By Amber Thomas [source]
This dataset provides an estimation of broadband usage in the United States, focusing on how many people have access to broadband and how many are actually using it at broadband speeds. Through data collected by Microsoft from our services, including package size and total time of download, we can estimate the throughput speed of devices connecting to the internet across zip codes and counties.
According to Federal Communications Commission (FCC) estimates, 14.5 million people don't have access to any kind of broadband connection. This data set aims to address this contrast between those with estimated availability but no actual use by providing more accurate usage numbers downscaled to county and zip code levels. Who gets counted as having access is vastly important -- it determines who gets included in public funding opportunities dedicated solely toward closing this digital divide gap. The implications can be huge: millions around this country could remain invisible if these number aren't accurately reported or used properly in decision-making processes.
This dataset includes aggregated information about these locations with less than 20 devices for increased accuracy when estimating Broadband Usage in the United States-- allowing others to use it for developing solutions that improve internet access or label problem areas accurately where no real or reliable connectivity exists among citizens within communities large and small throughout the US mainland.. Please review the license terms before using these data so that you may adhere appropriately with stipulations set forth under Microsoft's Open Use Of Data Agreement v1.0 agreement prior to utilizing this dataset for your needs-- both professional and educational endeavors alike!
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
How to Use the US Broadband Usage Dataset
This dataset provides broadband usage estimates in the United States by county and zip code. It is ideally suited for research into how broadband connects households, towns and cities. Understanding this information is vital for closing existing disparities in access to high-speed internet, and for devising strategies for making sure all Americans can stay connected in a digital world.
The dataset contains six columns: - County – The name of the county for which usage statistics are provided. - Zip Code (5-Digit) – The 5-digit zip code from which usage data was collected from within that county or metropolitan area/micro area/divisions within states as reported by the US Census Bureau in 2018[2].
- Population (Households) – Estimated number of households defined according to [3] based on data from the US Census Bureau American Community Survey's 5 Year Estimates[4].
- Average Throughput (Mbps)- Average Mbps download speed derived from a combination of data collected anonymous devices connected through Microsoft services such as Windows Update, Office 365, Xbox Live Core Services, etc.[5]
- Percent Fast (> 25 Mbps)- Percentage of machines with throughput greater than 25 Mbps calculated using [6]. 6) Percent Slow (< 3 Mbps)- Percentage of machines with throughput less than 3Mbps calculated using [7].
- Targeting marketing campaigns based on broadband use. Companies can use the geographic and demographic data in this dataset to create targeted advertising campaigns that are tailored to individuals living in areas where broadband access is scarce or lacking.
- Creating an educational platform for those without reliable access to broadband internet. By leveraging existing technologies such as satellite internet, media streaming services like Netflix, and platforms such as Khan Academy or EdX, those with limited access could gain access to new educational options from home.
- Establishing public-private partnerships between local governments and telecom providers need better data about gaps in service coverage and usage levels in order to make decisions about investments into new infrastructure buildouts for better connectivity options for rural communities
If you use this dataset in your research, please credit the original authors. Data Source
See the dataset description for more information.
File: broadband_data_2020October.csv
If you use this dataset in your research,...
When asked about "Attitudes towards the internet", most Mexican respondents pick "It is important to me to have mobile internet access in any place" as an answer. 56 percent did so in our online survey in 2025. Looking to gain valuable insights about users of internet providers worldwide? Check out our reports on consumers who use internet providers. These reports give readers a thorough picture of these customers, including their identities, preferences, opinions, and methods of communication.
The global number of internet users in was forecast to continuously increase between 2024 and 2029 by in total 1.3 billion users (+23.66 percent). After the fifteenth consecutive increasing year, the number of users is estimated to reach 7 billion users and therefore a new peak in 2029. Notably, the number of internet users of was continuously increasing over the past years.Depicted is the estimated number of individuals in the country or region at hand, that use the internet. As the datasource clarifies, connection quality and usage frequency are distinct aspects, not taken into account here.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of internet users in countries like the Americas and Asia.
Explore the percentage of individuals using the internet dataset, providing valuable insights into internet usage trends worldwide. Click to access the data now!
