https://github.com/nytimes/covid-19-data/blob/master/LICENSEhttps://github.com/nytimes/covid-19-data/blob/master/LICENSE
The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since the first reported coronavirus case in Washington State on Jan. 21, 2020, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.
DPH note about change from 7-day to 14-day metrics: As of 10/15/2020, this dataset is no longer being updated. Starting on 10/15/2020, these metrics will be calculated using a 14-day average rather than a 7-day average. The new dataset using 14-day averages can be accessed here: https://data.ct.gov/Health-and-Human-Services/COVID-19-case-rate-per-100-000-population-and-perc/hree-nys2
As you know, we are learning more about COVID-19 all the time, including the best ways to measure COVID-19 activity in our communities. CT DPH has decided to shift to 14-day rates because these are more stable, particularly at the town level, as compared to 7-day rates. In addition, since the school indicators were initially published by DPH last summer, CDC has recommended 14-day rates and other states (e.g., Massachusetts) have started to implement 14-day metrics for monitoring COVID transmission as well.
With respect to geography, we also have learned that many people are looking at the town-level data to inform decision making, despite emphasis on the county-level metrics in the published addenda. This is understandable as there has been variation within counties in COVID-19 activity (for example, rates that are higher in one town than in most other towns in the county).
This dataset includes a weekly count and weekly rate per 100,000 population for COVID-19 cases, a weekly count of COVID-19 PCR diagnostic tests, and a weekly percent positivity rate for tests among people living in community settings. Dates are based on date of specimen collection (cases and positivity).
A person is considered a new case only upon their first COVID-19 testing result because a case is defined as an instance or bout of illness. If they are tested again subsequently and are still positive, it still counts toward the test positivity metric but they are not considered another case.
These case and test counts do not include cases or tests among people residing in congregate settings, such as nursing homes, assisted living facilities, or correctional facilities.
These data are updated weekly; the previous week period for each dataset is the previous Sunday-Saturday, known as an MMWR week (https://wwwn.cdc.gov/nndss/document/MMWR_week_overview.pdf). The date listed is the date the dataset was last updated and corresponds to a reporting period of the previous MMWR week. For instance, the data for 8/20/2020 corresponds to a reporting period of 8/9/2020-8/15/2020.
Notes: 9/25/2020: Data for Mansfield and Middletown for the week of Sept 13-19 were unavailable at the time of reporting due to delays in lab reporting.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve.
The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj.
The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 .
The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 .
The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed.
This dataset includes a count and rate per 100,000 population for COVID-19 cases, a count of COVID-19 molecular diagnostic tests, and a percent positivity rate for tests among people living in community settings for the previous two-week period. Dates are based on date of specimen collection (cases and positivity).
A person is considered a new case only upon their first COVID-19 testing result because a case is defined as an instance or bout of illness. If they are tested again subsequently and are still positive, it still counts toward the test positivity metric but they are not considered another case.
Percent positivity is calculated as the number of positive tests among community residents conducted during the 14 days divided by the total number of positive and negative tests among community residents during the same period. If someone was tested more than once during that 14 day period, then those multiple test results (regardless of whether they were positive or negative) are included in the calculation.
These case and test counts do not include cases or tests among people residing in congregate settings, such as nursing homes, assisted living facilities, or correctional facilities.
These data are updated weekly and reflect the previous two full Sunday-Saturday (MMWR) weeks (https://wwwn.cdc.gov/nndss/document/MMWR_week_overview.pdf).
DPH note about change from 7-day to 14-day metrics: Prior to 10/15/2020, these metrics were calculated using a 7-day average rather than a 14-day average. The 7-day metrics are no longer being updated as of 10/15/2020 but the archived dataset can be accessed here: https://data.ct.gov/Health-and-Human-Services/COVID-19-case-rate-per-100-000-population-and-perc/s22x-83rd
As you know, we are learning more about COVID-19 all the time, including the best ways to measure COVID-19 activity in our communities. CT DPH has decided to shift to 14-day rates because these are more stable, particularly at the town level, as compared to 7-day rates. In addition, since the school indicators were initially published by DPH last summer, CDC has recommended 14-day rates and other states (e.g., Massachusetts) have started to implement 14-day metrics for monitoring COVID transmission as well.
With respect to geography, we also have learned that many people are looking at the town-level data to inform decision making, despite emphasis on the county-level metrics in the published addenda. This is understandable as there has been variation within counties in COVID-19 activity (for example, rates that are higher in one town than in most other towns in the county).
Additional notes: As of 11/5/2020, CT DPH has added antigen testing for SARS-CoV-2 to reported test counts in this dataset. The tests included in this dataset include both molecular and antigen datasets. Molecular tests reported include polymerase chain reaction (PCR) and nucleic acid amplicfication (NAAT) tests.
The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used.
Data suppression is applied when the rate is <5 cases per 100,000 or if there are <5 cases within the town. Information on why data suppression rules are applied can be found online here: https://www.cdc.gov/cancer/uscs/technical_notes/stat_methods/suppression.htm
https://www.ontario.ca/page/open-government-licence-ontariohttps://www.ontario.ca/page/open-government-licence-ontario
This dataset reports the daily reported number of the 7-day moving average rates of Deaths involving COVID-19 by vaccination status and by age group.
Effective November 14, 2024 this page will no longer be updated. Information about COVID-19 and other respiratory viruses is available on Public Health Ontario’s interactive respiratory virus tool: https://www.publichealthontario.ca/en/Data-and-Analysis/Infectious-Disease/Respiratory-Virus-Tool
Data includes:
As of June 16, all COVID-19 datasets will be updated weekly on Thursdays by 2pm.
As of January 12, 2024, data from the date of January 1, 2024 onwards reflect updated population estimates. This update specifically impacts data for the 'not fully vaccinated' category.
On November 30, 2023 the count of COVID-19 deaths was updated to include missing historical deaths from January 15, 2020 to March 31, 2023.
CCM is a dynamic disease reporting system which allows ongoing update to data previously entered. As a result, data extracted from CCM represents a snapshot at the time of extraction and may differ from previous or subsequent results. Public Health Units continually clean up COVID-19 data, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes and current totals being different from previously reported cases and deaths. Observed trends over time should be interpreted with caution for the most recent period due to reporting and/or data entry lags.
The data does not include vaccination data for people who did not provide consent for vaccination records to be entered into the provincial COVaxON system. This includes individual records as well as records from some Indigenous communities where those communities have not consented to including vaccination information in COVaxON.
“Not fully vaccinated” category includes people with no vaccine and one dose of double-dose vaccine. “People with one dose of double-dose vaccine” category has a small and constantly changing number. The combination will stabilize the results.
Spikes, negative numbers and other data anomalies: Due to ongoing data entry and data quality assurance activities in Case and Contact Management system (CCM) file, Public Health Units continually clean up COVID-19, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes, negative numbers and current totals being different from previously reported case and death counts.
Public Health Units report cause of death in the CCM based on information available to them at the time of reporting and in accordance with definitions provided by Public Health Ontario. The medical certificate of death is the official record and the cause of death could be different.
