16 datasets found
  1. d

    Statistics on Obesity, Physical Activity and Diet (replaced by Statistics on...

    • digital.nhs.uk
    Updated May 5, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Statistics on Obesity, Physical Activity and Diet (replaced by Statistics on Public Health) [Dataset]. https://digital.nhs.uk/data-and-information/publications/statistical/statistics-on-obesity-physical-activity-and-diet
    Explore at:
    Dataset updated
    May 5, 2020
    License

    https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions

    Time period covered
    Apr 1, 2018 - Dec 31, 2019
    Description

    This report presents information on obesity, physical activity and diet drawn together from a variety of sources for England. More information can be found in the source publications which contain a wider range of data and analysis. Each section provides an overview of key findings, as well as providing links to relevant documents and sources. Some of the data have been published previously by NHS Digital. A data visualisation tool (link provided within the key facts) allows users to select obesity related hospital admissions data for any Local Authority (as contained in the data tables), along with time series data from 2013/14. Regional and national comparisons are also provided. The report includes information on: Obesity related hospital admissions, including obesity related bariatric surgery. Obesity prevalence. Physical activity levels. Walking and cycling rates. Prescriptions items for the treatment of obesity. Perception of weight and weight management. Food and drink purchases and expenditure. Fruit and vegetable consumption. Key facts cover the latest year of data available: Hospital admissions: 2018/19 Adult obesity: 2018 Childhood obesity: 2018/19 Adult physical activity: 12 months to November 2019 Children and young people's physical activity: 2018/19 academic year

  2. U

    Obesity in Adults

    • data.ubdc.ac.uk
    • data.wu.ac.at
    xls
    Updated Nov 8, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Greater London Authority (2023). Obesity in Adults [Dataset]. https://data.ubdc.ac.uk/dataset/obesity-adults
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Nov 8, 2023
    Dataset provided by
    Greater London Authority
    Description

    The spreadsheet contains regional level obesity trend data from the the HSE, BMI data from Understanding Society, and adjusted prevalence of underweight, healthy weight, overweight, and obesity by local authority from the Active People Survey.

    Understanding Society data shows the percentage of the population aged 10 and over by their Body Mass Index Classification, covering underweight, normal weight, overweight, and three classes of obesity.

    Questions on self-reported height and weight were added to the Sport England Active People Survey (APS) in January 2012 to provide data for monitoring excess weight (overweight including obesity, BMI ≥25kg/m2) in adults (age 16 and over) at local authority level for the Public Health Outcomes Framework (PHOF).

    Health Survey for England (HSE) results at a national level are available on the NHS Information Centre website.

    Other NHS indicators on obesity are available for Strategic Health Authorities (SHA).

    Relevant links: http://discover.ukdataservice.ac.uk/series/?sn=2000053

    http://www.noo.org.uk/visualisation/adult_obesity

  3. c

    Levels of obesity and inactivity related illnesses (physical illnesses):...

    • data.catchmentbasedapproach.org
    • hub.arcgis.com
    Updated Apr 7, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Rivers Trust (2021). Levels of obesity and inactivity related illnesses (physical illnesses): Summary (England) [Dataset]. https://data.catchmentbasedapproach.org/items/76bef8a953c44f36b569c37d7bdec45e
    Explore at:
    Dataset updated
    Apr 7, 2021
    Dataset authored and provided by
    The Rivers Trust
    Area covered
    Description

    SUMMARYThis analysis, designed and executed by Ribble Rivers Trust, identifies areas across England with the greatest levels of physical illnesses that are linked with obesity and inactivity. Please read the below information to gain a full understanding of what the data shows and how it should be interpreted.ANALYSIS METHODOLOGYThe analysis was carried out using Quality and Outcomes Framework (QOF) data, derived from NHS Digital, relating to:- Asthma (in persons of all ages)- Cancer (in persons of all ages)- Chronic kidney disease (in adults aged 18+)- Coronary heart disease (in persons of all ages)- Diabetes mellitus (in persons aged 17+)- Hypertension (in persons of all ages)- Stroke and transient ischaemic attack (in persons of all ages)This information was recorded at the GP practice level. However, GP catchment areas are not mutually exclusive: they overlap, with some areas covered by 30+ GP practices. Therefore, to increase the clarity and usability of the data, the GP-level statistics were converted into statistics based on Middle Layer Super Output Area (MSOA) census boundaries.For each of the above illnesses, the percentage of each MSOA’s population with that illness was estimated. This was achieved by calculating a weighted average based on:- The percentage of the MSOA area that was covered by each GP practice’s catchment area- Of the GPs that covered part of that MSOA: the percentage of patients registered with each GP that have that illnessThe estimated percentage of each MSOA’s population with each illness was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of people in each MSOA with each illness, within the relevant age range.For each illness, each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have that illnessB) the NUMBER of people within that MSOA who are estimated to have that illnessAn average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA predicted to have that illness, compared to other MSOAs. In other words, those are areas where a large number of people are predicted to suffer from an illness, and where those people make up a large percentage of the population, indicating there is a real issue with that illness within the population and the investment of resources to address that issue could have the greatest benefits.The scores for each of the 7 illnesses were added together then converted to a relative score between 1 – 0 (1 = worst, 0 = best), to give an overall score for each MSOA: a score close to 1 would indicate that an area has high predicted levels of all obesity/inactivity-related illnesses, and these are areas where the local population could benefit the most from interventions to address those illnesses. A score close to 0 would indicate very low predicted levels of obesity/inactivity-related illnesses and therefore interventions might not be required.LIMITATIONS1. GPs do not have catchments that are mutually exclusive from each other: they overlap, with some geographic areas being covered by 30+ practices. This dataset should be viewed in combination with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset to identify where there are areas that are covered by multiple GP practices but at least one of those GP practices did not provide data. Results of the analysis in these areas should be interpreted with caution, particularly if the levels of obesity/inactivity-related illnesses appear to be significantly lower than the immediate surrounding areas.2. GP data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. Note also that some GPs (997 out of 7670) did not submit data in either year. This dataset should be viewed in conjunction with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset, to determine areas where data from 2019/20 was used, where one or more GPs did not submit data in either year, or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution. Note also that there are some rural areas (with little or no population) that do not officially fall into any GP catchment area (although this will not affect the results of this analysis if there are no people living in those areas).3. Although all of the obesity/inactivity-related illnesses listed can be caused or exacerbated by inactivity and obesity, it was not possible to distinguish from the data the cause of the illnesses in patients: obesity and inactivity are highly unlikely to be the cause of all cases of each illness. By combining the data with data relating to levels of obesity and inactivity in adults and children (see the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset), we can identify where obesity/inactivity could be a contributing factor, and where interventions to reduce obesity and increase activity could be most beneficial for the health of the local population.4. It was not feasible to incorporate ultra-fine-scale geographic distribution of populations that are registered with each GP practice or who live within each MSOA. Populations might be concentrated in certain areas of a GP practice’s catchment area or MSOA and relatively sparse in other areas. Therefore, the dataset should be used to identify general areas where there are high levels of obesity/inactivity-related illnesses, rather than interpreting the boundaries between areas as ‘hard’ boundaries that mark definite divisions between areas with differing levels of these illnesses. TO BE VIEWED IN COMBINATION WITH:This dataset should be viewed alongside the following datasets, which highlight areas of missing data and potential outliers in the data:- Health and wellbeing statistics (GP-level, England): Missing data and potential outliersDOWNLOADING THIS DATATo access this data on your desktop GIS, download the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset.DATA SOURCESThis dataset was produced using:Quality and Outcomes Framework data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.GP Catchment Outlines. Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. Data was cleaned by Ribble Rivers Trust before use.COPYRIGHT NOTICEThe reproduction of this data must be accompanied by the following statement:© Ribble Rivers Trust 2021. Analysis carried out using data that is: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.

