100+ datasets found
  1. h

    75-percent-human-dataset-og

    • huggingface.co
    Updated Apr 8, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gabrielle Stein (2024). 75-percent-human-dataset-og [Dataset]. https://huggingface.co/datasets/gsstein/75-percent-human-dataset-og
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 8, 2024
    Authors
    Gabrielle Stein
    Description

    gsstein/75-percent-human-dataset-og dataset hosted on Hugging Face and contributed by the HF Datasets community

  2. COVID-19 Cases and Deaths by Race

    • kaggle.com
    zip
    Updated Jul 22, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Paul Mooney (2020). COVID-19 Cases and Deaths by Race [Dataset]. https://www.kaggle.com/datasets/paultimothymooney/covid19-cases-and-deaths-by-race
    Explore at:
    zip(4762 bytes)Available download formats
    Dataset updated
    Jul 22, 2020
    Authors
    Paul Mooney
    Description

    Context

    COVID-19 Cases and Deaths by Race

    Content

    Columns:

    State Data Source Total positive cases in state Total deaths in state Percentage of Black people represented in total cases Percentage of Black people represented in total deaths Percentage of total population that identify as Black (census) Updated Notes

    Acknowledgements

    Data shared under an open data policy at Data for Black Lives (d4bl.org)

    Banner Photo by Vince Fleming on Unsplash

  3. Social Insurance Programs in Richest Quintile

    • kaggle.com
    Updated Jan 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Social Insurance Programs in Richest Quintile [Dataset]. https://www.kaggle.com/datasets/thedevastator/coverage-of-social-insurance-programs-in-richest
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 7, 2023
    Dataset provided by
    Kaggle
    Authors
    The Devastator
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Coverage of Social Insurance Programs in Richest Quintile

    Percent of Population Eligible

    By data.world's Admin [source]

    About this dataset

    This dataset offers a unique insight into the coverage of social insurance programs for the wealthiest quintile of populations around the world. It reveals how many individuals in each country are receiving support from old age contributory pensions, disability benefits, and social security and health insurance benefits such as occupational injury benefits, paid sick leave, maternity leave, and more. This data provides an invaluable resource to understand the health and well-being of those most financially privileged in society – often having greater impact on decision making than other groups. With up-to-date figures from 2019-05-11 this dataset is invaluable in uncovering where there is work to be done for improved healthcare provision in each country across the world

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    • Understand the context: Before you begin analyzing this dataset, it is important to understand the information that it provides. Take some time to read the description of what is included in the dataset, including a clear understanding of the definitions and scope of coverage provided with each data point.

    • Examine the data: Once you have a general understanding of this dataset's contents, take some time to explore its contents in more depth. What specific questions does this dataset help answer? What kind of insights does it provide? Are there any missing pieces?

    • Clean & Prepare Data: After you've preliminarily examined its content, start preparing your data for further analysis and visualization. Clean up any formatting issues or irregularities present in your data set by correcting typos and eliminating unnecessary rows or columns before working with your chosen programming language (I prefer R for data manipulation tasks). Additionally, consider performing necessary transformations such as sorting or averaging values if appropriate for the findings you wish to draw from your analysis.

    • Visualize Results: Once you've cleaned and prepared your data, use visualizations such as charts, graphs or tables to reveal patterns within it that support specific conclusions about how insurance coverage under social programs vary among different groups within society's quintiles - based on age groups etc.. This type of visualization allows those who aren't familiar with programming to process complex information quickly and accurately than when displayed numerically in tabular form only!

    5 Final Analysis & Export Results: Finally export your visuals into presentation-ready formats (e.g., PDFs) which can be shared with colleagues! Additionally use these results as part of a narrative conclusion report providing an accurate assessment and meaningful interpretation about how social insurance programs vary between different members within society's quintiles (i..e., accordingest vs poorest), along with potential policy implications relevant for implementing effective strategies that improve access accordingly!

    Research Ideas

    • Analyzing the effectiveness of social insurance programs by comparing the coverage levels across different geographic areas or socio-economic groups;
    • Estimating the economic impact of social insurance programs on local and national economies by tracking spending levels and revenues generated;
    • Identifying potential problems with access to social insurance benefits, such as racial or gender disparities in benefit coverage

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication No Copyright - You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission. See Other Information.

    Columns

    File: coverage-of-social-insurance-programs-in-richest-quintile-of-population-1.csv

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. If you use this dataset in your research, please credit data.world's Admin.

  4. N

    United States Population Dataset: Yearly Figures, Population Change, and...