Deaths are defined per the outcome field in CCM marked as “Fatal”. Deaths in COVID-19 cases identified as unrelated to COVID-19 are not included in the Deaths involving COVID-19 reported.
Rates for the most recent days are subject to reporting lags
All data reflects totals from 8 p.m. the previous day.
This dataset is subject to change.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘COVID-19 State Data’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/nightranger77/covid19-state-data on 30 September 2021.
--- Dataset description provided by original source is as follows ---
This dataset is a per-state amalgamation of demographic, public health and other relevant predictors for COVID-19.
Used positive
, death
and totalTestResults
from the API for, respectively, Infected
, Deaths
and Tested
in this dataset.
Please read the documentation of the API for more context on those columns
Density is people per meter squared https://worldpopulationreview.com/states/
https://worldpopulationreview.com/states/gdp-by-state/
https://worldpopulationreview.com/states/per-capita-income-by-state/
https://en.wikipedia.org/wiki/List_of_U.S._states_by_Gini_coefficient
Rates from Feb 2020 and are percentage of labor force
https://www.bls.gov/web/laus/laumstrk.htm
Ratio is Male / Female
https://www.kff.org/other/state-indicator/distribution-by-gender/
https://worldpopulationreview.com/states/smoking-rates-by-state/
Death rate per 100,000 people
https://www.cdc.gov/nchs/pressroom/sosmap/flu_pneumonia_mortality/flu_pneumonia.htm
Death rate per 100,000 people
https://www.cdc.gov/nchs/pressroom/sosmap/lung_disease_mortality/lung_disease.htm
https://www.kff.org/other/state-indicator/total-active-physicians/
https://www.kff.org/other/state-indicator/total-hospitals
Includes spending for all health care services and products by state of residence. Hospital spending is included and reflects the total net revenue. Costs such as insurance, administration, research, and construction expenses are not included.
https://www.kff.org/other/state-indicator/avg-annual-growth-per-capita/
Pollution: Average exposure of the general public to particulate matter of 2.5 microns or less (PM2.5) measured in micrograms per cubic meter (3-year estimate)
https://www.americashealthrankings.org/explore/annual/measure/air/state/ALL
For each state, number of medium and large airports https://en.wikipedia.org/wiki/List_of_the_busiest_airports_in_the_United_States
Note that FL was incorrect in the table, but is corrected in the Hottest States paragraph
https://worldpopulationreview.com/states/average-temperatures-by-state/
District of Columbia temperature computed as the average of Maryland and Virginia
Urbanization as a percentage of the population https://www.icip.iastate.edu/tables/population/urban-pct-states
https://www.kff.org/other/state-indicator/distribution-by-age/
Schools that haven't closed are marked NaN https://www.edweek.org/ew/section/multimedia/map-coronavirus-and-school-closures.html
Note that some datasets above did not contain data for District of Columbia, this missing data was found via Google searches manually entered.
--- Original source retains full ownership of the source dataset ---
This dataset contains information on antibody testing for COVID-19: the number of people who received a test, the number of people with positive results, the percentage of people tested who tested positive, and the rate of testing per 100,000 people, stratified by ZIP Code Tabulation Area (ZCTA) neighborhood poverty group. These data can also be accessed here: https://github.com/nychealth/coronavirus-data/blob/master/totals/antibody-by-poverty.csv Exposure to COVID-19 can be detected by measuring antibodies to the disease in a person’s blood, which can indicate that a person may have had an immune response to the virus. Antibodies are proteins produced by the body’s immune system that can be found in the blood. People can test positive for antibodies after they have been exposed, sometimes when they no longer test positive for the virus itself. It is important to note that the science around COVID-19 antibody tests is evolving rapidly and there is still much uncertainty about what individual antibody test results mean for a single person and what population-level antibody test results mean for understanding the epidemiology of COVID-19 at a population level. These data only provide information on people tested. People receiving an antibody test do not reflect all people in New York City; therefore, these data may not reflect antibody prevalence among all New Yorkers. Increasing instances of screening programs further impact the generalizability of these data, as screening programs influence who and how many people are tested over time. Examples of screening programs in NYC include: employers screening their workers (e.g., hospitals), and long-term care facilities screening their residents. In addition, there may be potential biases toward people receiving an antibody test who have a positive result because people who were previously ill are preferentially seeking testing, in addition to the testing of persons with higher exposure (e.g., health care workers, first responders.) Neighborhood-level poverty groups were classified in a manner consistent with Health Department practices to describe and monitor disparities in health in NYC. Neighborhood poverty measures are defined as the percentage of people earning below the Federal Poverty Threshold (FPT) within a ZCTA. The standard cut-points for defining categories of neighborhood-level poverty in NYC are: • Low: <10% of residents in ZCTA living below the FPT • Medium: 10% to <20% • High: 20% to <30% • Very high: ≥30% residents living below the FPT The ZCTAs used for classification reflect the first non-missing address within NYC for each person reported with an antibody test result. Rates were calculated using interpolated intercensal population estimates updated in 2019. These rates differ from previously reported rates based on the 2000 Census or previous versions of population estimates. The Health Department produced these population estimates based on estimates from the U.S. Census Bureau and NYC Department of City Planning. Rates for poverty were calculated using direct standardization for age at diagnosis and weighting by the US 2000 standard population. Antibody tests are categorized based on the date of specimen collection and are aggregated by full weeks starting each Sunday and ending on Saturday. For example, a person whose blood was collected for antibody testing on Wednesday, May 6 would be categorized as tested during the week ending May 9. A person tested twice in one week would only be counted once in that week. This dataset includes testing data beginning April 5, 2020. Data are updated daily, and the dataset preserves historical records and source data changes, so each extract date reflects the current copy of the data as of that date. For example, an extract date of 11/04/2020 and extract date of 11/03/2020 will both contain all records as they were as of that extract date. Without filtering or grouping by extract date, an analysis will almost certain
A. SUMMARY This dataset includes COVID-19 tests by resident neighborhood and specimen collection date (the day the test was collected). Specifically, this dataset includes tests of San Francisco residents who listed a San Francisco home address at the time of testing. These resident addresses were then geo-located and mapped to neighborhoods. The resident address associated with each test is hand-entered and susceptible to errors, therefore neighborhood data should be interpreted as an approximation, not a precise nor comprehensive total. In recent months, about 5% of tests are missing addresses and therefore cannot be included in any neighborhood totals. In earlier months, more tests were missing address data. Because of this high percentage of tests missing resident address data, this neighborhood testing data for March, April, and May should be interpreted with caution (see below) Percentage of tests missing address information, by month in 2020 Mar - 33.6% Apr - 25.9% May - 11.1% Jun - 7.2% Jul - 5.8% Aug - 5.4% Sep - 5.1% Oct (Oct 1-12) - 5.1% To protect the privacy of residents, the City does not disclose the number of tests in neighborhoods with resident populations of fewer than 1,000 people. These neighborhoods are omitted from the data (they include Golden Gate Park, John McLaren Park, and Lands End). Tests for residents that listed a Skilled Nursing Facility as their home address are not included in this neighborhood-level testing data. Skilled Nursing Facilities have required and repeated testing of residents, which would change neighborhood trends and not reflect the broader neighborhood's testing data. This data was de-duplicated by individual and date, so if a person gets tested multiple times on different dates, all tests will be included in this dataset (on the day each test was collected). The total number of positive test results is not equal to the total number of COVID-19 cases in San Francisco. During this investigation, some test results are found to be for persons living outside of San Francisco and some people in San Francisco may be tested multiple times (which is common). To see the