  4. a

    Cancer (in persons of all ages): England

    • hub.arcgis.com
    • data.catchmentbasedapproach.org
    Updated Apr 6, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Rivers Trust (2021). Cancer (in persons of all ages): England [Dataset]. https://hub.arcgis.com/maps/theriverstrust::cancer-in-persons-of-all-ages-england
    Explore at:
    Dataset updated
    Apr 6, 2021
    Dataset authored and provided by
    The Rivers Trust
    Area covered
    Description

    SUMMARYThis analysis, designed and executed by Ribble Rivers Trust, identifies areas across England with the greatest levels of cancer (in persons of all ages). Please read the below information to gain a full understanding of what the data shows and how it should be interpreted.ANALYSIS METHODOLOGYThe analysis was carried out using Quality and Outcomes Framework (QOF) data, derived from NHS Digital, relating to cancer (in persons of all ages).This information was recorded at the GP practice level. However, GP catchment areas are not mutually exclusive: they overlap, with some areas covered by 30+ GP practices. Therefore, to increase the clarity and usability of the data, the GP-level statistics were converted into statistics based on Middle Layer Super Output Area (MSOA) census boundaries.The percentage of each MSOA’s population (all ages) with cancer was estimated. This was achieved by calculating a weighted average based on:The percentage of the MSOA area that was covered by each GP practice’s catchment areaOf the GPs that covered part of that MSOA: the percentage of registered patients that have that illness The estimated percentage of each MSOA’s population with cancer was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of people in each MSOA with cancer, within the relevant age range.Each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have cancerB) the NUMBER of people within that MSOA who are estimated to have cancerAn average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA that are estimated to have cancer, compared to other MSOAs. In other words, those are areas where it’s estimated a large number of people suffer from cancer, and where those people make up a large percentage of the population, indicating there is a real issue with cancer within the population and the investment of resources to address that issue could have the greatest benefits.LIMITATIONS1. GP data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. Note also that some GPs (997 out of 7670) did not submit data in either year. This dataset should be viewed in conjunction with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset, to determine areas where data from 2019/20 was used, where one or more GPs did not submit data in either year, or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution. Note also that there are some rural areas (with little or no population) that do not officially fall into any GP catchment area (although this will not affect the results of this analysis if there are no people living in those areas).2. Although all of the obesity/inactivity-related illnesses listed can be caused or exacerbated by inactivity and obesity, it was not possible to distinguish from the data the cause of the illnesses in patients: obesity and inactivity are highly unlikely to be the cause of all cases of each illness. By combining the data with data relating to levels of obesity and inactivity in adults and children (see the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset), we can identify where obesity/inactivity could be a contributing factor, and where interventions to reduce obesity and increase activity could be most beneficial for the health of the local population.3. It was not feasible to incorporate ultra-fine-scale geographic distribution of populations that are registered with each GP practice or who live within each MSOA. Populations might be concentrated in certain areas of a GP practice’s catchment area or MSOA and relatively sparse in other areas. Therefore, the dataset should be used to identify general areas where there are high levels of cancer, rather than interpreting the boundaries between areas as ‘hard’ boundaries that mark definite divisions between areas with differing levels of cancer.TO BE VIEWED IN COMBINATION WITH:This dataset should be viewed alongside the following datasets, which highlight areas of missing data and potential outliers in the data:Health and wellbeing statistics (GP-level, England): Missing data and potential outliersLevels of obesity, inactivity and associated illnesses (England): Missing dataDOWNLOADING THIS DATATo access this data on your desktop GIS, download the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset.DATA SOURCESThis dataset was produced using:Quality and Outcomes Framework data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.GP Catchment Outlines. Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. Data was cleaned by Ribble Rivers Trust before use.MSOA boundaries: © Office for National Statistics licensed under the Open Government Licence v3.0. Contains OS data © Crown copyright and database right 2021.Population data: Mid-2019 (June 30) Population Estimates for Middle Layer Super Output Areas in England and Wales. © Office for National Statistics licensed under the Open Government Licence v3.0. © Crown Copyright 2020.COPYRIGHT NOTICEThe reproduction of this data must be accompanied by the following statement:© Ribble Rivers Trust 2021. Analysis carried out using data that is: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital; © Office for National Statistics licensed under the Open Government Licence v3.0. Contains OS data © Crown copyright and database right 2021. © Crown Copyright 2020.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.

  5. c

    Diabetes mellitus (in persons aged 17 and over): England

    • data.catchmentbasedapproach.org
    Updated Apr 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Rivers Trust (2021). Diabetes mellitus (in persons aged 17 and over): England [Dataset]. https://data.catchmentbasedapproach.org/datasets/theriverstrust::diabetes-mellitus-in-persons-aged-17-and-over-england/about
    Explore at:
    Dataset updated
    Apr 7, 2021
    Dataset authored and provided by
    The Rivers Trust
    Area covered
    Description