Internet, Usage
Afghanistan, Albania, Algeria, Andorra, Angola, Antigua and Barbuda, Argentina, Armenia, Australia, Austria, Azerbaijan, Bahamas, Bahrain, Bangladesh, Barbados, Belarus, Belgium, Belize, Benin, Bhutan, Bolivia, Bosnia and Herzegovina, Botswana, Brazil, Brunei, Bulgaria, Burkina Faso, Burundi, Côte d'Ivoire, Cabo Verde, Cambodia, Cameroon, Canada, Chad, Chile, China, Colombia, Comoros, Congo, Costa Rica, Croatia, Cuba, Cyprus, Denmark, Djibouti, Dominica, Ecuador, Egypt, El Salvador, Equatorial Guinea, Eritrea, Estonia, Eswatini, Ethiopia, Fiji, Finland, France, Gabon, Gambia, Georgia, Germany, Ghana, Greece, Grenada, Guatemala, Guinea, Guinea-Bissau, Guyana, Haiti, Honduras, Hungary, Iceland, India, Indonesia, Iran, Iraq, Ireland, Israel, Italy, Jamaica, Japan, Jordan, Kazakhstan, Kenya, Kiribati, Kuwait, Kyrgyzstan, Latvia, Lebanon, Lesotho, Liberia, Libya, Liechtenstein, Lithuania, Luxembourg, Madagascar, Malawi, Malaysia, Maldives, Mali, Malta, Marshall Islands, Mauritania, Mauritius, Mexico, Micronesia, Moldova, Monaco, Mongolia, Montenegro, Morocco, Mozambique, Myanmar, Namibia, Nauru, Nepal, Netherlands, New Zealand, Nicaragua, Niger, Nigeria, North Macedonia, Norway, Oman, Pakistan, Palau, Panama, Papua New Guinea, Paraguay, Peru, Philippines, Poland, Portugal, Qatar, Romania, Russia, Rwanda, Saint Kitts and Nevis, Saint Lucia, Saint Vincent and the Grenadines, Samoa, San Marino, Sao Tome and Principe, Saudi Arabia, Senegal, Serbia, Seychelles, Sierra Leone, Singapore, Slovakia, Slovenia, Solomon Islands, Somalia, South Africa, South Sudan, Spain, Sri Lanka, Sudan, Suriname, Sweden, Switzerland, Syria, Tajikistan, Tanzania, Thailand, Timor-Leste, Togo, Tonga, Trinidad and Tobago, Tunisia, Turkmenistan, Tuvalu, Uganda, Ukraine, United Arab Emirates, United Kingdom, Uruguay, Uzbekistan, Vanuatu, Venezuela, Yemen, Zambia, Zimbabwe, WorldFollow data.kapsarc.org for timely data to advance energy economics research..Please review the notes in the attachments.
Open Data Commons Attribution License (ODC-By) v1.0https://www.opendatacommons.org/licenses/by/1.0/
License information was derived automatically
This dataset provides a comprehensive overview of internet usage across countries as of 2024. It includes data on the percentage of the population using the internet, sourced from multiple organizations such as the World Bank (WB), International Telecommunication Union (ITU), and the CIA. The dataset covers all United Nations member states, excluding North Korea, and provides insights into internet penetration rates, user counts, and trends over recent years. The data is derived from household surveys and internet subscription statistics, offering a reliable snapshot of global digital connectivity.
This dataset can be used in various data science applications, including: - Digital Divide Analysis: Evaluate disparities in internet access between developed and developing nations. - Trend Analysis: Study the growth of internet penetration over time across different regions. - Policy Recommendations: Assist policymakers in identifying underserved areas and strategizing for improved connectivity. - Market Research: Help businesses identify potential markets for digital products or services. - Correlation Studies: Analyze relationships between internet penetration and socioeconomic indicators like GDP, education levels, or urbanization.
The dataset contains the following columns: 1. Location: Country or region name. 2. Rate (WB): Percentage of the population using the internet (World Bank data). 3. Year (WB): Year corresponding to the World Bank data. 4. Rate (ITU): Percentage of the population using the internet (ITU data). 5. Year (ITU): Year corresponding to the ITU data. 6. Users (CIA): Estimated number of internet users in absolute terms (CIA data). 7. Year (CIA): Year corresponding to the CIA data. 8. Notes: Additional notes or observations about specific entries.
