MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The dataset is related to student data, from an educational research study focusing on student demographics, academic performance, and related factors. Here’s a general description of what each column likely represents:
Sex: The gender of the student (e.g., Male, Female). Age: The age of the student. Name: The name of the student. State: The state where the student resides or where the educational institution is located. Address: Indicates whether the student lives in an urban or rural area. Famsize: Family size category (e.g., LE3 for families with less than or equal to 3 members, GT3 for more than 3). Pstatus: Parental cohabitation status (e.g., 'T' for living together, 'A' for living apart). Medu: Mother's education level (e.g., Graduate, College). Fedu: Father's education level (similar categories to Medu). Mjob: Mother's job type. Fjob: Father's job type. Guardian: The primary guardian of the student. Math_Score: Score obtained by the student in Mathematics. Reading_Score: Score obtained by the student in Reading. Writing_Score: Score obtained by the student in Writing. Attendance_Rate: The percentage rate of the student’s attendance. Suspensions: Number of times the student has been suspended. Expulsions: Number of times the student has been expelled. Teacher_Support: Level of support the student receives from teachers (e.g., Low, Medium, High). Counseling: Indicates whether the student receives counseling services (Yes or No). Social_Worker_Visits: Number of times a social worker has visited the student. Parental_Involvement: The level of parental involvement in the student's academic life (e.g., Low, Medium, High). GPA: The student’s Grade Point Average, a standard measure of academic achievement in schools.
This dataset provides a comprehensive look at various factors that might influence a student's educational outcomes, including demographic factors, academic performance metrics, and support structures both at home and within the educational system. It can be used for statistical analysis to understand and improve student success rates, or for targeted interventions based on specific identified needs.
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
Overall educational attainment measures the highest level of education attained by a given individual: for example, an individual counted in the percentage of the measured population with a master’s or professional degree can be assumed to also have a bachelor’s degree and a high school diploma, but they are not counted in the population percentages for those two categories. Overall educational attainment is the broadest education indicator available, providing information about the measured county population as a whole.
Only members of the population aged 25 and older are included in these educational attainment estimates, sourced from the U.S. Census Bureau American Community Survey (ACS).
Champaign County has high educational attainment: over 48 percent of the county's population aged 25 or older has a bachelor's degree or graduate or professional degree as their highest level of education. In comparison, the percentage of the population aged 25 or older in the United States and Illinois with a bachelor's degree in 2023 was 21.8% (+/-0.1) and 22.8% (+/-0.2), respectively. The population aged 25 or older in the U.S. and Illinois with a graduate or professional degree in 2022, respectively, was 14.3% (+/-0.1) and 15.5% (+/-0.2).
Educational attainment data was sourced from the U.S. Census Bureau’s American Community Survey 1-Year Estimates, which are released annually.
As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.
Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.
For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Educational Attainment for the Population 25 Years and Over.
Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using data.census.gov; (16 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using data.census.gov; (29 September 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using data.census.gov; (6 October 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using data.census.gov; (4 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using data.census.gov; (4 June 2021).; U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (13 September 2018). U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).
The percentage of persons that have not completed, graduated, or received a high school diploma or GED. This is a standard indicator used to measure the portion of the population with less than a basic level of skills needed for the workplace. Persons under the age of 25 are not included in this analysis since many of these persons are still attending various levels of schooling.Source: American Community Survey Years Available: 2007-2011, 2008-2012, 2009-2013, 2010-2014, 2011-2015, 2012-2016, 2013-2017, 2014-2018, 2015-2019, 2016-2020, 2017-2021, 2018-2022, 2019-2023Please note: We do not recommend comparing overlapping years of data due to the nature of this dataset. For more information, please visit: https://www.census.gov/programs-surveys/acs/guidance/comparing-acs-data.html
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The variable examined is graduation status after four years of high school. Early and summer graduates are considered graduates after four years. The "other" rate includes students who dropped out of high school, enrolled in a GED program, transferred to post-secondary education, or have unknown status. Special education students in school after four years but subsequently graduated are not included in the "still enrolled" rate due to Individuals with Disabilities Education Act (IDEA) restrictions. The subgroups reported are gender, race/ethnicity, English language learners, special education students, and students eligible for free or reduced-price meals (FRPM). The data replace the rate of students enrolled in 12th grade in September who graduated the following June. Connecticut State Department of Education (SDE) collects data longitudinally by four-year cohorts. SDE reports and CTdata.org carries graduation rates of four-year cohorts annually.
