16 datasets found
  1. U

    United States US: Diabetes Prevalence: % of Population Aged 20-79

    • ceicdata.com
    Updated Mar 15, 2009
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2009). United States US: Diabetes Prevalence: % of Population Aged 20-79 [Dataset]. https://www.ceicdata.com/en/united-states/health-statistics/us-diabetes-prevalence--of-population-aged-2079
    Explore at:
    Dataset updated
    Mar 15, 2009
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2017
    Area covered
    United States
    Description

    United States US: Diabetes Prevalence: % of Population Aged 20-79 data was reported at 10.790 % in 2017. United States US: Diabetes Prevalence: % of Population Aged 20-79 data is updated yearly, averaging 10.790 % from Dec 2017 (Median) to 2017, with 1 observations. United States US: Diabetes Prevalence: % of Population Aged 20-79 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Health Statistics. Diabetes prevalence refers to the percentage of people ages 20-79 who have type 1 or type 2 diabetes.; ; International Diabetes Federation, Diabetes Atlas.; Weighted average;

  2. The association between environmental quality and diabetes in the U.S.

    • s.cnmilf.com
    • catalog.data.gov
    Updated Nov 12, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2020). The association between environmental quality and diabetes in the U.S. [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/the-association-between-environmental-quality-and-diabetes-in-the-u-s
    Explore at:
    Dataset updated
    Nov 12, 2020
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    Population-based county-level estimates for diagnosed (DDP), undiagnosed (UDP), and total diabetes prevalence (TDP) were acquired from the Institute for Health Metrics and Evaluation (IHME) for the years 2004-2012 (Evaluation 2017). Prevalence estimates were calculated using a two-stage approach. The first stage used National Health and Nutrition Examination Survey (NHANES) data to predict high fasting plasma glucose (FPG) levels (≥126 mg/dL) and/or hemoglobin A1C (HbA1C) levels (≥6.5% [48 mmol/mol]) based on self-reported demographic and behavioral characteristics (Dwyer-Lindgren, Mackenbach et al. 2016). This model was then applied to Behavioral Risk Factor Surveillance System (BRFSS) data to impute high FPG and/or A1C status for each BRFSS respondent (Dwyer-Lindgren, Mackenbach et al. 2016). The second stage used the imputed BRFSS data to fit a series of small area models, which were used to predict the county-level prevalence of each of the diabetes-related outcomes (Dwyer-Lindgren, Mackenbach et al. 2016). Diagnosed diabetes was defined as the proportion of adults (age 20+ years) who reported a previous diabetes diagnosis, represented as an age-standardized prevalence percentage. Undiagnosed diabetes was defined as proportion of adults (age 20+ years) who have a high FPG or HbA1C but did not report a previous diagnosis of diabetes. Total diabetes was defined as the proportion of adults (age 20+ years) who reported a previous diabetes diagnosis and/or had a high FPG/HbA1C. The age-standardized diabetes prevalence (%) was used as the outcome. The EQI was constructed for 2000-2005 for all US counties and is composed of five domains (air, water, built, land, and sociodemographic), each composed of variables to represent the environmental quality of that _domain. Domain-specific EQIs were developed using principal components analysis (PCA) to reduce these variables within each _domain while the overall EQI was constructed from a second PCA from these individual domains (L. C. Messer et al., 2014). To account for differences in environment across rural and urban counties, the overall and _domain-specific EQIs were stratified by rural urban continuum codes (RUCCs) (U.S. Department of Agriculture, 2015). This dataset is not publicly accessible because: EPA cannot release personally identifiable information regarding living individuals, according to the Privacy Act and the Freedom of Information Act (FOIA). This dataset contains information about human research subjects. Because there is potential to identify individual participants and disclose personal information, either alone or in combination with other datasets, individual level data are not appropriate to post for public access. Restricted access may be granted to authorized persons by contacting the party listed. It can be accessed through the following means: Human health data are not available publicly. EQI data are available at: https://edg.epa.gov/data/Public/ORD/NHEERL/EQI. Format: Data are stored as csv files. This dataset is associated with the following publication: Jagai, J., A. Krajewski, S. Shaikh, D. Lobdell, and R. Sargis. Association between environmental quality and diabetes in the U.S.A.. Journal of Diabetes Investigation. John Wiley & Sons, Inc., Hoboken, NJ, USA, 11(2): 315-324, (2020).

  3. u

    Diabetes Mellitus death rates by county, 2019-2023 - Dataset - Healthy...