    SUMMARYThis analysis, designed and executed by Ribble Rivers Trust, identifies areas across England with the greatest levels of diabetes mellitus in persons (aged 17+). Please read the below information to gain a full understanding of what the data shows and how it should be interpreted.ANALYSIS METHODOLOGYThe analysis was carried out using Quality and Outcomes Framework (QOF) data, derived from NHS Digital, relating to diabetes mellitus in persons (aged 17+).This information was recorded at the GP practice level. However, GP catchment areas are not mutually exclusive: they overlap, with some areas covered by 30+ GP practices. Therefore, to increase the clarity and usability of the data, the GP-level statistics were converted into statistics based on Middle Layer Super Output Area (MSOA) census boundaries.The percentage of each MSOA’s population (aged 17+) with diabetes mellitus was estimated. This was achieved by calculating a weighted average based on:The percentage of the MSOA area that was covered by each GP practice’s catchment areaOf the GPs that covered part of that MSOA: the percentage of registered patients that have that illness The estimated percentage of each MSOA’s population with diabetes mellitus was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of people in each MSOA with depression, within the relevant age range.Each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have diabetes mellitusB) the NUMBER of people within that MSOA who are estimated to have diabetes mellitusAn average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA that are estimated to have diabetes mellitus, compared to other MSOAs. In other words, those are areas where it’s estimated a large number of people suffer from diabetes mellitus, and where those people make up a large percentage of the population, indicating there is a real issue with diabetes mellitus within the population and the investment of resources to address that issue could have the greatest benefits.LIMITATIONS1. GP data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. Note also that some GPs (997 out of 7670) did not submit data in either year. This dataset should be viewed in conjunction with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset, to determine areas where data from 2019/20 was used, where one or more GPs did not submit data in either year, or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution. Note also that there are some rural areas (with little or no population) that do not officially fall into any GP catchment area (although this will not affect the results of this analysis if there are no people living in those areas).2. Although all of the obesity/inactivity-related illnesses listed can be caused or exacerbated by inactivity and obesity, it was not possible to distinguish from the data the cause of the illnesses in patients: obesity and inactivity are highly unlikely to be the cause of all cases of each illness. By combining the data with data relating to levels of obesity and inactivity in adults and children (see the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset), we can identify where obesity/inactivity could be a contributing factor, and where interventions to reduce obesity and increase activity could be most beneficial for the health of the local population.3. It was not feasible to incorporate ultra-fine-scale geographic distribution of populations that are registered with each GP practice or who live within each MSOA. Populations might be concentrated in certain areas of a GP practice’s catchment area or MSOA and relatively sparse in other areas. Therefore, the dataset should be used to identify general areas where there are high levels of diabetes mellitus, rather than interpreting the boundaries between areas as ‘hard’ boundaries that mark definite divisions between areas with differing levels of diabetes mellitus.TO BE VIEWED IN COMBINATION WITH:This dataset should be viewed alongside the following datasets, which highlight areas of missing data and potential outliers in the data:Health and wellbeing statistics (GP-level, England): Missing data and potential outliersLevels of obesity, inactivity and associated illnesses (England): Missing dataDOWNLOADING THIS DATATo access this data on your desktop GIS, download the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset.DATA SOURCESThis dataset was produced using:Quality and Outcomes Framework data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.GP Catchment Outlines. Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. Data was cleaned by Ribble Rivers Trust before use.COPYRIGHT NOTICEThe reproduction of this data must be accompanied by the following statement:© Ribble Rivers Trust 2021. Analysis carried out using data that is: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.

  6. c

    Asthma (in persons of all ages): England

    • data.catchmentbasedapproach.org
    • hub.arcgis.com
    Updated Apr 6, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Rivers Trust (2021). Asthma (in persons of all ages): England [Dataset]. https://data.catchmentbasedapproach.org/datasets/asthma-in-persons-of-all-ages-england
    Explore at:
    Dataset updated
    Apr 6, 2021
    Dataset authored and provided by
    The Rivers Trust
    Area covered
    Description

    SUMMARYThis analysis, designed and executed by Ribble Rivers Trust, identifies areas across England with the greatest levels of asthma (in persons of all ages). Please read the below information to gain a full understanding of what the data shows and how it should be interpreted.ANALYSIS METHODOLOGYThe analysis was carried out using Quality and Outcomes Framework (QOF) data, derived from NHS Digital, relating to asthma (in persons of all ages).This information was recorded at the GP practice level. However, GP catchment areas are not mutually exclusive: they overlap, with some areas covered by 30+ GP practices. Therefore, to increase the clarity and usability of the data, the GP-level statistics were converted into statistics based on Middle Layer Super Output Area (MSOA) census boundaries.The percentage of each MSOA’s population (all ages) with asthma was estimated. This was achieved by calculating a weighted average based on:The percentage of the MSOA area that was covered by each GP practice’s catchment areaOf the GPs that covered part of that MSOA: the percentage of registered patients that have that illness The estimated percentage of each MSOA’s population with asthma was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of people in each MSOA with asthma, within the relevant age range.Each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have asthmaB) the NUMBER of people within that MSOA who are estimated to have asthmaAn average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA that are estimated to have asthma, compared to other MSOAs. In other words, those are areas where it’s estimated a large number of people suffer from asthma, and where those people make up a large percentage of the population, indicating there is a real issue with asthma within the population and the investment of resources to address that issue could have the greatest benefits.LIMITATIONS1. GP data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. Note also that some GPs (997 out of 7670) did not submit data in either year. This dataset should be viewed in conjunction with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset, to determine areas where data from 2019/20 was used, where one or more GPs did not submit data in either year, or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution. Note also that there are some rural areas (with little or no population) that do not officially fall into any GP catchment area (although this will not affect the results of this analysis if there are no people living in those areas).2. Although all of the obesity/inactivity-related illnesses listed can be caused or exacerbated by inactivity and obesity, it was not possible to distinguish from the data the cause of the illnesses in patients: obesity and inactivity are highly unlikely to be the cause of all cases of each illness. By combining the data with data relating to levels of obesity and inactivity in adults and children (see the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset), we can identify where obesity/inactivity could be a contributing factor, and where interventions to reduce obesity and increase activity could be most beneficial for the health of the local population.3. It was not feasible to incorporate ultra-fine-scale geographic distribution of populations that are registered with each GP practice or who live within each MSOA. Populations might be concentrated in certain areas of a GP practice’s catchment area or MSOA and relatively sparse in other areas. Therefore, the dataset should be used to identify general areas where there are high levels of asthma, rather than interpreting the boundaries between areas as ‘hard’ boundaries that mark definite divisions between areas with differing levels of asthma.TO BE VIEWED IN COMBINATION WITH:This dataset should be viewed alongside the following datasets, which highlight areas of missing data and potential outliers in the data:Health and wellbeing statistics (GP-level, England): Missing data and potential outliersLevels of obesity, inactivity and associated illnesses (England): Missing dataDOWNLOADING THIS DATATo access this data on your desktop GIS, download the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset.DATA SOURCESThis dataset was produced using:Quality and Outcomes Framework data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.GP Catchment Outlines. Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. Data was cleaned by Ribble Rivers Trust before use.COPYRIGHT NOTICEThe reproduction of this data must be accompanied by the following statement:© Ribble Rivers Trust 2021. Analysis carried out using data that is: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.