    • neilsberg.com
    csv, json
    Updated Sep 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). United States Population Dataset: Yearly Figures, Population Change, and Percent Change Analysis [Dataset]. https://www.neilsberg.com/research/datasets/6f93a357-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Sep 18, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2022, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2022. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2022. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the United States population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of United States across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2022, the population of United States was 333,287,557, a 0.38% increase year-by-year from 2021. Previously, in 2021, United States population was 332,031,554, an increase of 0.16% compared to a population of 331,511,512 in 2020. Over the last 20 plus years, between 2000 and 2022, population of United States increased by 51,125,146. In this period, the peak population was 333,287,557 in the year 2022. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2022

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2022)
    • Population: The population for the specific year for the United States is shown in this column.
    • Year on Year Change: This column displays the change in United States population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for United States Population by Year. You can refer the same here

  5. h

    100-percent-human-dataset-opt-1

    • huggingface.co
    Updated Mar 21, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gabrielle Stein (2024). 100-percent-human-dataset-opt-1 [Dataset]. https://huggingface.co/datasets/gsstein/100-percent-human-dataset-opt-1
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 21, 2024
    Authors
    Gabrielle Stein
    Description

    gsstein/100-percent-human-dataset-opt-1 dataset hosted on Hugging Face and contributed by the HF Datasets community

  6. d

    Data from: HANPP Collection: Human Appropriation of Net Primary Productivity...

    • catalog.data.gov
    • dataverse.harvard.edu
    • +2more
    Updated Nov 14, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SEDAC (2025). HANPP Collection: Human Appropriation of Net Primary Productivity as a Percentage of Net Primary Productivity [Dataset]. https://catalog.data.gov/dataset/hanpp-collection-human-appropriation-of-net-primary-productivity-as-a-percentage-of-net-pr
    Explore at:
    Dataset updated
    Nov 14, 2025
    Dataset provided by
    SEDAC
    Description

    The HANPP Collection: Human Appropriation of Net Primary Productivity as a Percentage of Net Primary Productivity represents a map identifying regions in which human consumption of NPP is greatly in excess of production by local ecosystems. Humans appropriate net primary productivity through the consumption of food, paper, wood and fiber, which alters the composition of the atmosphere, levels of biodiversity, energy flows within food webs and the provision of important ecosystem services. Net primary productivity (NPP), the net amount of solar energy converted to plant organic matter through photosynthesis, can be measured in Units of elemental carbon and represents the primary food energy source for the world's ecosystems.

  7. N

    Montana Population Dataset: Yearly Figures, Population Change, and Percent...

    • neilsberg.com
    csv, json
    Updated Sep 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Montana Population Dataset: Yearly Figures, Population Change, and Percent Change Analysis [Dataset]. https://www.neilsberg.com/research/datasets/6ef095c6-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Sep 18, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Montana
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2022, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2022. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2022. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Montana population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Montana across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2022, the population of Montana was 1,122,867, a 1.50% increase year-by-year from 2021. Previously, in 2021, Montana population was 1,106,227, an increase of 1.76% compared to a population of 1,087,075 in 2020. Over the last 20 plus years, between 2000 and 2022, population of Montana increased by 219,562. In this period, the peak population was 1,122,867 in the year 2022. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2022

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2022)
    • Population: The population for the specific year for the Montana is shown in this column.
    • Year on Year Change: This column displays the change in Montana population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Montana Population by Year. You can refer the same here

  8. The Impact of COVID-19 on Veterans in America

    • kaggle.com
    zip
    Updated Nov 6, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2022). The Impact of COVID-19 on Veterans in America [Dataset]. https://www.kaggle.com/datasets/thedevastator/the-impact-of-covid-19-on-veterans-in-america/suggestions
    Explore at:
    zip(10110385 bytes)Available download formats
    Dataset updated
    Nov 6, 2022
    Authors
    The Devastator
    Area covered
    United States
    Description

    The Impact of COVID-19 on Veterans in America

    County-Level Data on Veteran Cases and Proportion of Population

    About this dataset

    Welcome to the Kaggle dataset on The Impact of COVID-19 on Veterans in the United States! This dataset contains data on confirmed cases of COVID-19 in counties across the United States, as well as information on the percentage of each county's population that are veterans. With this dataset, you can investigate how the pandemic has impacted veterans specifically, and compare veteran case rates to the general population. How do veteran cases differ across age groups? Are there any geographical patterns? What can we learn about risk factors for COVID-19 among veterans? Download the dataset and explore for yourself today!