    • midb.uspatial.umn.edu
    Updated Oct 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Diabetes Mellitus death rates by county, 2019-2023 - Dataset - Healthy Communities Data Portal [Dataset]. https://midb.uspatial.umn.edu/hcdp/dataset/diabetes-mellitus-death-rates-by-county-2019-2023
    Explore at:
    Dataset updated
    Oct 24, 2025
    Description

    Diabetes Mellitus death rates by county, all races (includes Hispanic/Latino), all sexes, all ages, 2019-2023. Death data were provided by the National Vital Statistics System. Death rates (deaths per 100,000 population per year) are age-adjusted to the 2000 US standard population (20 age groups: <1, 1-4, 5-9, ... , 80-84, 85-89, 90+). Rates calculated using SEER*Stat. Population counts for denominators are based on Census populations as modified by the National Cancer Institute. The US Population Data File is used for mortality data. The Average Annual Percent Change is based onthe APCs calculated by the Joinpoint Regression Program (Version 4.9.0.0). Due to data availability issues, the time period used in the calculation of the joinpoint regression model may differ for selected counties. Counties with a (3) after their name may have their joinpoint regresssion model calculated using a different time period due to data availability issues.

  4. Indicators of Heart Disease (2022 UPDATE)

    • kaggle.com
    zip
    Updated Oct 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kamil Pytlak (2023). Indicators of Heart Disease (2022 UPDATE) [Dataset]. https://www.kaggle.com/datasets/kamilpytlak/personal-key-indicators-of-heart-disease/discussion
    Explore at:
    zip(22474335 bytes)Available download formats
    Dataset updated
    Oct 12, 2023
    Authors
    Kamil Pytlak
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Key Indicators of Heart Disease

    2022 annual CDC survey data of 400k+ adults related to their health status

    What subject does the dataset cover?

    According to the CDC, heart disease is a leading cause of death for people of most races in the U.S. (African Americans, American Indians and Alaska Natives, and whites). About half of all Americans (47%) have at least 1 of 3 major risk factors for heart disease: high blood pressure, high cholesterol, and smoking. Other key indicators include diabetes status, obesity (high BMI), not getting enough physical activity, or drinking too much alcohol. Identifying and preventing the factors that have the greatest impact on heart disease is very important in healthcare. In turn, developments in computing allow the application of machine learning methods to detect "patterns" in the data that can predict a patient's condition.

    Where did the data set come from and what treatments has it undergone?

    The dataset originally comes from the CDC and is a major part of the Behavioral Risk Factor Surveillance System (BRFSS), which conducts annual telephone surveys to collect data on the health status of U.S. residents. As described by the CDC: "Established in 1984 with 15 states, BRFSS now collects data in all 50 states, the District of Columbia, and three U.S. territories. BRFSS completes more than 400,000 adult interviews each year, making it the largest continuously conducted health survey system in the world. The most recent dataset includes data from 2023. In this dataset, I noticed many factors (questions) that directly or indirectly influence heart disease, so I decided to select the most relevant variables from it. I also decided to share with you two versions of the most recent dataset: with NaNs and without it.

    What can you do with this data set?

    As described above, the original dataset of nearly 300 variables was reduced to 40variables. In addition to classical EDA, this dataset can be used to apply a number of machine learning methods, especially classifier models (logistic regression, SVM, random forest, etc.). You should treat the variable "HadHeartAttack" as binary ("Yes" - respondent had heart disease; "No" - respondent did not have heart disease). Note, however, that the classes are unbalanced, so the classic approach of applying a model is not advisable. Fixing the weights/undersampling should yield much better results. Based on the data set, I built a logistic regression model and embedded it in an application that might inspire you: https://share.streamlit.io/kamilpytlak/heart-condition-checker/main/app.py. Can you indicate which variables have a significant effect on the likelihood of heart disease?

    What steps did you use to convert the dataset?

    Check out this notebook in my GitHub repository: https://github.com/kamilpytlak/data-science-projects/blob/main/heart-disease-prediction/2022/notebooks/data_processing.ipynb

  5. Diabetic Patients' Re-admission Prediction

    • kaggle.com
    zip
    Updated Aug 27, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Saurabh Tayal (2020). Diabetic Patients' Re-admission Prediction [Dataset]. https://www.kaggle.com/datasets/saurabhtayal/diabetic-patients-readmission-prediction/discussion?sort=undefined
    Explore at:
    zip(3567604 bytes)Available download formats
    Dataset updated
    Aug 27, 2020
    Authors
    Saurabh Tayal
    Description

    Dataset name: Diabetes 130-US hospitals for years 1999-2008 Data Set

    Background: Diabetes Mellitus (DM) is a chronic disease where the blood has high sugar level. It can occur when the pancreas does not produce enough insulin, or when the body cannot effectively use the insulin it produces (WHO). Diabetes is a progressive disease that can lead to a significant number of health complications and profoundly reduce the quality of life. While many diabetic patients manage the health complication with diet and exercise, some require medications to control blood glucose level. As published by a research article named “The relationship between diabetes mellitus and 30-day readmission rates”, it is estimated that 9.3% of the population in the United States have diabetes mellitus (DM), 28% of which are undiagnosed. In recent years, government agencies and healthcare systems have increasingly focused on 30-day readmission rates to determine the complexity of their patient populations and to improve quality. Thirty-day readmission rates for hospitalized patients with DM are reported to be between 14.4 and 22.7%, much higher than the rate for all hospitalized patients (8.5–13.5%).