number of new confirmed cases by neighborhood, reference this map: https://res1sfd-o-tgov.vcapture.xyz/data/covid-19-case-maps#new-cases-maps B. HOW THE DATASET IS CREATED COVID-19 laboratory test data is based on electronic laboratory test reports. Deduplication, quality assurance measures and other data verification processes maximize accuracy of laboratory test information. All testing data is then geo-coded by resident address. Then data is aggregated by analysis neighborhood and specimen collection date. Data are prepared by close of business Monday through Saturday for public display. C. UPDATE PROCESS Updates automatically at 05:00 Pacific Time each day. Redundant runs are scheduled at 07:00 and 09:00 in case of pipeline failure. D. HOW TO USE THIS DATASET San Francisco population estimates for geographic regions can be found in a view based on the San Francisco Population and Demographic Census dataset. These population estimates are from the 2016-2020 5-year American Community Survey (ACS). Due to the high degree of variation in the time needed to complete tests by different labs there is a delay in this reporting. On March 24 the Health Officer ordered all labs in the City to report complete COVID-19 testing information to the local and state health departments. In order to track trends over time, a data user can analyze this data by "specimen_collection_date". Calculating Percent Positivity: The positivity rate is the percentage of tests that return a positive result for COVID-19 (positive tests divided by the sum of positive and negative tests). Indeterminate results, which could not conclusively determine whether COVID-19 virus was present, are not included in the calculation of pe
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset has been designed and obtained for discussing control measures during the COVID-19 pandemic. In this study, 1,260 people living in Tokyo and Kanagawa prefectures in Japan participated in the survey. This survey was used to collect participants’ behaviors and the objects that they touched on the days that they went out at 15 types of locations and vehicles.
This dataset is expected to improve our understanding of actual human behavior and contact with objects that could. Although it is impossible to disinfect all objects and spaces, this dataset is expected to contribute to the prioritization of disinfection during periods of widespread infection.
The participants living in Tokyo and Kanagawa prefectures in Japan were asked to respond, in detail, to a survey regarding the locations they stayed at for an extended period between December 3 (Thursday) and December 7 (Monday), 2020, and all the items that they touched during this time. Using the locations where clusters of infections were found during April 2020, 12 locations were selected (e.g., medical facilities, including hospitals; restaurants; stores whose main objective was to sell alcohol, such as bars; companies, including the participants’ own companies and the offices of others; and sports facilities such as gyms) and investigated. Similarly, three means of transport, namely trains, buses, and taxis, were selected as spaces where people often crowd together.
The main survey was conducted with 1,536 subjects during December 3–8. Data from 1,260 subjects who gave valid responses were used for the dataset. To ensure that the respondents could respond while their memories were still fresh, the survey was distributed to each subject on the day of their corresponding behavior. Participants were asked to respond about the locations where they spent most of their time during the corresponding period. They were also asked to detail all the objects they touched (excluding personal objects) during this time. The objects in this study were evaluated using a free-writing description. Typographical errors and differences in expressions were frequently observed (e.g., water closet, toilet, and bathroom). A categorization rule was thus developed to better ascertain the actual status of locations and object contact. The participants’ expressions were modified through visual inspection.
This survey was conducted after appropriate review by the Ethics Committee of the Graduate School of Engineering, University of Tokyo (examination number: 20-61, approval number: KE20-72).
Teruaki Hayashi, Daisuke Hase, Hikaru Suenaga, Yukio Ohsawa, "The Actual Conditions of Person-to-Object Contact and a Proposal for Prevention Measures During the COVID-19 Pandemic," medRxiv, 2021. DOI: https://doi.org/10.1101/2021.04.11.21255290
This research project was supported by the “Startup Research Program for Post-Corona Society” of the Academic Strategy Office, School of Engineering, the University of Tokyo, and the “COVID-19 AI and Simulation Project” run by Mitsubishi Research Institute commissioned by the Office for Novel Coronavirus Disease Control, Cabinet Secretariat, Government of Japan. The authors would like to thank PLUG-Inc. for survey design and implementation.
Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
License information was derived automatically
For English, see below As of 1 January 2023, RIVM will no longer collect additional information. As a result, from January 1, 2023, we will no longer report data on infections among people over 70 living at home . File description: - This file contains the following numbers: (number of newly reported) positively tested individuals aged 70 and older living at home*, by safety region, per date of the positive test result. - (number of newly reported) deceased individuals aged 70 and older living at home who tested positive*, by safety region, by date on which the patient died. The numbers concern COVID-19 reports since the registration of the (residential) institution in OSIRIS with effect from questionnaire 5 (01-07-2020). * For reports from 01-07-2020, it is recorded whether the patient lives in an institution. Reports from 01-07-2020 are regarded as individuals aged 70 and older living at home if, according to the information known to the GGD, they: • Do not live in an institution AND • Are aged 70 or older AND • The person is not employed and is not a healthcare worker Persons whose residential facility/institution is not listed can still be excluded as individuals aged 70 and older living at home if they: • Can be linked to a known location of a disability care institution or nursing home on the basis of their 6-digit zip code OR • Have 'Disabled care institution' or 'Nursing home' as the location of the contamination mentioned. OR • Based on the content of free text fields, can be linked to a disability care institution or nursing home. The file is structured as follows: A set of records per date of with for each date: • A record for each security region (including 'Unknown') in the Netherlands, even if there are no reports for the relevant security region. The numbers are then 0 (zero). • Security region is unknown when a record cannot be assigned to one unique security region. A date 01-01-1900 is also included in this file for statistics whose associated date is unknown. The following describes how the variables are defined. Description of the variables: Version: Version number of the dataset. This version number is adjusted (+1) when the content of the dataset is structurally changed (so not the daily update or a correction at record level. The corresponding metadata in RIVMdata (https://data.rivm.nl) is also changed. Version 2 update (January 25, 2022): • An updated list of known nursing or care home locations and private residential care centers was received from the umbrella organization Patient Federation of the Netherlands on 03-12-2021. taken to determine whether individuals live in an institution Version 3 update (February 8, 2022) • From February 8, 2022, positive SARS-CoV-2 test results will be reported directly from CoronIT to RIVM. such as Testing for Access) and healthcare institutions (such as hospitals, nursing homes and general practitioners) that enter their positive SARS-CoV-2 test results via the Reporting Portal of GGD GHOR directly to RIVM. Reports that are part of the source and contact investigation sample and positive SARS-CoV-2 test results from healthcare institutions that are reported to the GGD via healthcare email are reported to RIVM via HPZone. From 8 February, the date of the positive test result is used and no longer the date of notification to the GGD. Version 4 update (March 24, 2022): • In version 4 of this dataset, records have been compiled according to the municipality reclassification of March 24, 2022. See description of the variable security_region_code for more information. Version 5 update (August 2, 2022): • The classification of persons aged 70 years and parents living independently has not been applied to reports that have only been received by RIVM since February 8, 2022 via an alternative reporting route. From 8 February to 1 August 2022, the number of reports from independently living persons aged 70 and parents was therefore underestimated by approximately 14%. As of August 2, 2022, this format will be retroactively updated. Version 6 update (September 1, 2022): - From September 1, 2022, the data will no longer be updated every working day, but on Tuesdays and Fridays. The data is retroactively updated