The percentage of persons that have completed, graduated, or received a high school diploma or GED and also have taken some college courses or completed their Associate's degree. This is a standard indicator used to measure the portion of the population with a basic level of skills needed for the workplace. Persons under the age of 25 are not included in this analysis since many of these persons are still attending various levels of schooling. Source: American Community Survey Years Available: 2007-2011, 2008-2012, 2009-2013, 2010-2014, 2011-2015, 2012-2016, 2013-2017, 2014-2018, 2015-2019, 2016-2020, 2017-2021, 2018-2022, 2019-2023Please note: We do not recommend comparing overlapping years of data due to the nature of this dataset. For more information, please visit: https://www.census.gov/programs-surveys/acs/guidance/comparing-acs-data.html
The data here is from the report entitled Trends in Enrollment, Credit Attainment, and Remediation at Connecticut Public Universities and Community Colleges: Results from P20WIN for the High School Graduating Classes of 2010 through 2016.
The report answers three questions: 1. Enrollment: What percentage of the graduating class enrolled in a Connecticut public university or community college (UCONN, the four Connecticut State Universities, and 12 Connecticut community colleges) within 16 months of graduation? 2. Credit Attainment: What percentage of those who enrolled in a Connecticut public university or community college within 16 months of graduation earned at least one year’s worth of credits (24 or more) within two years of enrollment? 3. Remediation: What percentage of those who enrolled in one of the four Connecticut State Universities or one of the 12 community colleges within 16 months of graduation took a remedial course within two years of enrollment?
Notes on the data: School Credit: % Earning 24 Credits is a subset of the % Enrolled in 16 Months. School Remediation: % Enrolled in Remediation is a subset of the % Enrolled in 16 Months.
In 2022, about 37.7 percent of the U.S. population who were aged 25 and above had graduated from college or another higher education institution, a slight decline from 37.9 the previous year. However, this is a significant increase from 1960, when only 7.7 percent of the U.S. population had graduated from college. Demographics Educational attainment varies by gender, location, race, and age throughout the United States. Asian-American and Pacific Islanders had the highest level of education, on average, while Massachusetts and the District of Colombia are areas home to the highest rates of residents with a bachelor’s degree or higher. However, education levels are correlated with wealth. While public education is free up until the 12th grade, the cost of university is out of reach for many Americans, making social mobility increasingly difficult. Earnings White Americans with a professional degree earned the most money on average, compared to other educational levels and races. However, regardless of educational attainment, males typically earned far more on average compared to females. Despite the decreasing wage gap over the years in the country, it remains an issue to this day. Not only is there a large wage gap between males and females, but there is also a large income gap linked to race as well.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Metric scores are not reported for n-sizes under 10. Per OSSE's policy, secondary suppression is applied to all student groups when a complementary group has an n-size under 10 or is top/bottom suppressed to prevent the calculation of suppressed data.
Data Source: DC Office of the State Superintendent of Education
Why This Matters
Graduating from high school is a critical step in advancing along educational and professional paths. Many careers and almost all colleges require a high school diploma or GED.
Educational attainment is strongly linked with socioeconomic and health outcomes. Americans who graduate high school tend to have higher incomes than those who do not. High school graduates also tend to live longer, healthier, and happier lives.
Black, Hispanic, and Native American students in the U.S. have lower graduation rates, on average, than white students. Segregation and historical disinvestment in communities of color play a significant role in these disparities. Poverty and limited educational resources act as barriers to graduation.
The District Response
The Office of the State Superintendent of Education (OSSE)’s Reimagining High School Graduation Requirements initiative aims to identify and implement new high school graduation requirements that incorporate outcome measures and support innovative approaches to preparing young people for life after graduation.
The District of Columbia Public Schools offers a number of supports to both proactively aid students in graduating and assist those at risk of not graduating.
Since 2014, those who pass the GED receive a State High School Diploma instead of a GED credential. This more accurately represents the dedication, hard work, and demonstration of skill it takes for residents to successfully complete this alternative path to a high school diploma.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Historical census data (2006, 2011, 2016 and 2021) on percent distribution of the population by secondary (high) school diploma or equivalency certificate, including combinations of high school and postsecondary credentials.