The data has been sourced from publicly available and reputable organizations such as the World Bank, ITU, and CIA. These sources ensure transparency and ethical collection methods through household surveys and official statistics. The dataset excludes North Korea due to limited reliable information on its internet usage.
This dataset is based on information compiled from: - World Bank - International Telecommunication Union - CIA World Factbook - Wikipedia's "List of countries by number of Internet users" page
Special thanks to these organizations for providing open access to this valuable information, enabling deeper insights into global digital connectivity trends.
Citations: [1] https://en.wikipedia.org/wiki/List_of_countries_by_number_of_Internet_users [2] https://en.wikipedia.org/wiki/List_of_countries_by_number_of_Internet_users
Canadian Internet use survey, Internet use by location of access, for Canada, provinces and selected census metropolitan areas (CMA), from 2005 to 2009. (Terminated)
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
This layer shows computer ownership and internet access by age and race. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percent of population age 18 to 64 in households with no computer. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B28005, B28003, B28009B, B28009C, B28009D, B28009E, B28009F, B28009G, B28009H, B28009I Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
Percentage of Canadians who have access to the Internet at home.
When asked about "Attitudes towards the internet", most Chinese respondents pick "It is important to me to have mobile internet access in any place" as an answer. 50 percent did so in our online survey in 2025. Looking to gain valuable insights about users of internet providers worldwide? Check out our reports on consumers who use internet providers. These reports give readers a thorough picture of these customers, including their identities, preferences, opinions, and methods of communication.
Percentage of Canadians' personal use of the Internet, during the past three months.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau.For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.Naming conventions:Prefixes: None Countp Percentr Ratem Mediana Mean (average)t Aggregate (total)ch Change in absolute terms (value in t2 - value in t1)pch Percent change ((value in t2 - value in t1) / value in t1)chp Change in percent (percent in t2 - percent in t1)s Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed Suffixes: _e19 Estimate from 2014-19 ACS_m19 Margin of Error from 2014-19 ACS_00_v19 Decennial 2000, re-estimated to 2019 geography_00_19 Change, 2000-19_e10_v19 2006-10 ACS, re-estimated to 2019 geography_m10_v19 Margin of Error from 2006-10 ACS, re-estimated to 2019 geography_e10_19 Change, 2010-19The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2015-2019). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2015-2019Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the manifest: https://www.arcgis.com/sharing/rest/content/items/3d489c725bb24f52a987b302147c46ee/data
When asked about "Attitudes towards the internet", most Australian respondents pick "It is important to me to have mobile internet access in any place" as an answer. 55 percent did so in our online survey in 2025. Looking to gain valuable insights about users of internet providers worldwide? Check out our reports on consumers who use internet providers. These reports give readers a thorough picture of these customers, including their identities, preferences, opinions, and methods of communication.
This layer shows computer ownership and internet access by education. This is shown by tract, county, and state centroids. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the count of people age 25+ in households with no computer and the percent of the population age 25+ who are high school graduates (includes equivalency) and have some college or associate's degree in households that have no computer. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B28006 Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset shows the number and percentage of Qatari individuals aged 4 years and above who use computers, categorized by age group and place of usage, based on the 2020 Census.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau.For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.Naming conventions:Prefixes: None Countp Percentr Ratem Mediana Mean (average)t Aggregate (total)ch Change in absolute terms (value in t2 - value in t1)pch Percent change ((value in t2 - value in t1) / value in t1)chp Change in percent (percent in t2 - percent in t1)s Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed Suffixes: _e19 Estimate from 2014-19 ACS_m19 Margin of Error from 2014-19 ACS_00_v19 Decennial 2000, re-estimated to 2019 geography_00_19 Change, 2000-19_e10_v19 2006-10 ACS, re-estimated to 2019 geography_m10_v19 Margin of Error from 2006-10 ACS, re-estimated to 2019 geography_e10_19 Change, 2010-19The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2015-2019). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2015-2019Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the manifest: https://www.arcgis.com/sharing/rest/content/items/3d489c725bb24f52a987b302147c46ee/data