    Problem Statement: To identify the factors that lead to the high readmission rate of diabetic patients within 30 days post discharge and correspondingly to predict the high-risk diabetic-patients who are most likely to get readmitted within 30 days so that the quality of care can be improved along with improved patient’s experience, health of the population and reduce costs by lowering readmission rates. Also, to identify the medicines that are the most effective in treating diabetes.

    Impact on business: Hospital readmission is an important contributor to total medical expenditures and is an emerging indicator of quality of care. Diabetes, similar to other chronic medical conditions, is associated with increased risk of hospital readmission. As mentioned in the article “Correction to: Hospital Readmission of Patients with Diabetes”, hospital readmission is a high-priority health care quality measure and target for cost reduction, particularly within 30 days of discharge. The burden of diabetes among hospitalized patients is substantial, growing, and costly, and readmissions contribute a significant portion of this burden. Reducing readmission rates among patients with diabetes has the potential to greatly reduce health care costs while simultaneously improving care. Our aim is to provide some insights into the risk factors for readmission and also to identify the medicines that are the most effective in treating diabetes.

    Variable identification: 1. Independent variables (49): encounter_id, patient_nbr, race, gender, age, weight, admission_type_id, discharge_disposition_id, admission_source_id, time_in_hospital, payer_code, medical_specialty, num_lab_procedures, num_procedures, num_medications, number_outpatient, number_emergency, number_inpatient, diag_1, diag_2, diag_3, number_diagnoses, max_glu_serum, A1Cresult, metformin, repaglinide, nateglinide, chlorpropamide, glimepiride, acetohexamide, glipizide, glyburide, tolbutamide, pioglitazone, rosiglitazone, acarbose, miglitol, troglitazone, tolazamide, examide, citoglipton, insulin, glyburide-metformin, glipizide-metformin, glimepiride-pioglitazone, metformin-rosiglitazone, metformin-pioglitazone, change, diabetesMed. ***2. Dependent variable (1)**:* readmitted (Categorical)

    Extra Info: Our dataset consists of hospital admissions of length between one and 14 days that did not result in a patient’s death. Each encounter corresponds to a patient diagnosed with diabetes, although the primary diagnosis may be different. During each of the analyzed encounters, lab tests were ordered and medication was administered.

  6. f

    Type 1 diabetes incidence rates in individuals aged 0–14 and 0–19 years by...

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    xls
    Updated Jun 21, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Apoorva Gomber; Zachary J. Ward; Carlo Ross; Maira Owais; Carol Mita; Jennifer M. Yeh; Ché L. Reddy; Rifat Atun (2023). Type 1 diabetes incidence rates in individuals aged 0–14 and 0–19 years by WHO regions and income. [Dataset]. http://doi.org/10.1371/journal.pgph.0001099.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 21, 2023
    Dataset provided by
    PLOS Global Public Health
    Authors
    Apoorva Gomber; Zachary J. Ward; Carlo Ross; Maira Owais; Carol Mita; Jennifer M. Yeh; Ché L. Reddy; Rifat Atun
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    *(Age-standardised incidence rates per 100,000 individuals per year with 95% confidence intervals. † For cells labeled as NA, 95% CIs could not be estimated as there was only 1 data point).

  7. N

    North America Self-monitoring Blood Glucose Market Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Jul 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). North America Self-monitoring Blood Glucose Market Report [Dataset]. https://www.datainsightsmarket.com/reports/north-america-self-monitoring-blood-glucose-market-8037
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    Jul 26, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    North America
    Variables measured
    Market Size
    Description

    The size of the North America Self-monitoring Blood Glucose Market was valued at USD 8.10 Million in 2023 and is projected to reach USD 12.99 Million by 2032, with an expected CAGR of 6.98% during the forecast period. Recent developments include: May 2023: LifeScan announced positive data from a study of real-world evidence supporting its Bluetooth-connected blood glucose meter. Evidence from more than 55,000 people with diabetes demonstrated sustained improvements in readings in range. The analysis focuses on changes over 180 days. LifeScan published results in the peer-reviewed journal Diabetes Therapy. The company’s OneTouch Bluetooth-connected blood glucose meter and mobile diabetes app provide simplicity, accuracy, and trust., January 2023: LifeScan announced that the peer-reviewed Journal of Diabetes Science and Technology published Improved Glycemic Control Using a Bluetooth-Connected Blood Glucose Meter and a Mobile Diabetes App: Real-World Evidence from Over 144,000 People With Diabetes, detailing results from a retrospective analysis of real-world data from over 144,000 people with diabetes is one of the largest combined blood glucose meter and mobile diabetes app datasets ever published.. Key drivers for this market are: Rising Prevalence of Cancer Worldwide, Technological Advancements in Diagnostic Testing; Increasing Demand for Point-of-care Treatment. Potential restraints include: High Cost of Molecular Diagnostic Tests, Lack of Skilled Workforce and Stringent Regulatory Framework. Notable trends are: Blood Glucose Test Strips Held the Largest Market Share in Current Year.