    How to use the dataset

    This dataset includes information on the number of confirmed cases of COVID-19 by county, as well as the percentage of the population in each county that are veterans. This data can be used to examine the relationship between veteran cases and the proportion of population who are veterans.

    To do this, simply look at the 'CASES' and 'VET_CASES' columns for each county. The 'CASES' column represents the total number of confirmed cases of COVID-19 in that county, while the 'VET_CASES' column represents the number of confirmed cases among veterans. To compare these two values, simply divide 'VET_CASES' by 'CASES'. This will give you a ratio of veteran cases to total cases for each county.

    You can then use this ratio to compare counties and see which ones have a higher proportion of veteran cases. This data can be used to help understand where more outreach may be needed to support veterans during this pandemic

    Research Ideas

    • Find the correlation between the number of veterans in a county and the number of confirmed cases of COVID-19.
    • Find the counties with the highest percentage of veterans and the lowest number of confirmed cases of COVID-19.
    • Predict how many veterans in a county will contract COVID-19 based on the percentage of veterans in the population

    Columns

    File: CountyVACOVID.csv | Column name | Description | |:---------------------------|:-----------------------------------------------------------------------------------------------------------------------| | FIPS | Federal Information Processing Standards code that uniquely identifies counties within the USA. (String) | | COUNTY | County name. (String) | | STATE | State name. (String) | | POP | County population. (Integer) | | VETS | Number of veterans in the county. (Integer) | | VET_PERCENT | Percentage of the population that are veterans. (Float) | | CASES | Number of confirmed cases of COVID-19 in the county. (Integer) | | YESTER_CASES | Number of confirmed cases of COVID-19 in the county from the previous day. (Integer) | | VET_CASES | Number of confirmed cases of COVID-19 in veterans in the county. (Integer) | | VET_YESTER | Number of confirmed cases of COVID-19 in veterans in the county from the previous day. (Integer) | | LOWER_Hospitalizations | Lower bound of the 95% confidence interval for the number of hospitalizations due to COVID-19 in the county. (Integer) | | UPPER_Hospitalizations | Upper bound of the 95% confidence interval for the number of hospitalizations due to COVID-19 in the county. (Integer) | | DATE | Date of data. (Date) |

    File: VAChart.csv | Column name | Description | |:------------------------|:----------------------------------------------------------------------------------| | DATE | Date of data. (Date) | | US Cases | The number of confirmed cases of COVID-19 in the United States. (Integer) | | **New US ...

  9. Global Economic Indicators Dataset

    • kaggle.com
    zip
    Updated Sep 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Heidar Mirhaji Sadati (2024). Global Economic Indicators Dataset [Dataset]. https://www.kaggle.com/datasets/heidarmirhajisadati/global-economic-indicators-dataset-2010-2023/suggestions
    Explore at:
    zip(8930 bytes)Available download formats
    Dataset updated
    Sep 14, 2024
    Authors
    Heidar Mirhaji Sadati
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Description:

    This dataset provides key economic indicators from various countries between 2010 and 2023. The dataset includes monthly data on inflation rates, GDP growth rates, unemployment rates, interest rates, and stock market index values. The data has been sourced from reputable global financial institutions and is suitable for economic analysis, machine learning models, and forecasting economic trends.

    Data Sources:

    The data has been generated to simulate real-world economic conditions, mimicking information from trusted sources like: - World Bank for GDP growth and inflation data - International Monetary Fund (IMF) for macroeconomic data - OECD for labor market statistics - National Stock Exchanges for stock market index values

    Columns:

    1. Date: The specific date (in Year/Month/Day format) representing when the data was collected.
    2. Country: The country the data pertains to (e.g., USA, Germany, Japan).
    3. Inflation Rate (%): The rate of inflation for that country, showing how fast prices for goods and services are increasing.
    4. GDP Growth Rate (%): The percentage growth of the country’s Gross Domestic Product (GDP), indicating economic expansion or contraction.
    5. Unemployment Rate (%): The percentage of the working-age population that is unemployed.
    6. Interest Rate (%): The central bank's interest rate, used to control inflation and influence the economy.
    7. Stock Index Value: The value of the country’s main stock market index, reflecting the performance of the stock market.

    Potential Uses: - Economic Analysis: Researchers and analysts can use this dataset to study trends in inflation, GDP growth, unemployment, and other economic factors. - Machine Learning: This dataset can be used to train models for predicting economic trends or market performance. Financial Forecasting: Investors and economists can leverage this data for forecasting market movements based on economic conditions. - Comparative Studies: The dataset allows comparisons across countries and regions, offering insights into global economic performance.