on these days for the other days. - As of September 1, 2022, this dataset is split into two parts. The first part contains the dates from the start of the pandemic to October 3, 2021 (week 39) and contains "tm" in the file name. This data will no longer be updated. The second part contains the data from October 4, 2021 (week 40) and is updated every Tuesday and Friday. Date_of_report: Date and time on which the data file was created by RIVM. Date_of_statistic_reported: The date used for reporting the 70plus statistic living at home. This can be different for each reported statistic, namely: • For [Total_cases_reported] this is the date of the positive test result. • For [Total_deceased_reported] this is the date on which the patients died. Security_region_code: Security region code. The code of the security region based on the patient's place of residence. If the place of residence is not known, the safety region is based on the GGD that submitted the report, except for the Central and West Brabant and Brabant-Noord safety regions, since the GGD and safety region are not comparable for these regions. See also: https://www.cbs.nl/nl-nl/figures/detail/84721ENG?q=Veiliteiten From March 24, 2022, this file has been compiled according to the municipality classification of March 24, 2022. The municipality of Weesp has been merged into the municipality of Amsterdam . With this division, the Gooi- en Vechtstreek safety region has become smaller and the Amsterdam-Amstelland safety region larger; GGD Amsterdam has become larger and GGD Gooi- en Vechtstreek has become smaller (Municipal division on 1 January 2022 (cbs.nl). Security_region_name: Security region name. Security region name is based on the Security Region Code. See also: https://www.rijksoverheid.nl /topics/safety-regions-and-crisis-management/safety-regions Total_cases_reported: The number of new COVID-19 infected over-70s living at home reported to the GGD on [Date_of_statistic_reported].The actual number of COVID-19 infected over-70s living at home is higher than the number of reports in surveillance, because not everyone with a possible infection is tested. In addition, it is not known for every report whether this concerns a person over 70 living at home. Date_of_statistic_reported] The actual number of deceased people over 70 living at home who died of COVID-19 is higher than the number of reports in the surveillance, because not all deceased patients are tested and deaths are not legally reportable. Moreover, it is not known for every report whether this concerns a person over 70 living at home. Corrections made to reports in the OSIRIS source system can also lead to corrections in this database. In that case, numbers published by RIVM in the past may deviate from the numbers in this database. This file therefore always contains the numbers based on the most up-to-date data in the OSIRIS source system. The CSV file uses a semicolon as a separator. There are no empty lines in the file. Below are the column names and the types of values in the CSV file: • Version: Consisting of a single whole number (integer). Is always filled for each row. Example: 2. • Date_of_report: Written in format YYYY-MM-DD HH:MM. Is always filled for each row. Example: 2020-10-16 10:00 AM. • Date_of_statistic_reported: Written in format YYYY-MM-DD. Is always filled for each row. Example: 2020-10-09. • Security_region_code: Consisting of 'VR' followed by two digits. Can also be empty if the region is unknown. Example: VR01. • Security_region_name: Consisting of a character string. Is always filled for each row. Example: Central and West Brabant. • Total_cases_reported: Consisting of only whole numbers (integer). Is always filled for each row. Example: 12. • Total_deceased_reported: Consisting of only whole numbers (integer). Is always filled for each row. Example: 8. ---------------------------------------------- ---------------------------------- Covid-19 statistics for persons aged 70 and older living outside an institution, by security region and date As of 1 January 2023, the RIVM will no longer collect additional information. As a result, from January 1, 2023, we will no longer report data on infections among people over 70 living at home. File description: This file contains the following numbers: - Number of newly reported persons aged 70 and older living at home who tested positive*, by security region, by date of the positive test result. - Number of newly reported deceased persons aged 70 and older living at home who tested positive*, by security region, by date on which the patient died. The numbers concern COVID-19 reports since the registration of the (residential) institution in OSIRIS with effect from questionnaire 5 (01-07-2020). * For reports from 01-07-2020, it is recorded whether the patient lives in an institution. For reports from 01-07-2020 persons aged 70 and older are considered to be living at home if, according to the information known to the PHS, they: • were not living in an institution AND • Are aged 70 years or older AND • The person is not employed and is not a healthcare worker Persons whose residential facility/institution is not listed can still be excluded as being an persons aged 70 and older living at home if they: • Based on their 6-digit zip code, can be linked to a known location of a care institution for the disabled or a nursing home OR • Have 'Disability care institution' or 'Nursing home' as the stated location of transmission. OR • Based on the content of free text fields, links can be made to a care institution for the disabled or a nursing home. The file is structured as follows: A set of records by date, with for
A. SUMMARY Medical provider confirmed COVID-19 cases and confirmed COVID-19 related deaths in San Francisco, CA aggregated by several different geographic areas and normalized by 2016-2020 American Community Survey (ACS) 5-year estimates for population data to calculate rate per 10,000 residents. On September 12, 2021, a new case definition of COVID-19 was introduced that includes criteria for enumerating new infections after previous probable or confirmed infections (also known as reinfections). A reinfection is defined as a confirmed positive PCR lab test more than 90 days after a positive PCR or antigen test. The first reinfection case was identified on December 7, 2021. Cases and deaths are both mapped to the residence of the individual, not to where they were infected or died. For example, if one was infected in San Francisco at work but lives in the East Bay, those are not counted as SF Cases or if one dies in Zuckerberg San Francisco General but is from another county, that is also not counted in this dataset. Dataset is cumulative and covers cases going back to 3/2/2020 when testing began. Geographic areas summarized are: 1. Analysis Neighborhoods 2. Census Tracts 3. Census Zip Code Tabulation Areas B. HOW THE DATASET IS CREATED Addresses from medical data are geocoded by the San Francisco Department of Public Health (SFDPH). Those addresses are spatially joined to the geographic areas. Counts are generated based on the number of address points that match each geographic area. The 2016-2020 American Community Survey (ACS) population estimates provided by the Census are used to create a rate which is equal to ([count] / [acs_population]) * 10000) representing the number of cases per 10,000 residents. C. UPDATE PROCESS Geographic analysis is scripted by SFDPH staff and synced to this dataset daily at 7:30 Pacific Time. D. HOW TO USE THIS DATASET San Francisco population estimates for geographic regions can be found in a view based on the San Francisco Population and Demographic Census dataset. These population estimates are from the 2016-2020 5-year American Community Survey (ACS). Privacy rules in effect To protect privacy, certain rules are in effect: 1. Case counts greater than 0 and less than 10 are dropped - these will be null (blank) values 2. Death counts greater than 0 and less than 10 are dropped - these will be null (blank) values 3. Cases and deaths dropped altogether for areas where acs_population < 1000 Rate suppression in effect where counts lower than 20 Rates are not calculated unless the case count is greater than or equal to 20. Rates are generally unstable at small numbers, so we avoid calculating them directly. We advise you to apply the same approach as this is best practice in epidemiology. A note on Census ZIP Code Tabulation Areas (ZCTAs) ZIP Code Tabulation Areas are special boundaries created by the U.S. Census based on ZIP Codes developed by the USPS. They are not, however, the same thing. ZCTAs are areal representations of routes. Read how the Census develops ZCTAs on their website. Row included for Citywide case counts, incidence rate, and deaths A single row is included that has the Citywide case counts and incidence rate. This can be used for comparisons. Citywide will capture all cases regardless of address quality. While some cases cannot be mapped to sub-areas like Census Tracts, ongo
This dataset is derived from reports to Public Health England (PHE) of infectious disease outbreaks in care homes. Care homes in this dataset refers to all supported living facilities such as residential homes, nursing homes, rehabilitation units and assisted living units.