  8. m

    Senseonics Holdings Inc - Cash-Flow-Per-Share

    • macro-rankings.com
    csv, excel
    Updated Aug 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    macro-rankings (2025). Senseonics Holdings Inc - Cash-Flow-Per-Share [Dataset]. https://www.macro-rankings.com/Markets/Stocks/SENS-NYSE/Key-Financial-Ratios/Dividends_and_More/Cash-Flow-Per-Share
    Explore at:
    csv, excelAvailable download formats
    Dataset updated
    Aug 23, 2025
    Dataset authored and provided by
    macro-rankings
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    united states
    Description

    Cash-Flow-Per-Share Time Series for Senseonics Holdings Inc. Senseonics Holdings, Inc., a commercial-stage medical technology company, focuses on development and manufacturing of continuous glucose monitoring (CGM) systems for people with diabetes in the United States and internationally. The company's products include Eversense, Eversense XL, Eversense E3, and Eversense 365, which are implantable CGM systems to measure glucose levels in people with diabetes through an under-the-skin sensor, a removable and rechargeable smart transmitter, and an app for real-time diabetes monitoring and management. It serves healthcare providers and patients through a network of distributors and strategic fulfillment partners. The company was founded in 1996 and is headquartered in Germantown, Maryland.

  9. D

    Diabetes Care Devices Market Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated May 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Diabetes Care Devices Market Report [Dataset]. https://www.marketreportanalytics.com/reports/diabetes-care-devices-market-94145
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    May 3, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global Diabetes Care Devices market, valued at approximately $XX million in 2025, is projected to experience robust growth, driven by rising diabetes prevalence globally, an aging population, and increasing adoption of advanced technologies like continuous glucose monitoring (CGM). The market's Compound Annual Growth Rate (CAGR) of 5.10% from 2025 to 2033 indicates a significant expansion, with substantial opportunities across various segments. Self-monitoring blood glucose (SMBG) devices, including glucometers, test strips, and lancets, continue to dominate the market due to their widespread accessibility and affordability. However, the CGM segment is witnessing exponential growth, fueled by its enhanced accuracy, convenience, and ability to provide real-time glucose data, leading to improved diabetes management. The increasing demand for insulin delivery devices, such as insulin pumps, syringes, pens, and jet injectors, also contributes significantly to market expansion. Technological advancements, including the development of integrated devices and improved sensor technologies, are further propelling market growth. The market is geographically diverse, with North America and Europe currently holding the largest market share due to high diabetes prevalence and developed healthcare infrastructure. However, Asia Pacific is emerging as a high-growth region, driven by rising disposable incomes and increasing healthcare awareness. Market restraints include the high cost of advanced devices, particularly CGMs and insulin pumps, which can limit accessibility in low- and middle-income countries. Furthermore, the need for regular calibration and potential inaccuracies associated with some devices present challenges. Despite these restraints, the continuous development of more affordable and user-friendly devices, coupled with supportive government initiatives and rising awareness campaigns, are expected to mitigate these challenges and drive market expansion throughout the forecast period. Key players in the market, including Abbott, Roche, Dexcom, Medtronic, and Novo Nordisk, are heavily invested in research and development, further fueling innovation and market competition. This competitive landscape will continue to shape the market dynamics, leading to advancements in technology and more accessible and affordable diabetes care solutions. Recent developments include: March 2023: Abbott announced that the U.S. Food and Drug Administration cleared its FreeStyle Libre 2 and FreeStyle Libre 3 integrated continuous glucose monitoring system sensors for integration with automated insulin delivery (AID) systems. Abbott modified the sensors to enable integration with AID systems., January 2023: LifeScan announced that the peer-reviewed Journal of Diabetes Science and Technology published Improved Glycemic Control Using a Bluetooth Connected Blood Glucose Meter and a Mobile Diabetes App: Real-World Evidence From Over 144,000 People With Diabetes, detailing results from a retrospective analysis of real-world data from over 144,000 people with diabetes - one of the largest combined blood glucose meter and mobile diabetes app datasets ever published.. Notable trends are: The continuous glucose monitoring segment is expected to witness a healthy growth rate over the forecast period.