The percentage of persons that have not completed, graduated, or received a high school diploma or GED. This is a standard indicator used to measure the portion of the population with less than a basic level of skills needed for the workplace. Persons under the age of 25 are not included in this analysis since many of these persons are still attending various levels of schooling. Source: American Community Survey Years Available: 2007-2011, 2008-2012, 2009-2013, 2010-2014, 2011-2015, 2012-2016, 2013-2017, 2014-2018, 2015-2019, 2016-2020, 2017-2021, 2018-2022, 2019-2023
This is historical data. The update frequency has been set to "Static Data" and is here for historic value. Updated on 8/14/2024 High School Graduation Rate - This indicator shows the percentage of students who graduate high school in four years. Completion of high school is one of the strongest predictors of health in later life. People who graduate from high school are more likely to have better health outcomes, regularly visit doctors, and live longer than those without high school diplomas. Link to Data Details
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The 2006 Census enumerated 13 012 475 adults aged 15 and over whose highest level of educational attainment was a trades certificate or diploma; a college, CEGEP or non-university certificate or diploma; or a university certificate, diploma or degree in 2006. This was an increase of 32% from 9 864 970 in 2001. In 2006, 23% of Canadians aged 15 and over had completed a university certificate, diploma or degree, 17% had completed a college, CEGEP or non-university certificate or diploma and 11% had completed a trades certificate or diploma. The proportion of the population aged 15 and over with a high school diploma or equivalent as their highest credential was 26% and those with less than a high school diploma or equivalent was 24%.
Number of persons aged 15 and over in private households with or without a high school diploma or equivalency certificate, and high school completion rate (measured using the variable Secondary (high) school diploma or equivalency certificate) by sex, age group and selected demographic characteristics, Canada, provinces and territories.
This dataset consists of the unemployment rate and education level of adults in the USA by county. That is, for each county in the USA, this dataset provides the count and percentage of unemployed adults as well as the count and percentage of adults of various educational backgrounds. Each county was been assigned one of four locale categories (City, Suburb, Town, Rural) according to its 2013 Urban Influence Code and their descriptions provided in UIC_codes.csv. From the descriptions of each of the codes and the descriptions of the locales "City", "Suburb", "Town", and "Rural" provided on page 2 of the locale user manual (locale_user_manual.pdf), each county was assigned one of four locales.
The unemployment rate data includes the count and percentage of unemployed adults for each county in the USA for each year from 2000-2020. The median household income for 2019 is also included. The education level data includes the count and percentage of adults with less than a high school diploma, a high school diploma only, some college, and a bachelor's degree/four years of college or more for the years 1970, 1980, 1990, 2000, and 2019. The Urban Influence Code data includes the UIC and locale description of each county in the USA and the locale user manual has been included as a PDF as strictly a reference file, to understand how each county was assigned a locale within the unemployment.csv and education.csv files.
Source for the unemployment rate and education level data by county: "County-level Data Sets." USDA Economic Research Service, US Department of Agriculture. Access date: Sept 8, 2021. URL: https://www.ers.usda.gov/data-products/county-level-data-sets/
Source for Urban Influence Codes by county: "Urban Influence Codes." USDA Economic Research Service, US Department of Agriculture. Access date: Sept 8, 2021. URL: https://www.ers.usda.gov/data-products/urban-influence-codes/#:~:text=The%202013%20Urban%20Influence%20Codes,to%20metro%20and%20micropolitan%20areas.&text=An%20update%20of%20the%20Urban,is%20planned%20for%20mid%2D2023.
This dataset was created to be used as an additional data source for the LearnPlatform COVID-19 Impact on Digital Learning Kaggle competition, but is suitable for other analyses related to unemployment rate and education level in the USA.
The New York State calculation method was first adopted for the Cohort of 2001 (Class 2005). The cohort consists of al students who first entered 9th grade in a given school year (e.g., the cohort of 2006 entered 9th grade in 2006-2007 school year). Graduates are defined as those students earning either a local or regents diploma and exclude those earning either a special education (IEP) diploma for GED. "The NYSED defined English/Math Aspirational Performance Measure (APM) is the ercentage of students that after their fourth year in high school have met NYSED standards: Graduated by August with a Regents or Local diploma, AND Earned a 75 or higher on the English Regents, AND Earned an 80 or higher on one Math Regents." In order to comply with FERPA regulations on public reporting of education outcomes, rows with a cohort of 20 or fewer students are suppressed. Due to small number of students identified as Native American or Multi-Racial these ethnicities are not reported on the Ethnicity tab, however these students are included in the counts on all other tabs.