The tables in this publication provide the latest management information on suspected or confirmed outbreaks of COVID-19 for upper tier local authorities, lower tier local authorities, government office regions and PHE centres.
Any individual care home will only be included in the dataset once. If a care home has reported more than one outbreak, only the first is included in this dataset.
As the details of an outbreak are investigated data will be subject to revision and the numbers in this dataset may change in future publications.
This dataset contains no indication of whether the reported outbreaks are still active.
Each weekly total refers to reports in the period Monday to the following Sunday.
As the COVID-19 situation in England continues to evolve, the previous report providing management information on care home outbreaks is no longer appropriate. Therefore, this publication ceased on 23 July 2020.
PHE continues to share all relevant case and outbreak data with local authorities and other stakeholders regularly and is developing additional integrated tools to support their ongoing need for intelligence. The COVID-19 surveillance report is published weekly.
If you have any comments or queries email asc@phe.gov.uk .
<p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute"><abbr title="OpenDocument Spreadsheet" class="gem-c-attachment_abbr">ODS</abbr></span>, <span class="gem-c-attachment_attribute">45.3 KB</span></p>
<p class="gem-c-attachment_metadata">
This file is in an <a href="https://www.gov.uk/guidance/using-open-document-formats-odf-in-your-organisation" target="_self" class="govuk-link">OpenDocument</a> format
This file may not be suitable for users of assistive technology.
Request an accessible format. If you use assistive technology (such as a screen reader) and need a version of this document in a more accessible format, please email <a href="mailto:publications@phe.gov.uk" target="_blank" class="govuk-link">publications@phe.gov.uk</a>. Please tell us what format you need. It will help us if you say what assistive technology you use.
NOTE: This dataset has been retired and marked as historical-only.
Weekly rates of COVID-19 cases, hospitalizations, and deaths among people living in Chicago by vaccination status and age.
Rates for fully vaccinated and unvaccinated begin the week ending April 3, 2021 when COVID-19 vaccines became widely available in Chicago. Rates for boosted begin the week ending October 23, 2021 after booster shots were recommended by the Centers for Disease Control and Prevention (CDC) for adults 65+ years old and adults in certain populations and high risk occupational and institutional settings who received Pfizer or Moderna for their primary series or anyone who received the Johnson & Johnson vaccine.
Chicago residency is based on home address, as reported in the Illinois Comprehensive Automated Immunization Registry Exchange (I-CARE) and Illinois National Electronic Disease Surveillance System (I-NEDSS).
Outcomes: • Cases: People with a positive molecular (PCR) or antigen COVID-19 test result from an FDA-authorized COVID-19 test that was reported into I-NEDSS. A person can become re-infected with SARS-CoV-2 over time and so may be counted more than once in this dataset. Cases are counted by week the test specimen was collected. • Hospitalizations: COVID-19 cases who are hospitalized due to a documented COVID-19 related illness or who are admitted for any reason within 14 days of a positive SARS-CoV-2 test. Hospitalizations are counted by week of hospital admission. • Deaths: COVID-19 cases who died from COVID-19-related health complications as determined by vital records or a public health investigation. Deaths are counted by week of death.
Vaccination status: • Fully vaccinated: Completion of primary series of a U.S. Food and Drug Administration (FDA)-authorized or approved COVID-19 vaccine at least 14 days prior to a positive test (with no other positive tests in the previous 45 days). • Boosted: Fully vaccinated with an additional or booster dose of any FDA-authorized or approved COVID-19 vaccine received at least 14 days prior to a positive test (with no other positive tests in the previous 45 days). • Unvaccinated: No evidence of having received a dose of an FDA-authorized or approved vaccine prior to a positive test.
CLARIFYING NOTE: Those who started but did not complete all recommended doses of an FDA-authorized or approved vaccine prior to a positive test (i.e., partially vaccinated) are excluded from this dataset.
Incidence rates for fully vaccinated but not boosted people (Vaccinated columns) are calculated as total fully vaccinated but not boosted with outcome divided by cumulative fully vaccinated but not boosted at the end of each week. Incidence rates for boosted (Boosted columns) are calculated as total boosted with outcome divided by cumulative boosted at the end of each week. Incidence rates for unvaccinated (Unvaccinated columns) are calculated as total unvaccinated with outcome divided by total population minus cumulative boosted, fully, and partially vaccinated at the end of each week. All rates are multiplied by 100,000.
Incidence rate ratios (IRRs) are calculated by dividing the weekly incidence rates among unvaccinated people by those among fully vaccinated but not boosted and boosted people.
Overall age-adjusted incidence rates and IRRs are standardized using the 2000 U.S. Census standard population.
Population totals are from U.S. Census Bureau American Community Survey 1-year estimates for 2019.
All data are provisional and subject to change. Information is updated as additional details are received and it is, in fact, very common for recent dates to be incomplete and to be updated as time goes on. This dataset reflects data known to CDPH at the time when the dataset is updated each week.
Numbers in this dataset may differ from other public sources due to when data are reported and how City of Chicago boundaries are defined.