  7. c

    Hypertension (in persons of all ages): England

    • data.catchmentbasedapproach.org
    • hub.arcgis.com
    Updated Apr 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Rivers Trust (2021). Hypertension (in persons of all ages): England [Dataset]. https://data.catchmentbasedapproach.org/items/f61addc903ee44ac9f0e12d130143564
    Explore at:
    Dataset updated
    Apr 7, 2021
    Dataset authored and provided by
    The Rivers Trust
    Area covered
    Description

    SUMMARYThis analysis, designed and executed by Ribble Rivers Trust, identifies areas across England with the greatest levels of hypertension (in persons of all ages). Please read the below information to gain a full understanding of what the data shows and how it should be interpreted.ANALYSIS METHODOLOGYThe analysis was carried out using Quality and Outcomes Framework (QOF) data, derived from NHS Digital, relating to hypertension (in persons of all ages).This information was recorded at the GP practice level. However, GP catchment areas are not mutually exclusive: they overlap, with some areas covered by 30+ GP practices. Therefore, to increase the clarity and usability of the data, the GP-level statistics were converted into statistics based on Middle Layer Super Output Area (MSOA) census boundaries.The percentage of each MSOA’s population (all ages) with hypertension was estimated. This was achieved by calculating a weighted average based on:The percentage of the MSOA area that was covered by each GP practice’s catchment areaOf the GPs that covered part of that MSOA: the percentage of registered patients that have that illness The estimated percentage of each MSOA’s population with hypertension was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of people in each MSOA with hypertension , within the relevant age range.Each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have hypertension B) the NUMBER of people within that MSOA who are estimated to have hypertension An average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA that are estimated to have hypertension , compared to other MSOAs. In other words, those are areas where it’s estimated a large number of people suffer from hypertension, and where those people make up a large percentage of the population, indicating there is a real issue with hypertension within the population and the investment of resources to address that issue could have the greatest benefits.LIMITATIONS1. GP data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. Note also that some GPs (997 out of 7670) did not submit data in either year. This dataset should be viewed in conjunction with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset, to determine areas where data from 2019/20 was used, where one or more GPs did not submit data in either year, or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution. Note also that there are some rural areas (with little or no population) that do not officially fall into any GP catchment area (although this will not affect the results of this analysis if there are no people living in those areas).2. Although all of the obesity/inactivity-related illnesses listed can be caused or exacerbated by inactivity and obesity, it was not possible to distinguish from the data the cause of the illnesses in patients: obesity and inactivity are highly unlikely to be the cause of all cases of each illness. By combining the data with data relating to levels of obesity and inactivity in adults and children (see the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset), we can identify where obesity/inactivity could be a contributing factor, and where interventions to reduce obesity and increase activity could be most beneficial for the health of the local population.3. It was not feasible to incorporate ultra-fine-scale geographic distribution of populations that are registered with each GP practice or who live within each MSOA. Populations might be concentrated in certain areas of a GP practice’s catchment area or MSOA and relatively sparse in other areas. Therefore, the dataset should be used to identify general areas where there are high levels of hypertension, rather than interpreting the boundaries between areas as ‘hard’ boundaries that mark definite divisions between areas with differing levels of hypertension .TO BE VIEWED IN COMBINATION WITH:This dataset should be viewed alongside the following datasets, which highlight areas of missing data and potential outliers in the data:Health and wellbeing statistics (GP-level, England): Missing data and potential outliersLevels of obesity, inactivity and associated illnesses (England): Missing dataDOWNLOADING THIS DATATo access this data on your desktop GIS, download the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset.DATA SOURCESThis dataset was produced using:Quality and Outcomes Framework data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.GP Catchment Outlines. Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. Data was cleaned by Ribble Rivers Trust before use.COPYRIGHT NOTICEThe reproduction of this data must be accompanied by the following statement:© Ribble Rivers Trust 2021. Analysis carried out using data that is: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.

  8. b

    Reception prevalence of obesity (including severe obesity), 3 years data...

    • cityobservatory.birmingham.gov.uk
    csv, excel, geojson +1
    Updated Mar 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Reception prevalence of obesity (including severe obesity), 3 years data combined - Birmingham Wards [Dataset]. https://cityobservatory.birmingham.gov.uk/explore/dataset/reception-prevalence-of-obesity-including-severe-obesity-3-years-data-combined-birmingham-wards/
    Explore at:
    geojson, json, excel, csvAvailable download formats
    Dataset updated
    Mar 3, 2025
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Area covered
    Birmingham
    Description

    Proportion of children aged 4 to 5 years classified as living with obesity. For population monitoring purposes, a child’s body mass index (BMI) is classed as overweight or obese where it is on or above the 85th centile or 95th centile, respectively, based on the British 1990 (UK90) growth reference data. The population monitoring cut offs for overweight and obesity are lower than the clinical cut offs (91st and 98th centiles for overweight and obesity) used to assess individual children; this is to capture children in the population in the clinical overweight or obesity BMI categories and those who are at high risk of moving into the clinical overweight or clinical obesity categories. This helps ensure that adequate services are planned and delivered for the whole population.

    Rationale There is concern about the rise of childhood obesity and the implications of obesity persisting into adulthood. The risk of obesity in adulthood and risk of future obesity-related ill health are greater as children get older. Studies tracking child obesity into adulthood have found that the probability of children who are overweight or living with obesity becoming overweight or obese adults increases with age[1,2,3]. The health consequences of childhood obesity include: increased blood lipids, glucose intolerance, Type 2 diabetes, hypertension, increases in liver enzymes associated with fatty liver, exacerbation of conditions such as asthma and psychological problems such as social isolation, low self-esteem, teasing and bullying.

    It is important to look at the prevalence of weight status across all weight/BMI categories to understand the whole picture and the movement of the population between categories over time.

    The National Institute of Health and Clinical Excellence have produced guidelines to tackle obesity in adults and children - http://guidance.nice.org.uk/CG43.

    1 Guo SS, Chumlea WC. Tracking of body mass index in children in relation to overweight in adulthood. The American Journal of Clinical Nutrition 1999;70(suppl): 145S-8S.

    2 Serdula MK, Ivery D, Coates RJ, Freedman DS, Williamson DF, Byers T. Do obese children become obese adults? A review of the literature. Preventative Medicine 1993;22:167-77.

    3 Starc G, Strel J. Tracking excess weight and obesity from childhood to young adulthood: a 12-year prospective cohort study in Slovenia. Public Health Nutrition 2011;14:49-55.

    Definition of numerator Number of children in reception (aged 4 to 5 years) with a valid height and weight measured by the NCMP with a BMI classified as living with obesity or severe obesity (BMI on or above 95th centile of the UK90 growth reference).

    Definition of denominator Number of children in reception (aged 4 to 5 years) with a valid height and weight measured by the NCMP.