  10. EDUCATION Percent Persons by Detailed Ed Attain Category NMSD 2000

    • catalog.data.gov
    • datasets.ai
    • +3more
    Updated Dec 2, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Geographic Products Management Branch (Point of Contact) (2020). EDUCATION Percent Persons by Detailed Ed Attain Category NMSD 2000 [Dataset]. https://catalog.data.gov/dataset/education-percent-persons-by-detailed-ed-attain-category-nmsd-2000
    Explore at:
    Dataset updated
    Dec 2, 2020
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    The 2006 Second Edition TIGER/Line files are an extract of selected geographic and cartographic information from the Census TIGER database. The geographic coverage for a single TIGER/Line file is a county or statistical equivalent entity, with the coverage area based on the latest available governmental unit boundaries. The Census TIGER database represents a seamless national file with no overlaps or gaps between parts. However, each county-based TIGER/Line file is designed to stand alone as an independent data set or the files can be combined to cover the whole Nation. The 2006 Second Edition TIGER/Line files consist of line segments representing physical features and governmental and statistical boundaries. This shapefile represents the current State Senate Districts for New Mexico as posted on the Census Bureau website for 2006.

  11. World data population

    • kaggle.com
    zip
    Updated Jan 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tanishq dublish (2024). World data population [Dataset]. https://www.kaggle.com/datasets/tanishqdublish/world-data-population
    Explore at:
    zip(14672 bytes)Available download formats
    Dataset updated
    Jan 12, 2024
    Authors
    Tanishq dublish
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    World
    Description

    Context The world's population has undergone remarkable growth, exceeding 7.5 billion by mid-2019 and continuing to surge beyond previous estimates. Notably, China and India stand as the two most populous countries, with China's population potentially facing a decline while India's trajectory hints at surpassing it by 2030. This significant demographic shift is just one facet of a global landscape where countries like the United States, Indonesia, Brazil, Nigeria, and others, each with populations surpassing 100 million, play pivotal roles.

    The steady decrease in growth rates, though, is reshaping projections. While the world's population is expected to exceed 8 billion by 2030, growth will notably decelerate compared to previous decades. Specific countries like India, Nigeria, and several African nations will notably contribute to this growth, potentially doubling their populations before rates plateau.

    Content This dataset provides comprehensive historical population data for countries and territories globally, offering insights into various parameters such as area size, continent, population growth rates, rankings, and world population percentages. Spanning from 1970 to 2023, it includes population figures for different years, enabling a detailed examination of demographic trends and changes over time.

    Dataset Structured with meticulous detail, this dataset offers a wide array of information in a format conducive to analysis and exploration. Featuring parameters like population by year, country rankings, geographical details, and growth rates, it serves as a valuable resource for researchers, policymakers, and analysts. Additionally, the inclusion of growth rates and world population percentages provides a nuanced understanding of how countries contribute to global demographic shifts.

    This dataset is invaluable for those interested in understanding historical population trends, predicting future demographic patterns, and conducting in-depth analyses to inform policies across various sectors such as economics, urban planning, public health, and more.

  12. Dataset for historical EPS of NASDAQ stocks

    • kaggle.com
    zip
    Updated May 17, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jamol Bahromov (2019). Dataset for historical EPS of NASDAQ stocks [Dataset]. https://www.kaggle.com/datasets/drequilibrum/dataset-for-historical-eps-of-nasdaq-stocks
    Explore at:
    zip(532950 bytes)Available download formats
    Dataset updated
    May 17, 2019
    Authors
    Jamol Bahromov
    Description

    Dataset

    This dataset was created by Jamol Bahromov

    Contents

  13. Data generation volume worldwide 2010-2029

    • statista.com
    Updated Nov 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Data generation volume worldwide 2010-2029 [Dataset]. https://www.statista.com/statistics/871513/worldwide-data-created/
    Explore at:
    Dataset updated
    Nov 19, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    The total amount of data created, captured, copied, and consumed globally is forecast to increase rapidly. While it was estimated at ***** zettabytes in 2025, the forecast for 2029 stands at ***** zettabytes. Thus, global data generation will triple between 2025 and 2029. Data creation has been expanding continuously over the past decade. In 2020, the growth was higher than previously expected, caused by the increased demand due to the coronavirus (COVID-19) pandemic, as more people worked and learned from home and used home entertainment options more often.