  10. Microsoft Data Science Capstone

    • kaggle.com
    zip
    Updated Jul 30, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nandvard (2018). Microsoft Data Science Capstone [Dataset]. https://www.kaggle.com/nandvard/microsoft-data-science-capstone
    Explore at:
    zip(503762 bytes)Available download formats
    Dataset updated
    Jul 30, 2018
    Authors
    nandvard
    Description

    The goal is to predict the rate of heart disease (per 100,000 individuals) across the United States at the county-level from other socioeconomic indicators. The data is compiled from a wide range of sources and made publicly available by the United States Department of Agriculture Economic Research Service (USDA ERS).

    There are 33 variables in this dataset. Each row in the dataset represents a United States county, and the dataset we are working with covers two particular years, denoted a, and b We don't provide a unique identifier for an individual county, just a row_id for each row.

    The variables in the dataset have names that of the form category_variable, where category is the high level category of the variable (e.g. econ or health). variable is what the specific column contains.

    We're trying to predict the variable heart_disease_mortality_per_100k (a positive integer) for each row of the test data set.

    Columns

    area — information about the county

    area_rucc — Rural-Urban Continuum Codes "form a classification scheme that distinguishes metropolitan counties by the population size of their metro area, and nonmetropolitan counties by degree of urbanization and adjacency to a metro area. The official Office of Management and Budget (OMB) metro and nonmetro categories have been subdivided into three metro and six nonmetro categories. Each county in the U.S. is assigned one of the 9 codes." (USDA Economic Research Service, https://www.ers.usda.gov/data-products/rural-urban-continuum-codes/)

    area_urban_influence — Urban Influence Codes "form a classification scheme that distinguishes metropolitan counties by population size of their metro area, and nonmetropolitan counties by size of the largest city or town and proximity to metro and micropolitan areas." (USDA Economic Research Service, https://www.ers.usda.gov/data-products/urban-influence-codes/)

    econ — economic indicators

    econ_economic_typology — County Typology Codes "classify all U.S. counties according to six mutually exclusive categories of economic dependence and six overlapping categories of policy-relevant themes. The economic dependence types include farming, mining, manufacturing, Federal/State government, recreation, and nonspecialized counties. The policy-relevant types include low education, low employment, persistent poverty, persistent child poverty, population loss, and retirement destination." (USDA Economic Research Service, https://www.ers.usda.gov/data-products/county-typology-codes.aspx)

    econ_pct_civilian_labor — Civilian labor force, annual average, as percent of population (Bureau of Labor Statistics, http://www.bls.gov/lau/)

    econ_pct_unemployment — Unemployment, annual average, as percent of population (Bureau of Labor Statistics, http://www.bls.gov/lau/)

    econ_pct_uninsured_adults — Percent of adults without health insurance (Bureau of Labor Statistics, http://www.bls.gov/lau/) econ_pct_uninsured_children — Percent of children without health insurance (Bureau of Labor Statistics, http://www.bls.gov/lau/)

    health — health indicators

    health_pct_adult_obesity — Percent of adults who meet clinical definition of obese (National Center for Chronic Disease Prevention and Health Promotion)

    health_pct_adult_smoking — Percent of adults who smoke (Behavioral Risk Factor Surveillance System)

    health_pct_diabetes — Percent of population with diabetes (National Center for Chronic Disease Prevention and Health Promotion, Division of Diabetes Translation)

    health_pct_low_birthweight — Percent of babies born with low birth weight (National Center for Health Statistics)

    health_pct_excessive_drinking — Percent of adult population that engages in excessive consumption of alcohol (Behavioral Risk Factor Surveillance System, )

    health_pct_physical_inacticity — Percent of adult population that is physically inactive (National Center for Chronic Disease Prevention and Health Promotion)

    health_air_pollution_particulate_matter — Fine particulate matter in µg/m³ (CDC WONDER, https://wonder.cdc.gov/wonder/help/pm.html)

    health_homicides_per_100k — Deaths by homicide per 100,000 population (National Center for Health Statistics)

    health_motor_vehicle_crash_deaths_per_100k — Deaths by motor vehicle crash per 100,000 population (National Center for Health Statistics)

    health_pop_per_dentist — Population per dentist (HRSA Area Resource File)

    health_pop_per_primary_care_physician — Population per Primary Care Physician (HRSA Area Resource File)

    demo — demographics information

    demo_pct_female — Percent of population that is female (US Census Population Estimates)

    demo_pct_below_18_years_of_age — Percent of population that is below 18 years of age (US Census Population Estimates)

    demo_pct_aged_65_years_and_older — Percent of population that is aged 65 years or older (US Census Population Estimates)

    dem...