    Caveats Data for local authorities may not match that published by NHS England which are based on the local authority of the school attended by the child or based on the local authority that submitted the data. There is a strong correlation between deprivation and child obesity prevalence and users of these data may wish to examine the pattern in their local area. Users may wish to produce thematic maps and charts showing local child obesity prevalence. When presenting data in charts or maps it is important, where possible, to consider the confidence intervals (CIs) around the figures. This analysis supersedes previously published data for small area geographies and historically published data should not be compared to the latest publication. Estimated data published in this fingertips tool is not comparable with previously published data due to changes in methods over the different years of production. These methods changes include; moving from estimated numbers at ward level to actual numbers; revision of geographical boundaries (including ward boundary changes and conversion from 2001 MSOA boundaries to 2011 boundaries); disclosure control methodology changes. The most recently published data applies the same methods across all years of data. There is the potential for error in the collection, collation and interpretation of the data (bias may be introduced due to poor response rates and selective opt out of children with a high BMI for age/sex which it is not possible to control for). There is not a good measure of response bias and the degree of selective opt out, but participation rates (the proportion of eligible school children who were measured) may provide a reasonable proxy; the higher the participation rate, the less chance there is for selective opt out, though this is not a perfect method of assessment. Participation rates for each local authority are available in the https://fingertips.phe.org.uk/profile/national-child-measurement-programme/data#page/4/gid/8000022/ of this profile.

  9. a

    Excess weight in children, England (three year average: academic years...

    • hub.arcgis.com
    • data.catchmentbasedapproach.org
    Updated Mar 31, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Rivers Trust (2021). Excess weight in children, England (three year average: academic years 2016-19) [Dataset]. https://hub.arcgis.com/datasets/afed8d16ac6e41358b2ce81d6d5f6459
    Explore at:
    Dataset updated
    Mar 31, 2021
    Dataset authored and provided by
    The Rivers Trust
    Area covered
    Description

    SUMMARYIdentifies Middle Layer Super Output Areas (MSOAs) with the greatest levels of excess weight in children (as measured in children in Reception and Year 6 respectively: three year average between academic years 2016/17, 2017/18, 2018/19).Although this layer is symbolised based on an overall score for excess weight, the underlying data, including the raw data for Reception and Year 6 children respectively, is included in the dataset.ANALYSIS METHODOLOGYThe following analysis was carried out using data for Reception and Year 6 children independently:Each MSOA was given a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the NUMBER of children in that year group with excess weight and;B) the PERCENTAGE of children in that year group with excess weight.An average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of children with excess weight, compared to other MSOAs, within that year group. In other words, those are areas where a large number of children have excess weight, and where those children make up a large percentage of the population of that age group, suggesting there is a real issue with childhood obesity in that area that needs addressing.The scores for the Reception and Year 6 analyses were added together then converted to relative scores between 1- 0 (1 = high levels of excess weight in children in both Reception and Year 6, 0 = very low levels of excess weight in either school year). The greater the total score, the greater the levels of excess weight in children within the local population, and the greater the benefits that could be achieved by investing in measures to reduce this issue in those areas.The data overall scores for Reception and Year 6 children, respectively, can be viewed via the following datasets:Excess weight in Reception children, England (three year average: academic years 2016-19)Excess weight in Year 6 children, England (three year average: academic years 2016-19)DATA SOURCESNational Child Measurement Programme: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. MSOA boundaries: © Office for National Statistics licensed under the Open Government Licence v3.0. Contains OS data © Crown copyright and database right 2021.COPYRIGHT NOTICEBased on data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.; © Office for National Statistics licensed under the Open Government Licence v3.0. Contains OS data © Crown copyright and database right 2021. Data analysed and published by Ribble Rivers Trust © 2021.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.

  10. d

    Data from: National Child Measurement Programme

    • digital.nhs.uk
    doc, pdf, xls
    Updated Dec 14, 2011
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2011). National Child Measurement Programme [Dataset]. https://digital.nhs.uk/data-and-information/publications/statistical/national-child-measurement-programme
    Explore at:
    pdf(37.8 kB), pdf(1.4 MB), pdf(194.7 kB), pdf(28.7 kB), xls(925.7 kB), pdf(18.6 kB), doc(77.8 kB), pdf(35.4 kB)Available download formats
    Dataset updated
    Dec 14, 2011
    License

    https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions

    Time period covered
    Sep 1, 2010 - Aug 31, 2011
    Area covered
    England
    Description

    Note 27/01/12: An error affecting 2 rows in each of Table 3A and 3B within the NCMP England, 2010/11 Online Tables excel workbook have been identified. The errors affect figures for Central Bedfordshire Unitary Authority (row 216 in each table) and Cornwall Unitary Authority (row 385 in each table). The errors do not affect England level figures or data shown for any other breakdowns within other tables. The pdf file NCMP England, 2010/11 Report is unaffected. The NCMP England, 2010/11 Online Tables excel workbook has been re-issued with a corrected version of Tables 3A and 3B. These tables also have revised footnotes. Please see the errata note for further information. The NHS IC apologises for any inconvenience this may have caused. Summary: This report summarises the key findings from the Government's National Child Measurement Programme (NCMP) for England, 2010/11 school year. The report provides high-level analysis of the prevalence of 'underweight', 'healthy weight', 'overweight', 'obese' and 'overweight and obese combined' children, in Reception (aged 4-5 years) and Year 6 (aged 10-11 years), measured in state schools in England in the school year 2010/11. The National Obesity Observatory (NOO) will produce additional analysis of 2010/11 NCMP data (expected to be published in Spring 2012). The anonymised national dataset will also be made available to Public Health Observatories (PHOs) to allow regional and local analysis of the data. In addition, NOO have included 2010/11 NCMP data (as well as data from previous years) in an e-Atlas - an interactive mapping tool that enables the user to compare a range of indicators, examine correlations and make regional and national comparisons. See 'Look up results for your area' on the right hand side.

  11. b

    Year 6 prevalence of obesity (including severe obesity), 3 years data...

    • cityobservatory.birmingham.gov.uk
    csv, excel, geojson +1
    Updated Mar 13, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Year 6 prevalence of obesity (including severe obesity), 3 years data combined - Birmingham Wards [Dataset]. https://cityobservatory.birmingham.gov.uk/explore/dataset/year-6-prevalence-of-obesity-including-severe-obesity-3-years-data-combined-birmingham-wards/
    Explore at:
    geojson, json, excel, csvAvailable download formats
    Dataset updated
    Mar 13, 2025
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Area covered
    Birmingham
    Description

    Proportion of children aged 10 to 11 years classified as living with obesity. For population monitoring purposes, a child’s body mass index (BMI) is classed as overweight or obese where it is on or above the 85th centile or 95th centile, respectively, based on the British 1990 (UK90) growth reference data. The population monitoring cut offs for overweight and obesity are lower than the clinical cut offs (91st and 98th centiles for overweight and obesity) used to assess individual children; this is to capture children in the population in the clinical overweight or obesity BMI categories and those who are at high risk of moving into the clinical overweight or clinical obesity categories. This helps ensure that adequate services are planned and delivered for the whole population.