Educational Attainment for the Population 25 and Older, by Zip, 2014 5-yr Average. From ACS table 15003, manipulated by Data Driven Detroit. Categories were summed to arrive at the total number of people with at least a High School Degree (or GED) or Bachelor's Degree or higher. Percentages were based on Population 25 and older.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘2005-2015 Graduation Rates Public School - APM’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/e1ff1862-f126-4377-9aa3-435b99628592 on 26 January 2022.
--- Dataset description provided by original source is as follows ---
The New York State calculation method was first adopted for the Cohort of 2001 (Class 2005). The cohort consists of al students who first entered 9th grade in a given school year (e.g., the cohort of 2006 entered 9th grade in 2006-2007 school year). Graduates are defined as those students earning either a local or regents diploma and exclude those earning either a special education (IEP) diploma for GED. "The NYSED defined English/Math Aspirational Performance Measure (APM) is the ercentage of students that after their fourth year in high school have met NYSED standards: Graduated by August with a Regents or Local diploma, AND Earned a 75 or higher on the English Regents, AND Earned an 80 or higher on one Math Regents." In order to comply with FERPA regulations on public reporting of education outcomes, rows with a cohort of 20 or fewer students are suppressed. Due to small number of students identified as Native American or Multi-Racial these ethnicities are not reported on the Ethnicity tab, however these students are included in the counts on all other tabs.
--- Original source retains full ownership of the source dataset ---
This data set calculates the Town’s education level by a percentage of persons over the age of 25 with a high school degree or higher and/or those with a bachelor's degree or higher. This data comes from the most recent U.S. Census provided by the United States Census Bureau. Data will be updated accordingly with the schedule of the U.S Census. https://data.census.gov/cedsci/profile?g=1600000US5123760
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The 2006 Census enumerated 13 012 475 adults aged 15 and over whose highest level of educational attainment was a trades certificate or diploma; a college, CEGEP or non-university certificate or diploma; or a university certificate, diploma or degree in 2006. This was an increase of 32% from 9 864 970 in 2001. In 2006, 23% of Canadians aged 15 and over had completed a university certificate, diploma or degree, 17% had completed a college, CEGEP or non-university certificate or diploma and 11% had completed a trades certificate or diploma. The proportion of the population aged 15 and over with a high school diploma or equivalent as their highest credential was 26% and those with less than a high school diploma or equivalent was 24%.
On-time and extended-time graduation rates by gender, collected very year by the Council of Ministers of Education, Canada (CMEC) for the true cohort high school graduation rate data collection.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The dataset is related to student data, from an educational research study focusing on student demographics, academic performance, and related factors. Here’s a general description of what each column likely represents:
Sex: The gender of the student (e.g., Male, Female). Age: The age of the student. Name: The name of the student. State: The state where the student resides or where the educational institution is located. Address: Indicates whether the student lives in an urban or rural area. Famsize: Family size category (e.g., LE3 for families with less than or equal to 3 members, GT3 for more than 3). Pstatus: Parental cohabitation status (e.g., 'T' for living together, 'A' for living apart). Medu: Mother's education level (e.g., Graduate, College). Fedu: Father's education level (similar categories to Medu). Mjob: Mother's job type. Fjob: Father's job type. Guardian: The primary guardian of the student. Math_Score: Score obtained by the student in Mathematics. Reading_Score: Score obtained by the student in Reading. Writing_Score: Score obtained by the student in Writing. Attendance_Rate: The percentage rate of the student’s attendance. Suspensions: Number of times the student has been suspended. Expulsions: Number of times the student has been expelled. Teacher_Support: Level of support the student receives from teachers (e.g., Low, Medium, High). Counseling: Indicates whether the student receives counseling services (Yes or No). Social_Worker_Visits: Number of times a social worker has visited the student. Parental_Involvement: The level of parental involvement in the student's academic life (e.g., Low, Medium, High). GPA: The student’s Grade Point Average, a standard measure of academic achievement in schools.
This dataset provides a comprehensive look at various factors that might influence a student's educational outcomes, including demographic factors, academic performance metrics, and support structures both at home and within the educational system. It can be used for statistical analysis to understand and improve student success rates, or for targeted interventions based on specific identified needs.