  11. U.S. Adults Susceptible to Severe Covid-19

    • kaggle.com
    zip
    Updated Nov 7, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marília Prata (2020). U.S. Adults Susceptible to Severe Covid-19 [Dataset]. https://www.kaggle.com/mpwolke/cusersmarildownloads22365jpeg
    Explore at:
    zip(249873 bytes)Available download formats
    Dataset updated
    Nov 7, 2020
    Authors
    Marília Prata
    Description

    Context

    The most prevalent condition in the study is obesity, affecting just over 30 percent of Americans and it followed by diabetes which has a national prevalence of 11.2 percent. Chronic obstructive pulmonary disease (COPD) and cardiovascular disease have a prevalence of just under 7 percent while chronic kidney disease is at approximately 3 percent. The CDC stated that "while the estimated number of persons with any underlying medical condition was higher in population-dense metropolitan areas, overall prevalence was higher in rural nonmetropolitan areas". It also added that "the counties with the highest prevalences of any condition were concentrated in Southeastern states, particularly in Alabama, Arkansas, Kentucky, Louisiana, Mississippi, Tennessee, and West Virginia, as well as some counties in Oklahoma, South Dakota, Texas, and northern Michigan, among others".

    https://www.statista.com/chart/22365/prevalence-of-underlying-conditions-in-us-adults/

    Content

    Several studies have found that the risk of contracting severe Covid-19 that can result in hospitalization, ICU admission, mechanical ventilation or death increases with age as well as the presence of underlying health conditions. In the United States, the Centers for Disease Control and Prevention (CDC) recently released a study showing that a considerable share of the American population has some form of underlying health issue, placing them at risk from severe forms of the virus. The study's findings are based on the 2018 Behavioural Risk Factor Surveillance System (BRFSS) and U.S. Census population data and it determined that 40.7 percent of U.S. adults (aged 18 and over) have a pre-existing health condition.

    Acknowledgements

    Niall McCarthy, Data Journalist https://www.statista.com/chart/22365/prevalence-of-underlying-conditions-in-us-adults/

    Inspiration

    Covid-19

  12. Population share with overweight in the United States 2014-2029

    • statista.com
    Updated Nov 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2024). Population share with overweight in the United States 2014-2029 [Dataset]. https://www.statista.com/topics/8951/chronic-disease-prevention-in-the-us/
    Explore at:
    Dataset updated
    Nov 6, 2024
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    United States
    Description

    The share of the population with overweight in the United States was forecast to continuously increase between 2024 and 2029 by in total 1.6 percentage points. After the fifteenth consecutive increasing year, the overweight population share is estimated to reach 77.43 percent and therefore a new peak in 2029. Notably, the share of the population with overweight of was continuously increasing over the past years.Overweight is defined as a body mass index (BMI) of more than 25.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the share of the population with overweight in countries like Canada and Mexico.

  13. f

    Sub analysis of type 1 diabetes incidence rates by sex.

    • figshare.com
    xls
    Updated Jun 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Apoorva Gomber; Zachary J. Ward; Carlo Ross; Maira Owais; Carol Mita; Jennifer M. Yeh; Ché L. Reddy; Rifat Atun (2023). Sub analysis of type 1 diabetes incidence rates by sex. [Dataset]. http://doi.org/10.1371/journal.pgph.0001099.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 21, 2023
    Dataset provided by
    PLOS Global Public Health
    Authors
    Apoorva Gomber; Zachary J. Ward; Carlo Ross; Maira Owais; Carol Mita; Jennifer M. Yeh; Ché L. Reddy; Rifat Atun
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    *(Age-standardised incidence rates per 100,000 individuals per year with 95% confidence intervals. † For cells labeled as NA, 95% CIs could not be estimated as there was only 1 datapoint).

  14. b

    Year 6 prevalence of obesity (including severe obesity), 3 years data...

    • cityobservatory.birmingham.gov.uk
    csv, excel, geojson +1
    Updated Nov 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Year 6 prevalence of obesity (including severe obesity), 3 years data combined - Birmingham Wards [Dataset]. https://cityobservatory.birmingham.gov.uk/explore/dataset/year-6-prevalence-of-obesity-including-severe-obesity-3-years-data-combined-birmingham-wards/
    Explore at:
    geojson, json, excel, csvAvailable download formats
    Dataset updated
    Nov 3, 2025
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Area covered
    Birmingham
    Description

    Proportion of children aged 10 to 11 years classified as living with obesity. For population monitoring purposes, a child’s body mass index (BMI) is classed as overweight or obese where it is on or above the 85th centile or 95th centile, respectively, based on the British 1990 (UK90) growth reference data. The population monitoring cut offs for overweight and obesity are lower than the clinical cut offs (91st and 98th centiles for overweight and obesity) used to assess individual children; this is to capture children in the population in the clinical overweight or obesity BMI categories and those who are at high risk of moving into the clinical overweight or clinical obesity categories. This helps ensure that adequate services are planned and delivered for the whole population.