    Rationale There is concern about the rise of childhood obesity and the implications of obesity persisting into adulthood. The risk of obesity in adulthood and risk of future obesity-related ill health are greater as children get older. Studies tracking child obesity into adulthood have found that the probability of children who are overweight or living with obesity becoming overweight or obese adults increases with age[1,2,3]. The health consequences of childhood obesity include: increased blood lipids, glucose intolerance, Type 2 diabetes, hypertension, increases in liver enzymes associated with fatty liver, exacerbation of conditions such as asthma and psychological problems such as social isolation, low self-esteem, teasing and bullying.

    It is important to look at the prevalence of weight status across all weight/BMI categories to understand the whole picture and the movement of the population between categories over time.

    The National Institute of Health and Clinical Excellence have produced guidelines to tackle obesity in adults and children - http://guidance.nice.org.uk/CG43.

    1 Guo SS, Chumlea WC. Tracking of body mass index in children in relation to overweight in adulthood. The American Journal of Clinical Nutrition 1999;70(suppl): 145S-8S.

    2 Serdula MK, Ivery D, Coates RJ, Freedman DS, Williamson DF, Byers T. Do obese children become obese adults? A review of the literature. Preventative Medicine 1993;22:167-77.

    3 Starc G, Strel J. Tracking excess weight and obesity from childhood to young adulthood: a 12-year prospective cohort study in Slovenia. Public Health Nutrition 2011;14:49-55.

    Definition of numerator Number of children in year 6 (aged 10 to 11 years) with a valid height and weight measured by the NCMP with a BMI classified as living with obesity or severe obesity (BMI on or above 95th centile of the UK90 growth reference).

    Definition of denominator Number of children in year 6 (aged 10 to 11 years) with a valid height and weight measured by the NCMP.

    Caveats Data for local authorities may not match that published by NHS England which are based on the local authority of the school attended by the child or based on the local authority that submitted the data. There is a strong correlation between deprivation and child obesity prevalence and users of these data may wish to examine the pattern in their local area. Users may wish to produce thematic maps and charts showing local child obesity prevalence. When presenting data in charts or maps it is important, where possible, to consider the confidence intervals (CIs) around the figures. This analysis supersedes previously published data for small area geographies and historically published data should not be compared to the latest publication. Estimated data published in this fingertips tool is not comparable with previously published data due to changes in methods over the different years of production. These methods changes include; moving from estimated numbers at ward level to actual numbers; revision of geographical boundaries (including ward boundary changes and conversion from 2001 MSOA boundaries to 2011 boundaries); disclosure control methodology changes. The most recently published data applies the same methods across all years of data. There is the potential for error in the collection, collation and interpretation of the data (bias may be introduced due to poor response rates and selective opt out of children with a high BMI for age/sex which it is not possible to control for). There is not a good measure of response bias and the degree of selective opt out, but participation rates (the proportion of eligible school children who were measured) may provide a reasonable proxy; the higher the participation rate, the less chance there is for selective opt out, though this is not a perfect method of assessment. Participation rates for each local authority are available in the https://fingertips.phe.org.uk/profile/national-child-measurement-programme/data#page/4/gid/8000022/ of this profile.

  12. d

    Data from: National Child Measurement Programme

    • digital.nhs.uk
    pdf, xls
    Updated Dec 11, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2013). National Child Measurement Programme [Dataset]. https://digital.nhs.uk/data-and-information/publications/statistical/national-child-measurement-programme
    Explore at:
    pdf(1.5 MB), pdf(185.3 kB), xls(559.6 kB), pdf(108.9 kB)Available download formats
    Dataset updated
    Dec 11, 2013
    License

    https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions

    Time period covered
    Sep 1, 2012 - Aug 31, 2013
    Area covered
    England
    Description

    This report summarises the key findings from the Government's National Child Measurement Programme (NCMP) for England, 2012-13 school year. The report provides high-level analysis of the prevalence of 'underweight', 'healthy weight', 'overweight', 'obese' and 'overweight and obese combined' children, in Reception (typically aged 4-5 years) and Year 6 (typically aged 10-11 years), measured in state schools in England in the school year 2012-13. Public Health England's Obesity Knowledge and Intelligence Team (PHE Obesity K&I), previously the National Obesity Observatory (NOO), publish a detailed annual NCMP report which contains additional specific analyses not included in the HSCIC summary report. This report is expected to be published in early 2014. The anonymised national data set will also be made available to Public Health Observatories (PHOs) to allow regional and local analysis of the data. In addition, PHE Obesity K&I include NCMP data in an online data tool that enables the user to examine patterns and trends at local authority level. This interactive data tool will be updated with the 2012/13 NCMP data in early January 2014. See 'Look up results for your area' on the right hand side to access this tool.

  13. a

    Chronic kidney disease (in adults aged 18 and over): England

    • hub.arcgis.com
    • data.catchmentbasedapproach.org
    Updated Apr 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Rivers Trust (2021). Chronic kidney disease (in adults aged 18 and over): England [Dataset]. https://hub.arcgis.com/maps/theriverstrust::chronic-kidney-disease-in-adults-aged-18-and-over-england
    Explore at:
    Dataset updated
    Apr 7, 2021
    Dataset authored and provided by
    The Rivers Trust
    Area covered
    Description