For all datasets related to COVID-19, see https://data.cityofchic
Dataset no longer updated: Due to changes in the collection and availability of data on COVID-19, this dataset is no longer updated. Latest information about COVID-19 is available via the UKHSA data dashboard. The UK government publish daily data, updated weekly, on COVID-19 cases, vaccinations, hospital admissions and deaths. This note provides a summary of the key data for London from this release. Data are published through the UK Coronavirus Dashboard, last updated on 23 March 2023. This update contains: Data on the number of cases identified daily through Pillar 1 and Pillar 2 testing at the national, regional and local authority level Data on the number of people who have been vaccinated against COVID-19 Data on the number of COVID-19 patients in Hospital Data on the number of people who have died within 28 days of a COVID-19 diagnosis Data for London and London boroughs and data disaggregated by age group Data on weekly deaths related to COVID-19, published by the Office for National Statistics and NHS, is also available. Key Points On 23 March 2023 the daily number of people tested positive for COVID-19 in London was reported as 2,775 On 23 March 2023 it was newly reported that 94 people in London died within 28 days of a positive COVID-19 test The total number of COVID-19 cases identified in London to date is 3,146,752 comprising 15.2 percent of the England total of 20,714,868 cases In the most recent week of complete data (12 March 2023 - 18 March 2023) 2,951 new cases were identified in London, a rate of 33 cases per 100,000 population. This compares with 2,883 cases and a rate of 32 for the previous week In England as a whole, 29,426 new cases were identified in the most recent week of data, a rate of 52 cases per 100,000 population. This compares with 26,368 cases and a rate of 47 for the previous week Up to and including 22 March 2023 6,452,895 people in London had received the first dose of a COVID-19 vaccine and 6,068,578 had received two doses Up to and including 22 March 2023 4,435,586 people in London had received either a third vaccine dose or a booster dose On 22 March 2023 there were 1,370 COVID-19 patients in London hospitals. This compares with 1,426 patients on 15 March 2023. On 22 March 2023 there were 70 COVID-19 patients in mechanical ventilation beds in London hospitals. This compares with 72 patients on 15 March 2023. Update: From 1st July updates are weekly From Friday 1 July 2022, this page will be updated weekly rather than daily. This change results from a change to the UK government COVID-19 Dashboard which will move to weekly reporting. Weekly updates will be published every Thursday. Daily data up to the most recent available will continue to be added in each weekly update. Data summary Local authority data Demographics Notes on data sources Source: UK Coronavirus Dashboard. For more information see: Coronavirus (COVID-19) in the UK - About the Data. Cases Data UK Health Security Agency (UKHSA) reports new and cumulative cases identified by Pillar 1 and Pillar 2 testing. Pillar 1 testing relates to tests carried out in UKHSA laboratories or NHS Hospitals for those with clinical need, and health and care workers. Pillar 2 testing relates to tests carried out on the wider population in Lighthouse laboratories, public, private, and academic sector laboratories or using lateral flow devices. The cases data is published by day for Countries within the UK, and Regions, Upper Tier Local Authority (UTLA) and Lower Tier Local Authority (LTLA) within England. The data used here is taken from the regional and UTLA level cases data. Notice: Changes to COVID-19 case reporting As of 31 January 2022, UKHSA moved all COVID-19 case reporting in England to use an episode-based definition which includes possible reinfections. Those testing positive beyond 90 days of a previous infection are now counted as a separate infection episode (a possible reinfection episode). Previously people who tested positive for COVID-19 were only counted once in case numbers published on the daily dashboard, at the date of the first infection. Full details of the changes can be found here Changes to COVID-19 testing in England The availability of free COVID-19 tests in England changed on 1 April 2022. Information on who can access free tests has been published by UKHSA. Changes to patient testing in the NHS in England have also been published by NHS England. Deaths data Data on COVID-19 associated deaths in England are produced by UKHSA from multiple sources linked to confirmed case data. Deaths are only included if the deceased had a positive test for COVID-19 and died within 28 days of the first positive test. Postcode of residence for deaths is collected at the time of testing. This is supplemented, where available, with information from ONS mortality records, Health Protection Team reports and NHS Digital Patient Demographic Service records. Full details of the methodology are available in the technical summary of the PHE data series on deaths in people with COVID-19. Hospital admissions data UKHSA publish the daily total number of patients admitted to hospital, patients in hospital and patients in beds which can deliver mechanical ventilation with COVID-19. In England this includes COVID-19 patients being treated in NHS acute hospitals, mental health and learning disability trusts, and independent service providers commissioned by the NHS. Vaccination data UKHSA publish the number of people who have received a COVID-19 vaccination, by day on which the vaccine was administered. Data are reported daily and can be updated for historical dates as vaccinations given are recorded on the relevant system. Therefore, data for recent dates may be incomplete. Vaccinations that were carried out in England are reported in the National Immunisation Management Service which is the system of record for the vaccination programme in England. Only people aged 12 and over who have an NHS number and are currently alive are included. Age is defined as a person's age at 31 August 2021. The data includes counts of vaccinations by age band, dose, region, and local authority. Additional analysis of the vaccine roll out in London can be found here. ONS population estimates The counts of vaccines given has been converted to percentage of the population vaccinated using the ONS 2020 mid-year population estimates. This is a different population estimate to that used on the UK Coronavirus Dashboard for sub-national data. The UK Coronavirus Dashboard uses people aged 16 and over in the National Immunisation Management Service (NIMS), which is based on GP registrations. In more urban areas like London, NIMS is likely to give an overestimate of the population due to increased population mobility increasing the likelihood duplicate or out of date GP records. Due to the differences in population estimates the percentage of the population vaccinated given here will be higher than the figures included for London on the UK Coronavirus Dashboard. Data and Resources phe_deaths_age_london.csv Source: https://coronavirus.data.gov.uk/ phe_deaths_london_boroughs.csv Source: https://coronavirus.data.gov.uk/ phe_vaccines_age_london_boroughs.csv
This dataset is a per-state amalgamation of demographic, public health and other relevant predictors for COVID-19.
Coronavirus API http://coronavirusapi.com/states.csv
http://coronavirusapi.com/states.csv
Density is people per meter squared https://worldpopulationreview.com/states/
https://worldpopulationreview.com/states/gdp-by-state/
https://worldpopulationreview.com/states/per-capita-income-by-state/
https://en.wikipedia.org/wiki/List_of_U.S._states_by_Gini_coefficient
Rates from Feb 2020 and are percentage of labor force
https://www.bls.gov/web/laus/laumstrk.htm
Ratio is Male / Female
https://www.kff.org/other/state-indicator/distribution-by-gender/
https://worldpopulationreview.com/states/smoking-rates-by-state/
Death rate per 100,000 people
https://www.cdc.gov/nchs/pressroom/sosmap/flu_pneumonia_mortality/flu_pneumonia.htm
Death rate per 100,000 people
https://www.cdc.gov/nchs/pressroom/sosmap/lung_disease_mortality/lung_disease.htm
https://www.kff.org/other/state-indicator/total-active-physicians/
https://www.kff.org/other/state-indicator/total-hospitals
Includes spending for all health care services and products by state of residence. Hospital spending is included and reflects the total net revenue. Costs such as insurance, administration, research, and construction expenses are not included.
https://www.kff.org/other/state-indicator/avg-annual-growth-per-capita/
Pollution: Average exposure of the general public to particulate matter of 2.5 microns or less (PM2.5) measured in micrograms per cubic meter (3-year estimate)
https://www.americashealthrankings.org/explore/annual/measure/air/state/ALL
For each state, number of medium and large airports https://en.wikipedia.org/wiki/List_of_the_busiest_airports_in_the_United_States
Note that FL was incorrect in the table, but is corrected in the Hottest States paragraph
https://worldpopulationreview.com/states/average-temperatures-by-state/
District of Columbia temperature computed as the average of Maryland and Virginia
Urbanization as a percentage of the population https://www.icip.iastate.edu/tables/population/urban-pct-states
https://www.kff.org/other/state-indicator/distribution-by-age/
Schools that haven't closed are marked NaN https://www.edweek.org/ew/section/multimedia/map-coronavirus-and-school-closures.html
Note that some datasets above did not contain data for District of Columbia, this missing data was found via Google searches manually entered.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The World Health Organization reported 6932591 Coronavirus Deaths since the epidemic began. In addition, countries reported 766440796 Coronavirus Cases. This dataset provides - World Coronavirus Deaths- actual values, historical data, forecast, chart, statistics, economic calendar and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘COVID-19 Healthy Diet Dataset’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/mariaren/covid19-healthy-diet-dataset on 12 November 2021.