    Rationale There is concern about the rise of childhood obesity and the implications of obesity persisting into adulthood. The risk of obesity in adulthood and risk of future obesity-related ill health are greater as children get older. Studies tracking child obesity into adulthood have found that the probability of children who are overweight or living with obesity becoming overweight or obese adults increases with age[1,2,3]. The health consequences of childhood obesity include: increased blood lipids, glucose intolerance, Type 2 diabetes, hypertension, increases in liver enzymes associated with fatty liver, exacerbation of conditions such as asthma and psychological problems such as social isolation, low self-esteem, teasing and bullying.

    It is important to look at the prevalence of weight status across all weight/BMI categories to understand the whole picture and the movement of the population between categories over time.

    The National Institute of Health and Clinical Excellence have produced guidelines to tackle obesity in adults and children - http://guidance.nice.org.uk/CG43.

    1 Guo SS, Chumlea WC. Tracking of body mass index in children in relation to overweight in adulthood. The American Journal of Clinical Nutrition 1999;70(suppl): 145S-8S.

    2 Serdula MK, Ivery D, Coates RJ, Freedman DS, Williamson DF, Byers T. Do obese children become obese adults? A review of the literature. Preventative Medicine 1993;22:167-77.

    3 Starc G, Strel J. Tracking excess weight and obesity from childhood to young adulthood: a 12-year prospective cohort study in Slovenia. Public Health Nutrition 2011;14:49-55.

    Definition of numerator Number of children in year 6 (aged 10 to 11 years) with a valid height and weight measured by the NCMP with a BMI classified as living with obesity or severe obesity (BMI on or above 95th centile of the UK90 growth reference).

    Definition of denominator Number of children in year 6 (aged 10 to 11 years) with a valid height and weight measured by the NCMP.

    Caveats Data for local authorities may not match that published by NHS England which are based on the local authority of the school attended by the child or based on the local authority that submitted the data. There is a strong correlation between deprivation and child obesity prevalence and users of these data may wish to examine the pattern in their local area. Users may wish to produce thematic maps and charts showing local child obesity prevalence. When presenting data in charts or maps it is important, where possible, to consider the confidence intervals (CIs) around the figures. This analysis supersedes previously published data for small area geographies and historically published data should not be compared to the latest publication. Estimated data published in this fingertips tool is not comparable with previously published data due to changes in methods over the different years of production. These methods changes include; moving from estimated numbers at ward level to actual numbers; revision of geographical boundaries (including ward boundary changes and conversion from 2001 MSOA boundaries to 2011 boundaries); disclosure control methodology changes. The most recently published data applies the same methods across all years of data. There is the potential for error in the collection, collation and interpretation of the data (bias may be introduced due to poor response rates and selective opt out of children with a high BMI for age/sex which it is not possible to control for). There is not a good measure of response bias and the degree of selective opt out, but participation rates (the proportion of eligible school children who were measured) may provide a reasonable proxy; the higher the participation rate, the less chance there is for selective opt out, though this is not a perfect method of assessment. Participation rates for each local authority are available in the https://fingertips.phe.org.uk/profile/national-child-measurement-programme/data#page/4/gid/8000022/ of this profile.

  15. Trends in food insecurity for adults with cardiometabolic disease in the...

    • plos.figshare.com
    • figshare.com
    docx
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Seth A. Berkowitz; Theodore S. Z. Berkowitz; James B. Meigs; Deborah J. Wexler (2023). Trends in food insecurity for adults with cardiometabolic disease in the United States: 2005-2012 [Dataset]. http://doi.org/10.1371/journal.pone.0179172
    Explore at:
    docxAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Seth A. Berkowitz; Theodore S. Z. Berkowitz; James B. Meigs; Deborah J. Wexler
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    BackgroundFood insecurity, the uncertain ability to access adequate food, can limit adherence to dietary measures needed to prevent and manage cardiometabolic conditions. However, little is known about temporal trends in food insecurity among those with diet-sensitive cardiometabolic conditions.MethodsWe used data from the Continuous National Health and Nutrition Examination Survey (NHANES) 2005–2012, analyzed in 2015–2016, to calculate trends in age-standardized rates of food insecurity for those with and without the following diet-sensitive cardiometabolic conditions: diabetes mellitus, hypertension, coronary heart disease, congestive heart failure, and obesity.Results21,196 NHANES participants were included from 4 waves (4,408 in 2005–2006, 5,607 in 2007–2008, 5,934 in 2009–2010, and 5,247 in 2011–2012). 56.2% had at least one cardiometabolic condition, 24.4% had 2 or more, and 8.5% had 3 or more. The overall age-standardized rate of food insecurity doubled during the study period, from 9.06% in 2005–2006 to 10.82% in 2007–2008 to 15.22% in 2009–2010 to 18.33% in 2011–2012 (p for trend < .001). The average annual percentage change in food insecurity for those with a cardiometabolic condition during the study period was 13.0% (95% CI 7.5% to 18.6%), compared with 5.8% (95% CI 1.8% to 10.0%) for those without a cardiometabolic condition, (parallelism test p = .13). Comparing those with and without the condition, age-standardized rates of food insecurity were greater in participants with diabetes (19.5% vs. 11.5%, p < .0001), hypertension (14.1% vs. 11.1%, p = .0003), coronary heart disease (20.5% vs. 11.9%, p < .001), congestive heart failure (18.4% vs. 12.1%, p = .004), and obesity (14.3% vs. 11.1%, p < .001).ConclusionsFood insecurity doubled to historic highs from 2005–2012, particularly affecting those with diet-sensitive cardiometabolic conditions. Since adherence to specific dietary recommendations is a foundation of the prevention and treatment of cardiometabolic disease, these results have important implications for clinical management and public health.