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The Digital Divide Index or DDI ranges in value from 0 to 100, where 100 indicates the highest digital divide. It is composed of two scores, also ranging from 0 to 100: the infrastructure/adoption (INFA) score and the socioeconomic (SE) score.The INFA score groups five variables related to broadband infrastructure and adoption: (1) percentage of total 2020 population without access to fixed broadband of at least 100 Mbps download and 20 Mbps upload as of 2020 based on Ookla Speedtest® open dataset; (2) percent of homes without a computing device (desktops, laptops, smartphones, tablets, etc.); (3) percent of homes with no internet access (have no internet subscription, including cellular data plans or dial-up); (4) median maximum advertised download speeds; and (5) median maximum advertised upload speeds.The SE score groups five variables known to impact technology adoption: (1) percent population ages 65 and over; (2) percent population 25 and over with less than high school; (3) individual poverty rate; (4) percent of noninstitutionalized civilian population with a disability: and (5) a brand new digital inequality or internet income ratio measure (IIR). In other words, these variables indirectly measure adoption since they are potential predictors of lagging technology adoption or reinforcing existing inequalities that also affect adoption.These two scores are combined to calculate the overall DDI score. If a particular county or census tract has a higher INFA score versus a SE score, efforts should be made to improve broadband infrastructure. If on the other hand, a particular geography has a higher SE score versus an INFA score, efforts should be made to increase digital literacy and exposure to the technology’s benefits.The DDI measures primarily physical access/adoption and socioeconomic characteristics that may limit motivation, skills, and usage. Due to data limitations it was designed as a descriptive and pragmatic tool and is not intended to be comprehensive. Rather it should help initiate important discussions among community leaders and residents.Data for the digital divide index (DDI) was compiled by Purdue Center for Regional Development and obtained from the 5-year American Community Survey (ACS) and Ookla Speedtest® open dataset.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Notes on the basis for this dataset: This dataset is based on a Eurostat dataset (ISOC_CI_CFP_CU):
Online data code:ISOC_CI_CFP_CU Source of data:Eurostat Last data update:10/05/2023 11:00 Last structure update:08/02/2021 23:00 Data navigation tree location: Science, technology, digital society > Digital economy and society > ICT usage in households and by individuals > Connection to the internet and computer use Cross cutting topics > Skills-related statistics > Skills supply - self-reported measures > Digital skills - ICT usage in households and by individuals > Internet and computer use
Header and data descritions of the filtered dataset: This filtered dataset contains the following headers and the corresponding data:
date [year in format yyyy form 2007 untill (and including) 2017 in reverse order; last line in the filtered dataset contains increase in percent-points] ATHN [Neutron Monitor in Athens, Greece, Europe; data: neutron detections per second averaged over a 1 year period] AT [ Austria , Europe; data: percent of individuals (no age restriction) who used a computer at least once within the previous three months; bottom line contains the increase between 2007 and 2017 in percent-points] BE [ Belgium , Europe; data: percent of individuals (no age restriction) who used a computer at least once within the previous three months; bottom line contains the increase between 2007 and 2017 in percent-points] BG [ Bulgaria , Europe; data: percent of individuals (no age restriction) who used a computer at least once within the previous three months; bottom line contains the increase between 2007 and 2017 in percent-points] CY [ Cyprus , Europe; data: percent of individuals (no age restriction) who used a computer at least once within the previous three months; bottom line contains the increase between 2007 and 2017 in percent-points] CZ [ Czechia , Europe; data: percent of individuals (no age restriction) who used a computer at least once within the previous three months; bottom line contains the increase between 2007 and 2017 in percent-points] DE [ Germany , Europe; data: percent of individuals (no age restriction) who used a computer at least once within the previous three months; bottom line contains the increase between 2007 and 2017 in percent-points] DK[ Denmark , Europe; data: percent of individuals (no age restriction) who used a computer at least once within the previous three months; bottom line contains the increase between 2007 and 2017 in percent-points] EE [ Estonia , Europe; data: percent of individuals (no age restriction) who used a computer at least once within the previous three months; bottom line contains the increase between 2007 and 2017 in percent-points] EL [ Greece , Europe; data: percent of individuals (no age restriction) who used a computer at least once within the previous three months; bottom line contains the increase between 2007 and 2017 in percent-points] ES [ Spain , Europe; data: percent of individuals (no age restriction) who used a computer at least once within the previous three months; bottom line contains the increase between 2007 and 2017 in percent-points] EU28 [all 28 member countries of the EU between 2007 and 2017, Europe; data: percent of individuals (no age restriction) who used a computer at least once within the previous three months; bottom line contains the increase between 2007 and 2017 in percent-points] FI [ Finland , Europe; data: percent of individuals (no age restriction) who used a computer at least once within the previous three months; bottom line contains the increase between 2007 and 2017 in percent-points] FR [ France , Europe; data: percent of individuals (no age restriction) who used a computer at least once within the previous three months; bottom line contains the increase between 2007 and 2017 in percent-points] HR [ Croatia , Europe; data: percent of individuals (no age restriction) who used a computer at least once within the previous three months; bottom line contains the increase between 2007 and 2017 in percent-points] HU [ Hungary , Europe; data: percent of individuals (no age restriction) who used a computer at least once within the previous three months; bottom line contains the increase between 2007 and 2017 in percent-points] IE [ Ireland , Europe; data: percent of individuals (no age restriction) who used a computer at least once within the previous three months; bottom line contains the increase between 2007 and 2017 in percent-points] IT [ Italy , Europe; data: percent of individuals (no age restriction) who used a computer at least once within the previous three months; bottom line contains the increase between 2007 and 2017 in percent-points] LT [ Lithuania , Europe; data: percent of individuals (no age restriction) who used a computer at least once within the previous three months; bottom line contains the increase between 2007 and 2017 in percent-points] LU [ Luxembourg , Europe; data: percent of individuals (no age restriction) who used a computer at least once within the previous three months; bottom line contains the increase between 2007 and 2017 in percent-points] LV [ Latvia , Europe; data: percent of individuals (no age restriction) who used a computer at least once within the previous three months; bottom line contains the increase between 2007 and 2017 in percent-points] MT [ Malta , Europe; data: percent of individuals (no age restriction) who used a computer at least once within the previous three months; bottom line contains the increase between 2007 and 2017 in percent-points] NL [ Netherlands , Europe; data: percent of individuals (no age restriction) who used a computer at least once within the previous three months; bottom line contains the increase between 2007 and 2017 in percent-points] PL [ Poland , Europe; data: percent of individuals (no age restriction) who used a computer at least once within the previous three months; bottom line contains the increase between 2007 and 2017 in percent-points] PT [ Portugal , Europe; data: percent of individuals (no age restriction) who used a computer at least once within the previous three months; bottom line contains the increase between 2007 and 2017 in percent-points] RO [ Romania , Europe; data: percent of individuals (no age restriction) who used a computer at least once within the previous three months; bottom line contains the increase between 2007 and 2017 in percent-points] SE [ Sweden , Europe; data: percent of individuals (no age restriction) who used a computer at least once within the previous three months; bottom line contains the increase between 2007 and 2017 in percent-points] SI [ Slovenia , Europe; data: percent of individuals (no age restriction) who used a computer at least once within the previous three months; bottom line contains the increase between 2007 and 2017 in percent-points] SK [ Slovakia , Europe; data: percent of individuals (no age restriction) who used a computer at least once within the previous three months; bottom line contains the increase between 2007 and 2017 in percent-points] UK [ United Kingdom , Europe; data: percent of individuals (no age restriction) who used a computer at least once within the previous three months; bottom line contains the increase between 2007 and 2017 in percent-points]
Obtaining the filtered dataset:
When asked about "Attitudes towards the internet", most Japanese respondents pick "I'm concerned that my data is being misused on the internet" as an answer. 35 percent did so in our online survey in 2025. Looking to gain valuable insights about users of internet providers worldwide? Check out our reports on consumers who use internet providers. These reports give readers a thorough picture of these customers, including their identities, preferences, opinions, and methods of communication.
This layer shows Computers and Internet Use. This is shown by county boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains
estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.