    SUMMARYThis analysis, designed and executed by Ribble Rivers Trust, identifies areas across England with the greatest levels of chronic kidney disease in adults (aged 18+). Please read the below information to gain a full understanding of what the data shows and how it should be interpreted.ANALYSIS METHODOLOGYThe analysis was carried out using Quality and Outcomes Framework (QOF) data, derived from NHS Digital, relating to chronic kidney disease in adults (aged 18+).This information was recorded at the GP practice level. However, GP catchment areas are not mutually exclusive: they overlap, with some areas covered by 30+ GP practices. Therefore, to increase the clarity and usability of the data, the GP-level statistics were converted into statistics based on Middle Layer Super Output Area (MSOA) census boundaries.The percentage of each MSOA’s population (aged 18+) with chronic kidney disease was estimated. This was achieved by calculating a weighted average based on:The percentage of the MSOA area that was covered by each GP practice’s catchment areaOf the GPs that covered part of that MSOA: the percentage of registered patients that have that illness The estimated percentage of each MSOA’s population with chronic kidney disease was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of people in each MSOA with chronic kidney disease, within the relevant age range.Each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have chronic kidney diseaseB) the NUMBER of people within that MSOA who are estimated to have chronic kidney diseaseAn average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA that are estimated to have chronic kidney disease, compared to other MSOAs. In other words, those are areas where it’s estimated a large number of people suffer from chronic kidney disease, and where those people make up a large percentage of the population, indicating there is a real issue with chronic kidney disease within the population and the investment of resources to address that issue could have the greatest benefits.LIMITATIONS1. GP data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. Note also that some GPs (997 out of 7670) did not submit data in either year. This dataset should be viewed in conjunction with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset, to determine areas where data from 2019/20 was used, where one or more GPs did not submit data in either year, or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution. Note also that there are some rural areas (with little or no population) that do not officially fall into any GP catchment area (although this will not affect the results of this analysis if there are no people living in those areas).2. Although all of the obesity/inactivity-related illnesses listed can be caused or exacerbated by inactivity and obesity, it was not possible to distinguish from the data the cause of the illnesses in patients: obesity and inactivity are highly unlikely to be the cause of all cases of each illness. By combining the data with data relating to levels of obesity and inactivity in adults and children (see the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset), we can identify where obesity/inactivity could be a contributing factor, and where interventions to reduce obesity and increase activity could be most beneficial for the health of the local population.3. It was not feasible to incorporate ultra-fine-scale geographic distribution of populations that are registered with each GP practice or who live within each MSOA. Populations might be concentrated in certain areas of a GP practice’s catchment area or MSOA and relatively sparse in other areas. Therefore, the dataset should be used to identify general areas where there are high levels of chronic kidney disease, rather than interpreting the boundaries between areas as ‘hard’ boundaries that mark definite divisions between areas with differing levels of chronic kidney disease.TO BE VIEWED IN COMBINATION WITH:This dataset should be viewed alongside the following datasets, which highlight areas of missing data and potential outliers in the data:Health and wellbeing statistics (GP-level, England): Missing data and potential outliersLevels of obesity, inactivity and associated illnesses (England): Missing dataDOWNLOADING THIS DATATo access this data on your desktop GIS, download the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset.DATA SOURCESThis dataset was produced using:Quality and Outcomes Framework data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.GP Catchment Outlines. Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. Data was cleaned by Ribble Rivers Trust before use.COPYRIGHT NOTICEThe reproduction of this data must be accompanied by the following statement:© Ribble Rivers Trust 2021. Analysis carried out using data that is: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.

  14. c

    Stroke and transient ischaemic attack (in persons of all ages): England

    • data.catchmentbasedapproach.org
    • hub.arcgis.com
    Updated Apr 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Rivers Trust (2021). Stroke and transient ischaemic attack (in persons of all ages): England [Dataset]. https://data.catchmentbasedapproach.org/datasets/stroke-and-transient-ischaemic-attack-in-persons-of-all-ages-england
    Explore at:
    Dataset updated
    Apr 7, 2021
    Dataset authored and provided by
    The Rivers Trust
    Area covered
    Description

    SUMMARYThis analysis, designed and executed by Ribble Rivers Trust, identifies areas across England with the greatest levels of stroke and transient ischaemic attack (in persons of all ages). Please read the below information to gain a full understanding of what the data shows and how it should be interpreted.ANALYSIS METHODOLOGYThe analysis was carried out using Quality and Outcomes Framework (QOF) data, derived from NHS Digital, relating to stroke and transient ischaemic attack (in persons of all ages).This information was recorded at the GP practice level. However, GP catchment areas are not mutually exclusive: they overlap, with some areas covered by 30+ GP practices. Therefore, to increase the clarity and usability of the data, the GP-level statistics were converted into statistics based on Middle Layer Super Output Area (MSOA) census boundaries.The percentage of each MSOA’s population (all ages) to have suffered a stroke or transient ischaemic attack was estimated. This was achieved by calculating a weighted average based on:The percentage of the MSOA area that was covered by each GP practice’s catchment areaOf the GPs that covered part of that MSOA: the percentage of registered patients that have that illness The estimated percentage of each MSOA’s population to have suffered a stroke or transient ischaemic attack was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of people in each MSOA who have suffered a stroke or transient ischaemic attack, within the relevant age range.Each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have had a stroke or transient ischaemic attackB) the NUMBER of people within that MSOA who are estimated to have had a stroke or transient ischaemic attackAn average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA that are estimated to have had a stroke or transient ischaemic attack, compared to other MSOAs. In other words, those are areas where it’s estimated a large number of people suffer from stroke and transient ischaemic attack, and where those people make up a large percentage of the population, indicating there is a real issue with stroke and transient ischaemic attack within the population and the investment of resources to address that issue could have the greatest benefits.LIMITATIONS1. GP data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. Note also that some GPs (997 out of 7670) did not submit data in either year. This dataset should be viewed in conjunction with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset, to determine areas where data from 2019/20 was used, where one or more GPs did not submit data in either year, or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution. Note also that there are some rural areas (with little or no population) that do not officially fall into any GP catchment area (although this will not affect the results of this analysis if there are no people living in those areas).2. Although all of the obesity/inactivity-related illnesses listed can be caused or exacerbated by inactivity and obesity, it was not possible to distinguish from the data the cause of the illnesses in patients: obesity and inactivity are highly unlikely to be the cause of all cases of each illness. By combining the data with data relating to levels of obesity and inactivity in adults and children (see the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset), we can identify where obesity/inactivity could be a contributing factor, and where interventions to reduce obesity and increase activity could be most beneficial for the health of the local population.3. It was not feasible to incorporate ultra-fine-scale geographic distribution of populations that are registered with each GP practice or who live within each MSOA. Populations might be concentrated in certain areas of a GP practice’s catchment area or MSOA and relatively sparse in other areas. Therefore, the dataset should be used to identify general areas where there are high levels of stroke and transient ischaemic attack, rather than interpreting the boundaries between areas as ‘hard’ boundaries that mark definite divisions between areas with differing levels of stroke and transient ischaemic attack.TO BE VIEWED IN COMBINATION WITH:This dataset should be viewed alongside the following datasets, which highlight areas of missing data and potential outliers in the data:Health and wellbeing statistics (GP-level, England): Missing data and potential outliersLevels of obesity, inactivity and associated illnesses (England): Missing dataDOWNLOADING THIS DATATo access this data on your desktop GIS, download the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset.DATA SOURCESThis dataset was produced using:Quality and Outcomes Framework data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.GP Catchment Outlines. Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. Data was cleaned by Ribble Rivers Trust before use.COPYRIGHT NOTICEThe reproduction of this data must be accompanied by the following statement:© Ribble Rivers Trust 2021. Analysis carried out using data that is: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.

  15. a

    Excess weight in Reception children, England (three year average: academic...