  16. Transportation Dataset

    • kaggle.com
    zip
    Updated Jun 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Amit Zala (2025). Transportation Dataset [Dataset]. https://www.kaggle.com/datasets/amitzala/transportation-dataset
    Explore at:
    zip(27099597 bytes)Available download formats
    Dataset updated
    Jun 18, 2025
    Authors
    Amit Zala
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    DESCRIPTION This table contains data on the percent of residents aged 16 years and older mode of transportation to work for ...

    SUMMARY This table contains data on the percent of residents aged 16 years and older mode of transportation to work for California, its regions, counties, cities/towns, and census tracts. Data is from the U.S. Census Bureau, Decennial Census and American Community Survey. The table is part of a series of indicators in the Healthy Communities Data and Indicators Project of the Office of Health Equity. Commute trips to work represent 19% of travel miles in the United States. The predominant mode – the automobile - offers extraordinary personal mobility and independence, but it is also associated with health hazards, such as air pollution, motor vehicle crashes, pedestrian injuries and fatalities, and sedentary lifestyles. Automobile commuting has been linked to stress-related health problems. Active modes of transport – bicycling and walking alone and in combination with public transit – offer opportunities for physical activity, which is associated with lowering rates of heart disease and stroke, diabetes, colon and breast cancer, dementia and depression. Risk of injury and death in collisions are higher in urban areas with more concentrated vehicle and pedestrian activity. Bus and rail passengers have a lower risk of injury in collisions than motorcyclists, pedestrians, and bicyclists. Minority communities bear a disproportionate share of pedestrian-car fatalities; Native American male pedestrians experience four times the death rate Whites or Asian pedestrians, and African-Americans and Latinos experience twice the rate as Whites or Asians. More information about the data table and a data dictionary can be found in the About/Attachments section.

    ind_id - Indicator ID ind_definition - Definition of indicator in plain language reportyear - Year that the indicator was reported race_eth_code - numeric code for a race/ethnicity group race_eth_name - Name of race/ethnic group geotype - Type of geographic unit geotypevalue - Value of geographic unit geoname - Name of a geographic unit county_name - Name of county that geotype is in county_fips - FIPS code of the county that geotype is in region_name - MPO-based region name; see MPO_County list tab region_code - MPO-based region code; see MPO_County list tab mode - Mode of transportation short name mode_name - Mode of transportation long name pop_total - denominator pop_mode - numerator percent - Percent of Residents Mode of Transportation to Work,
    Population Aged 16 Years and Older LL_95CI_percent - The lower limit of 95% confidence interval UL_95CI_percent - The lower limit of 95% confidence interval percent_se - Standard error of the percent mode of transportation percent_rse - Relative standard error (se/value) expressed as a percent CA_decile - California decile CA_RR - Rate ratio to California rate version - Date/time stamp of a version of data

  17. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
CEICdata.com (2009). United States US: Diabetes Prevalence: % of Population Aged 20-79 [Dataset]. https://www.ceicdata.com/en/united-states/health-statistics/us-diabetes-prevalence--of-population-aged-2079

United States US: Diabetes Prevalence: % of Population Aged 20-79

Explore at:
Dataset updated
Mar 15, 2009
Dataset provided by
CEICdata.com
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Dec 1, 2017
Area covered
United States
Description

United States US: Diabetes Prevalence: % of Population Aged 20-79 data was reported at 10.790 % in 2017. United States US: Diabetes Prevalence: % of Population Aged 20-79 data is updated yearly, averaging 10.790 % from Dec 2017 (Median) to 2017, with 1 observations. United States US: Diabetes Prevalence: % of Population Aged 20-79 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Health Statistics. Diabetes prevalence refers to the percentage of people ages 20-79 who have type 1 or type 2 diabetes.; ; International Diabetes Federation, Diabetes Atlas.; Weighted average;

Search
Clear search
Close search
Google apps
Main menu