identified Fulton’s K as the best performing BCI for our sampled population, explaining up to 19% of the variation in fat content. Overall, we found that BCIs: 1) maintained relatively weak relationships with measures of fat and 2) splitting data into size classes reduced the strength of the relationship (i.e., bias) between percent fat and SVL but did not improve the performance of BCIs. We postulate that the weak performance of BCIs in our dataset was likely due to the weak association of fat with SVL, the body plan and life-history traits of tegus, and potentially inadequate accounting of available energy resources. We caution against assuming that BCIs are strong indicators of body condition across species and suggest that validation studies be implemented, or that alternative or complimentary measures of health or fitness should be considered.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset tracks annual black student percentage from 2019 to 2023 for Whately Elementary School vs. Massachusetts and Whately School District
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset tracks annual black student percentage from 1988 to 2023 for Elmwood Street vs. Massachusetts and Millbury School District
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Demographic data of respondents of the community.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 345 cities in the Massachusetts by Hispanic Black or African American population, as estimated by the United States Census Bureau. It also highlights population changes in each cities over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.