  14. N

    Portland, IN Population Dataset: Yearly Figures, Population Change, and...

    • neilsberg.com
    csv, json
    Updated Sep 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Portland, IN Population Dataset: Yearly Figures, Population Change, and Percent Change Analysis [Dataset]. https://www.neilsberg.com/research/datasets/6f3878d1-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Sep 18, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Portland, IN
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2022, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2022. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2022. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Portland population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Portland across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2022, the population of Portland was 6,234, a 0.59% decrease year-by-year from 2021. Previously, in 2021, Portland population was 6,271, a decline of 0.81% compared to a population of 6,322 in 2020. Over the last 20 plus years, between 2000 and 2022, population of Portland decreased by 154. In this period, the peak population was 6,388 in the year 2000. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2022

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2022)
    • Population: The population for the specific year for the Portland is shown in this column.
    • Year on Year Change: This column displays the change in Portland population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Portland Population by Year. You can refer the same here

  15. d

    COVID-19 Vaccinations by Age and Race-Ethnicity - Historical

    • catalog.data.gov
    • data.cityofchicago.org
    Updated Dec 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofchicago.org (2023). COVID-19 Vaccinations by Age and Race-Ethnicity - Historical [Dataset]. https://catalog.data.gov/dataset/covid-19-vaccinations-by-age-and-race-ethnicity
    Explore at:
    Dataset updated
    Dec 16, 2023
    Dataset provided by
    data.cityofchicago.org
    Description

    NOTE: This dataset has been retired and marked as historical-only. The recommended dataset to use in its place is https://data.cityofchicago.org/Health-Human-Services/COVID-19-Vaccination-Coverage-Citywide/6859-spec. COVID-19 vaccinations administered to Chicago residents based on the reported race-ethnicity and age group of the person vaccinated, as provided by the medical provider in the Illinois Comprehensive Automated Immunization Registry Exchange (I-CARE). Vaccination Status Definitions: ·People with at least one vaccine dose: Number of people who have received at least one dose of any COVID-19 vaccine, including the single-dose Johnson & Johnson COVID-19 vaccine. ·People with a completed vaccine series: Number of people who have completed a primary COVID-19 vaccine series. Requirements vary depending on age and type of primary vaccine series received. ··People with an original booster dose: Number of people who have a completed vaccine series and have received at least one additional monovalent dose. This includes people who received a monovalent booster dose and immunocompromised people who received an additional primary dose of COVID-19 vaccine. Monovalent doses were created from the original strain of the virus that causes COVID-19. People with a bivalent dose: Number of people who received a bivalent (updated) dose of vaccine. Updated, bivalent doses became available in Fall 2022 and were created with the original strain of COVID-19 and newer Omicron variant strains. Weekly cumulative totals by vaccination status are shown for each combination of race-ethnicity and age group. Note that each age group has a row where race-ethnicity is "All" so care should be taken when summing rows. Vaccinations are counted based on the date on which they were administered. Weekly cumulative totals are reported from the week ending Saturday, December 19, 2020 onward (after December 15, when vaccines were first administered in Chicago) through the Saturday prior to the dataset being updated. Population counts are from the U.S. Census Bureau American Community Survey (ACS) 2019 1-year estimates. For some of the age groups by which COVID-19 vaccine has been authorized in the United States, race-ethnicity distributions were specifically reported in the ACS estimates. For others, race-ethnicity distributions were estimated by the Chicago Department of Public Health (CDPH) by weighting the available race-ethnicity distributions, using proportions of constituent age groups. Coverage percentages are calculated based on the cumulative number of people in each population subgroup (age group by race-ethnicity) who have each vaccination status as of the date, divided by the estimated number of Chicago residents in each subgroup. Actual counts may exceed population estimates and lead to >100% coverage, especially in small race-ethnicity subgroups of each age group. All coverage percentages are capped at 99%. All data are provisional and subject to change. Information is updated as additional details are received and it is, in fact, very common for recent dates to be incomplete and to be updated as time goes on. At any given time, this dataset reflects data currently known to CDPH. Numbers in this dataset may differ from other public sources due to when data are reported and how City of Chicago boundaries are defined. CDPH uses the most complete data available to estimate COVID-19 vaccination coverage among Chicagoans, but there are several limitations that impact our estimates. Data reported in I-CARE only include doses administered in Illinois and some doses administered outside of Illinois reported historically by Illinois providers. Doses administered by the federal Bureau of Prisons and Department of Defense are also not currently reported in I-CARE. The Veterans Health Administration began reporting doses in I-CARE beginning September 2022. Due to people receiving vaccinations that are not recorded in I-CARE that c

  16. N

    Montana, Wisconsin Population Dataset: Yearly Figures, Population Change,...