--- Dataset description provided by original source is as follows ---
“Health requires healthy food."
Roger Williams (1603 – 1683)
In the past couple months, we’ve witnessed doctors, nurses, paramedics and thousands of medical workers putting their lives on the frontline to save patients who are infected. And as the battle with COVID-19 continues, we should all ask ourselves – What should we do to help out? What can we do to protect our loved ones, those who sacrifice for us, and ourselves from this pandemic?
These questions all relate back to the CORD-19 Open Research Dataset Challenge Task Question: “What do we know about non-pharmaceutical interventions?”
And my simple answer is : We need to protect our families and our own healths by adapting to a healthy diet.
The USDA Center for Nutrition Policy and Promotion recommends a very simple daily diet intake guideline: 30% grains, 40% vegetables, 10% fruits, and 20% protein, but are we really eating in the healthy eating style recommended by these food divisions and balances?
In this dataset, I have combined data of different types of food, world population obesity and undernourished rate, and global COVID-19 cases count from around the world in order to learn more about how a healthy eating style could help combat the Corona Virus. And from the dataset, we can gather information regarding diet patterns from countries with lower COVID infection rate, and adjust our own diet accordingly.
In each of the 4 datasets below, I have calculated fat quantity, energy intake (kcal), food supply quantity (kg), and protein for different categories of food (all calculated as percentage of total intake amount). I've also added on the obesity and undernourished rate (also in percentage) for comparison. The end of the datasets also included the most up to date confirmed/deaths/recovered/active cases (also in percentage of current population for each country).
Data for different food group supply quantities, nutrition values, obesity, and undernourished percentages are obtained from Food and Agriculture Organization of the United Nations FAO website To see the specific types of food included in each category from the FAO data, take a look at the last dataset Supply_Food_Data_Description.csv
.
Data for population count for each country comes from Population Reference Bureau PRB website
Data for COVID-19 confirmed, deaths, recovered and active cases are obtained from Johns Hopkins Center for Systems Science and Engineering CSSE website
The USDA Center for Nutrition Policy and Promotion diet intake guideline information can be found in ChooseMyPlate.gov
Note: I will update and push new versions of the datasets weekly. (Current version include COVID data from the week of 02/06/2021) Click here to see my data cleaning/preprocessing code in R
If you like this dataset, please don't forget to give me an upvote! 👍
--- Original source retains full ownership of the source dataset ---
Full edition for scientific use. The main purpose of the study was to identify the number of people actually infected with coronavirus in Austria, as well as the number of people who have formed antibodies against SARS-CoV-2 and thus have been infected and further to report how people are feeling during this crisis. A representative random sample of 7823 people was drawn based on the population register of Austria (people living in Austria, exluding those currently in hospital and those aged younger than 16 years). The estimated percentage of SARS-CoV-2 infected persons in the Austrian resident population aged 16 and older was 3.1% on average in mid-November [95% confidence interval: 2.6-3.5%]. From the beginning of the coronavirus pandemic until mid/end of October 2020, 4.7% of Austrian residents (people aged 16 and over living in private households) had formed antibodies against SARS-CoV-2 and thus have been infected with SARS-CoV-2 [95% confidence interval: 3.8-5.6%].
On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased its collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit: World Health Organization (WHO)For more information, visit the Johns Hopkins Coronavirus Resource Center.COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.DOI: https://doi.org/10.6084/m9.figshare.125529863/7/2022 - Adjusted the rate of active cases calculation in the U.S. to reflect the rates of serious and severe cases due nearly completely dominant Omicron variant.6/24/2020 - Expanded Case Rates discussion to include fix on 6/23 for calculating active cases.6/22/2020 - Added Executive Summary and Subsequent Outbreaks sectionsRevisions on 6/10/2020 based on updated CDC reporting. This affects the estimate of active cases by revising the average duration of cases with hospital stays downward from 30 days to 25 days. The result shifted 76 U.S. counties out of Epidemic to Spreading trend and no change for national level trends.Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Correction on 6/1/2020Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Revisions added on 4/30/2020 are highlighted.Revisions added on 4/23/2020 are highlighted.Executive SummaryCOVID-19 Trends is a methodology for characterizing the current trend for places during the COVID-19 global pandemic. Each day we assign one of five trends: Emergent, Spreading, Epidemic, Controlled, or End Stage to geographic areas to geographic areas based on the number of new cases, the number of active cases, the total population, and an algorithm (described below) that contextualize the most recent fourteen days with the overall COVID-19 case history. Currently we analyze the countries of the world and the U.S. Counties. The purpose is to give policymakers, citizens, and analysts a fact-based data driven sense for the direction each place is currently going. When a place has the initial cases, they are assigned Emergent, and if that place controls the rate of new cases, they can move directly to Controlled, and even to End Stage in a short time. However, if the reporting or measures to curtail spread are not adequate and significant numbers of new cases continue, they are assigned to Spreading, and in cases where the spread is clearly uncontrolled, Epidemic trend.We analyze the data reported by Johns Hopkins University to produce the trends, and we report the rates of cases, spikes of new cases, the number of days since the last reported case, and number of deaths. We also make adjustments to the assignments based on population so rural areas are not assigned trends based solely on case rates, which can be quite high relative to local populations.Two key factors are not consistently known or available and should be taken into consideration with the assigned trend. First is the amount of resources, e.g., hospital beds, physicians, etc.that are currently available in each area. Second is the number of recoveries, which are often not tested or reported. On the latter, we provide a probable number of active cases based on CDC guidance for the typical duration of mild to severe cases.Reasons for undertaking this work in March of 2020:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-25 days + 5% from past 26-49 days - total deaths. On 3/17/2022, the U.S. calculation was adjusted to: Active Cases = 100% of new cases in past 14 days + 6% from past 15-25 days + 3% from past 26-49 days - total deaths. Sources: https://www.cdc.gov/mmwr/volumes/71/wr/mm7104e4.htm https://covid.cdc.gov/covid-data-tracker/#variant-proportions If a new variant arrives and appears to cause higher rates of serious cases, we will roll back this adjustment. We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Coronavirus (COVID-19) vaccination rates for people aged 18 years and over in England. Estimates by socio-demographic characteristic, region and local authority.