    • hub.arcgis.com
    • data.catchmentbasedapproach.org
    Updated Apr 6, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Rivers Trust (2021). Excess weight in Reception children, England (three year average: academic years 2016-19) [Dataset]. https://hub.arcgis.com/maps/theriverstrust::excess-weight-in-reception-children-england-three-year-average-academic-years-2016-19
    Explore at:
    Dataset updated
    Apr 6, 2021
    Dataset authored and provided by
    The Rivers Trust
    Area covered
    Description

    SUMMARYIdentifies Middle Layer Super Output Areas (MSOAs) with the greatest levels of excess weight in Reception age children (three year average between academic years 2016/17, 2017/18, 2018/19).Although this layer is symbolised based on an overall score for excess weight, the underlying data, including the raw data for Reception children, is included in the dataset.ANALYSIS METHODOLOGYEach MSOA was given a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the NUMBER of Reception children with excess weight and;B) the PERCENTAGE of Reception children with excess weight.An average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of Reception children with excess weight, compared to other MSOAs. In other words, those are areas where a large number of children have excess weight, and where those children make up a large percentage of the population of that age group, suggesting there is a real issue with childhood obesity in that area that needs addressing.DATA SOURCESNational Child Measurement Programme: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. MSOA boundaries: © Office for National Statistics licensed under the Open Government Licence v3.0. Contains OS data © Crown copyright and database right 2021.COPYRIGHT NOTICEBased on data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.; © Office for National Statistics licensed under the Open Government Licence v3.0. Contains OS data © Crown copyright and database right 2021. Data analysed and published by Ribble Rivers Trust © 2021.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.

  16. U

    Focus on London - Health

    • data.ubdc.ac.uk
    • data.wu.ac.at
    pdf, xls
    Updated Nov 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Greater London Authority (2023). Focus on London - Health [Dataset]. https://data.ubdc.ac.uk/dataset/focus-on-london-health
    Explore at:
    xls, pdfAvailable download formats
    Dataset updated
    Nov 8, 2023
    Dataset provided by
    Greater London Authority
    Area covered
    London
    Description

    FOCUSON**LONDON**2010:**HEALTH**:CHILDREN**AND**YOUNG**PEOPLE**

    The health and wellbeing of London’s children and young people is fundamental to the health of the city. The recent Marmot Review of health inequalities noted that “What a child experiences during the early years lays down the foundation for the whole of their life.” The Mayor’s Health Inequality Strategy for London responds to this by challenging all partners in London to create “conditions that lead to better early years experiences”.

    This chapter, authored by colleagues at the London Health Observatory, provides recent evidence on the health experience of children and young people in London. The report includes data about the Local Index of Child Wellbeing, infant mortality, breastfeeding, immunisation, injury, childhood obesity, physical activity, diet, smoking, alcohol consumption, drug use, teenage conceptions and sexual health. It reveals many areas of inequality within the city, but also highlights the ways in which London’s children are doing well.

    REPORT:

    Access the full report in PDF format

    https://londondatastore-upload.s3.amazonaws.com/fol/fol10-health-cover-thumb.png" alt="">

    PRESENTATION:

    This interactive presentation about children’s health in London looks into some of the factors that may have an effect on the high childhood obesity figures in London.

    Access the presentation at Prezi.com

    CHART:

    This interactive scatterplot allows users to observe the relationship between some of the health indicators in the report with a selection of other socio-economic data for each of London’s 32 boroughs.

    Scatterplot

    RANKINGS:

    An informative regional rankings scorecard has been created showing where London sits in relation to the other English regions on a number of indicators contained within the report.

    Rankings

    DATA:

    All the data contained within the health report and used to create the scatterplot and rankings scorecard can be accessed in this spreadsheet.

    FACTS:

    Some interesting facts from the report…

    ● Five boroughs with highest teenage conception rates in 2008:

    1. Lambeth – 71.5
    2. Lewisham – 68.7
    3. Southwark – 68.0
    4. Greenwich – 66.7
    5. Hackney and City of London – 61.5

    -31. Richmond upon Thames – 23.6

    -32. Harrow – 23.1

    ● The percentage of London women who smoke during pregnancy was lower than all other English regions, and around half the England average - one in 13 women in London and one in 7 nationally in 2008/09.

    Other interesting facts from the Datastore…

    ● Five boroughs with the highest rates for children in Year 6 at risk of obesity 2008/09:

    1. Southwark – 26.7%
    2. Tower Hamlets – 25.7%
    3. Lambeth – 25.3%
    4. Newham – 24.6%
    5. Barking and Dagenham – 24.2%

    -31. Bromley – 16.0%

    -32. Richmond-upon-Thames – 11.7%

    ● London has always had the lowest levels of children immunised by their second birthday against Measles, Mumps and Rubella (MMR) compared with other regions (since regional data was first available in 1988/89).

    Highest – 87 per cent (1995/96) Lowest – 70 per cent (2003/04) Now – 76 per cent (2008/09)

    ● Five boroughs with the highest rates of hospital admissions due to injury of children (0-17) 2008/09:

    1. Hackney – 126.2
    2. Tower Hamlets – 123.1
    3. Hammersmith and Fulham – 117.7
    4. Islington – 115.0
    5. Waltham Forest – 112.5

    -31. Richmond upon Thames – 63.4

    -32. Kingston upon Thames – 40.2

  17. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2020). Statistics on Obesity, Physical Activity and Diet (replaced by Statistics on Public Health) [Dataset]. https://digital.nhs.uk/data-and-information/publications/statistical/statistics-on-obesity-physical-activity-and-diet

Statistics on Obesity, Physical Activity and Diet (replaced by Statistics on Public Health)

Statistics on Obesity, Physical Activity and Diet, England, 2020

Explore at:
163 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
May 5, 2020
License

https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions

Time period covered
Apr 1, 2018 - Dec 31, 2019
Description

This report presents information on obesity, physical activity and diet drawn together from a variety of sources for England. More information can be found in the source publications which contain a wider range of data and analysis. Each section provides an overview of key findings, as well as providing links to relevant documents and sources. Some of the data have been published previously by NHS Digital. A data visualisation tool (link provided within the key facts) allows users to select obesity related hospital admissions data for any Local Authority (as contained in the data tables), along with time series data from 2013/14. Regional and national comparisons are also provided. The report includes information on: Obesity related hospital admissions, including obesity related bariatric surgery. Obesity prevalence. Physical activity levels. Walking and cycling rates. Prescriptions items for the treatment of obesity. Perception of weight and weight management. Food and drink purchases and expenditure. Fruit and vegetable consumption. Key facts cover the latest year of data available: Hospital admissions: 2018/19 Adult obesity: 2018 Childhood obesity: 2018/19 Adult physical activity: 12 months to November 2019 Children and young people's physical activity: 2018/19 academic year

Search
Clear search
Close search
Google apps
Main menu