    • neilsberg.com
    csv, json
    Updated Sep 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Montana, Wisconsin Population Dataset: Yearly Figures, Population Change, and Percent Change Analysis [Dataset]. https://www.neilsberg.com/research/datasets/6ef099cb-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Sep 18, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Montana, Wisconsin
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2022, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2022. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2022. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Montana town population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Montana town across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2022, the population of Montana town was 273, a 0.37% increase year-by-year from 2021. Previously, in 2021, Montana town population was 272, an increase of 0.37% compared to a population of 271 in 2020. Over the last 20 plus years, between 2000 and 2022, population of Montana town decreased by 31. In this period, the peak population was 315 in the year 2005. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2022

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2022)
    • Population: The population for the specific year for the Montana town is shown in this column.
    • Year on Year Change: This column displays the change in Montana town population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Montana town Population by Year. You can refer the same here

  17. h

    50-percent-human-dataset-llama

    • huggingface.co
    Updated Apr 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gabrielle Stein (2024). 50-percent-human-dataset-llama [Dataset]. https://huggingface.co/datasets/gsstein/50-percent-human-dataset-llama
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 9, 2024
    Authors
    Gabrielle Stein
    Description

    gsstein/50-percent-human-dataset-llama dataset hosted on Hugging Face and contributed by the HF Datasets community

  18. h

    100-percent-human-dataset-llama-og

    • huggingface.co
    Updated Apr 17, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gabrielle Stein (2024). 100-percent-human-dataset-llama-og [Dataset]. https://huggingface.co/datasets/gsstein/100-percent-human-dataset-llama-og
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 17, 2024
    Authors
    Gabrielle Stein
    Description

    gsstein/100-percent-human-dataset-llama-og dataset hosted on Hugging Face and contributed by the HF Datasets community

  19. N

    Troutdale, OR Population Dataset: Yearly Figures, Population Change, and...

    • neilsberg.com
    csv, json
    Updated Sep 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Troutdale, OR Population Dataset: Yearly Figures, Population Change, and Percent Change Analysis [Dataset]. https://www.neilsberg.com/research/datasets/6f8f0b40-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Sep 18, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Troutdale, Oregon
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2022, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2022. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2022. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Troutdale population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Troutdale across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2022, the population of Troutdale was 15,686, a 1.79% decrease year-by-year from 2021. Previously, in 2021, Troutdale population was 15,972, a decline of 2.02% compared to a population of 16,301 in 2020. Over the last 20 plus years, between 2000 and 2022, population of Troutdale increased by 1,859. In this period, the peak population was 16,685 in the year 2016. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2022

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2022)
    • Population: The population for the specific year for the Troutdale is shown in this column.
    • Year on Year Change: This column displays the change in Troutdale population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Troutdale Population by Year. You can refer the same here

  20. N

    Glidden, IA Population Dataset: Yearly Figures, Population Change, and...

    • neilsberg.com
    csv, json
    Updated Sep 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Glidden, IA Population Dataset: Yearly Figures, Population Change, and Percent Change Analysis [Dataset]. https://www.neilsberg.com/research/datasets/6e85c962-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Sep 18, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Iowa, Glidden
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2022, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2022. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2022. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Glidden population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Glidden across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2022, the population of Glidden was 1,154, a 0.43% decrease year-by-year from 2021. Previously, in 2021, Glidden population was 1,159, an increase of 0.70% compared to a population of 1,151 in 2020. Over the last 20 plus years, between 2000 and 2022, population of Glidden increased by 1. In this period, the peak population was 1,159 in the year 2021. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2022

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2022)
    • Population: The population for the specific year for the Glidden is shown in this column.
    • Year on Year Change: This column displays the change in Glidden population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Glidden Population by Year. You can refer the same here

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Gabrielle Stein (2024). 75-percent-human-dataset-og [Dataset]. https://huggingface.co/datasets/gsstein/75-percent-human-dataset-og

75-percent-human-dataset-og

gsstein/75-percent-human-dataset-og

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Apr 8, 2024
Authors
Gabrielle Stein
Description

gsstein/75-percent-human-dataset-og dataset hosted on Hugging Face and contributed by the HF Datasets community

Search
Clear search
Close search
Google apps
Main menu