This layer is symbolized to show Percentage of Households with a Broadband Internet Subscription. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields"
at the top right. Current Vintage: 2015-2019ACS Table(s): DP02, S2801Data downloaded from: Census Bureau's API for American Community Survey
Date of API call: February 10, 2021National Figures: data.census.gov
The United States Census Bureau's American Community Survey (ACS):
About the SurveyGeography & ACSTechnical Documentation
News & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online,
its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when
using this data.Data Note from the
Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate
arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can
be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error
(the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a
discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.
Data Processing Notes:
Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates
(annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or
coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For
state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes
within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no
population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated
margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications
defined by the American Community Survey.Field alias names were created
based on the Table Shells file available from the
American Community Survey Summary File Documentation page.Margin of error (MOE) values of -555555555 in the API
(or "*****" (five asterisks) on data.census.gov) are displayed as 0 in this dataset. The estimates associated with these MOEs have been controlled to independent
counts in the ACS weighting and have zero sampling error. So, the MOEs are effectively zeroes, and are treated as zeroes in MOE calculations. Other negative values on the API,
such as -222222222, -666666666, -888888888, and -999999999, all represent estimates or MOEs that can't be calculated or can't be published, usually due to small sample sizes.
All of these are rendered in this dataset as null (blank) values.
By Amber Thomas [source]
This dataset provides an estimation of broadband usage in the United States, focusing on how many people have access to broadband and how many are actually using it at broadband speeds. Through data collected by Microsoft from our services, including package size and total time of download, we can estimate the throughput speed of devices connecting to the internet across zip codes and counties.
According to Federal Communications Commission (FCC) estimates, 14.5 million people don't have access to any kind of broadband connection. This data set aims to address this contrast between those with estimated availability but no actual use by providing more accurate usage numbers downscaled to county and zip code levels. Who gets counted as having access is vastly important -- it determines who gets included in public funding opportunities dedicated solely toward closing this digital divide gap. The implications can be huge: millions around this country could remain invisible if these number aren't accurately reported or used properly in decision-making processes.
This dataset includes aggregated information about these locations with less than 20 devices for increased accuracy when estimating Broadband Usage in the United States-- allowing others to use it for developing solutions that improve internet access or label problem areas accurately where no real or reliable connectivity exists among citizens within communities large and small throughout the US mainland.. Please review the license terms before using these data so that you may adhere appropriately with stipulations set forth under Microsoft's Open Use Of Data Agreement v1.0 agreement prior to utilizing this dataset for your needs-- both professional and educational endeavors alike!
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
How to Use the US Broadband Usage Dataset
This dataset provides broadband usage estimates in the United States by county and zip code. It is ideally suited for research into how broadband connects households, towns and cities. Understanding this information is vital for closing existing disparities in access to high-speed internet, and for devising strategies for making sure all Americans can stay connected in a digital world.
The dataset contains six columns: - County – The name of the county for which usage statistics are provided. - Zip Code (5-Digit) – The 5-digit zip code from which usage data was collected from within that county or metropolitan area/micro area/divisions within states as reported by the US Census Bureau in 2018[2].
- Population (Households) – Estimated number of households defined according to [3] based on data from the US Census Bureau American Community Survey's 5 Year Estimates[4].
- Average Throughput (Mbps)- Average Mbps download speed derived from a combination of data collected anonymous devices connected through Microsoft services such as Windows Update, Office 365, Xbox Live Core Services, etc.[5]
- Percent Fast (> 25 Mbps)- Percentage of machines with throughput greater than 25 Mbps calculated using [6]. 6) Percent Slow (< 3 Mbps)- Percentage of machines with throughput less than 3Mbps calculated using [7].
- Targeting marketing campaigns based on broadband use. Companies can use the geographic and demographic data in this dataset to create targeted advertising campaigns that are tailored to individuals living in areas where broadband access is scarce or lacking.
- Creating an educational platform for those without reliable access to broadband internet. By leveraging existing technologies such as satellite internet, media streaming services like Netflix, and platforms such as Khan Academy or EdX, those with limited access could gain access to new educational options from home.
- Establishing public-private partnerships between local governments and telecom providers need better data about gaps in service coverage and usage levels in order to make decisions about investments into new infrastructure buildouts for better connectivity options for rural communities
If you use this dataset in your research, please credit the original authors. Data Source
See the dataset description for more information.
File: broadband_data_2020October.csv
If you use this dataset in your research,...