Created with a 500 meter side hexagon grid, we undertook a regression analysis creating a correlation matrix utilising a number of demographic indicators from the Local Insight OCSI platform. This dataset is showing the distribution of metrics that were found to have the strongest relationships, with the base comparison metric of At risk employees (as a result of COVID-19) by employee residence. This dataset contains the following metrics:At risk employees (as a result of COVID-19) by employee residence - Shows the proportion of employees that are at risk of losing their jobs following the outbreak of COVID-19 - calculated based on the latest furloughing data from the ONS and the employee profile for each local authority. The data is derived from Wave 2 of the ONS Business Impact of Coronavirus Survey (BICS) which contains data on the furloughing of workers across UK businesses between March 23 to April 5, 2020 see https://www.ons.gov.uk/generator?uri=/employmentandlabourmarket/peopleinwork/employmentandemployeetypes/articles/furloughingofworkersacrossukbusinesses/23march2020to5april2020/574ca854&format=csv for details. This data includes responses from businesses that were either still trading or had temporarily paused trading. This has been mapped against the industrial composition of employee jobs at OA, LSOA, MSOA and Local Authority level to estimate which are most exposed to labour market risks associated with the Covid-19. The industrial composition of employee jobs is based on the employee place of residence rather than where they work. The data on the industrial composition of local areas comes from the 2011 Census Industrial classification, which is publicly accessible via NOMIS. The methodology is adapted from the RSA at-risk Local Authorities publication - https://www.thersa.org/about-us/media/2020/one-in-three-jobs-in-parts-of-britain-at-risk-due-to-covid-19-local-data-reveals This approach calculates the total number of employees at risk in each local area by identifying the number of employees in each industry in that area (based on employee residence) multiplied by the estimated percentage of those that have been furloughed on the Government's Coronavirus Job Retention Scheme (CJRS). The CRJS was set up by the Government specifically to prevent growing unemployment and the National Institute for Economic and Social Research (NIESR) has described furloughed workers as technically unemployed. It therefore looks to be the best available data with which to calculate medium-term employment risk as a result of Covid-19. This is then divided by the total number of employees in each local area (by place of residence) to calculate the percentage of employees at risk of losing their jobs. Note, employees in industry sectors which were not recorded in the ONS Business Impact of Coronavirus Survey (BICS) due to inadequate sample size have not been included in the numerator or denominator for this dataset - these include Agriculture, forestry and fishing, Mining and quarrying, Electricity, gas, steam and air conditioning supply, Financial and insurance activities, Real estate activities. Public administration and defence; compulsory social security and activities of households as employers; undifferentiated goods - and services - producing activities of households for own use. Social grade (N-SEC): 2. Lower managerial, administrative and professional occupations - Shows the proportion of people in employment (aged 16-74) in the Approximated Social grade (N-SEC) category: 2. Lower managerial, administrative and professional occupations. An individual's approximated social grade is determined by their response to the occupation questions in the 2011 Census. Rate calculated as = (Lower managerial, administrative and professional occupations (census KS611))/(All usual residents aged 16 to 74 (census KS611))*100.IoD 2019 Education, Skills and Training Rank - The Indices of Deprivation (IoD) 2019 Education Skills and Training Domain measures the lack of attainment and skills in the local population. The indicators fall into two sub-domains: one relating to children and young people and one relating to adult skills. These two sub-domains are designed to reflect the 'flow' and 'stock' of educational disadvantage within an area respectively. That is the 'children and young people' sub-domain measures the attainment of qualifications and associated measures ('flow') while the 'skills' sub-domain measures the lack of qualifications in the resident working age adult population ('stock'). Children and Young People sub-domain includes: Key stage 2 attainment: The average points score/scaled score of pupils taking reading writing and mathematics Key stage 2 exams; Key stage 4 attainment: The average capped points score of pupils taking Key stage 4; Secondary school absence: The proportion of authorised and unauthorised absences from secondary school; Staying on in education post 16: The proportion of young people not staying on in school or non-advanced education above age 16 and Entry to higher education: The proportion of young people aged under 21 not entering higher education. The Adult Skills sub-domain includes: Adult skills: The proportion of working age adults with no or low qualifications women aged 25 to 59 and men aged 25 to 64; English language proficiency: The proportion of working age adults who cannot speak English or cannot speak English well women aged 25 to 59 and men aged 25 to 64. Data shows Average LSOA Rank, a lower rank indicates that an area is experiencing high levels of deprivation.Social grade (N-SEC): 1 Higher managerial, administrative and professional occupations - Shows the proportion of people in employment (aged 16-74) in the Approximated Social grade (N-SEC) category: 1 Higher managerial, administrative and professional occupations. An individual's approximated social grade is determined by their response to the occupation questions in the 2011 Census. Rate calculated as = (Higher managerial, administrative and professional occupations (census KS611))/(All usual residents aged 16 to 74 (census KS611))*100.Total annual household income estimate - Shows the average total annual household income estimate (unequivalised). These figures are model-based estimates, taking the regional figures from the Family Resources Survey and modelling down to neighbourhood level based on characteristics of the neighbourhood obtained from census and administrative statistics.Household is not deprived in any dimension - Shows households which are not deprived on any of the four Census 2011 deprivation dimensions. The Census 2011 has four deprivation dimension characteristics: a) Employment: Any member of the household aged 16-74 who is not a full-time student is either unemployed or permanently sick; b) Education: No member of the household aged 16 to pensionable age has at least 5 GCSEs (grade A-C) or equivalent AND no member of the household aged 16-18 is in full-time education c) Health and disability: Any member of the household has general health 'not good' in the year before Census or has a limiting long term illness d) Housing: The household's accommodation is either overcrowded; OR is in a shared dwelling OR does not have sole use of bath/shower and toilet OR has no central heating. These figures are taken from responses to various questions in census 2011. Rate calculated as = (Household is not deprived in any dimension (census QS119))/(All households (census QS119))*100.Occupation group: Professional occupations - Shows the proportion of people in employment (aged 16-74) working in the Occupation group: Professional occupations. An individual's occupation group is determined by their response to the occupation questions in the 2011 Census. Rate calculated as = (Professional occupations (census KS608))/(All usual residents aged 16 to 74 in employment the week before the census (census KS608))*100.Social grade (N-SEC): 1.2 Higher professional occupations - Shows the proportion of people in employment (aged 16-74) in the Approximated Social grade (N-SEC) category: 1.2 Higher professional occupations. An individual's approximated social grade is determined by their response to the occupation questions in the 2011 Census. Rate calculated as = (Higher professional occupations (census KS611))/(All usual residents aged 16 to 74 (census KS611))*100.Sport England Market Segmentation: Competitive Male Urbanites - proportion of people living in the area that are classified as Competitive Male Urbanites in the Sports Market Segmentation.Net annual household income estimate after housing costs - Shows the average annual household income estimate (equivalised to take into account variations in household size) after housing costs are taken into account. These figures are model-based estimates, taking the regional figures from the Family Resources Survey and modelling down to neighbourhood level based on characteristics of the neighbourhood obtained from census and administrative statistics.
https://github.com/nytimes/covid-19-data/blob/master/LICENSEhttps://github.com/nytimes/covid-19-data/blob/master/LICENSE
The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since the first reported coronavirus case in Washington State on Jan. 21, 2020, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.