Facebook
TwitterThis table contains 2394 series, with data for years 1991 - 1991 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (1 items: Canada ...), Population group (19 items: Entire cohort; Income adequacy quintile 1 (lowest);Income adequacy quintile 2;Income adequacy quintile 3 ...), Age (14 items: At 25 years; At 30 years; At 40 years; At 35 years ...), Sex (3 items: Both sexes; Females; Males ...), Characteristics (3 items: Life expectancy; High 95% confidence interval; life expectancy; Low 95% confidence interval; life expectancy ...).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Live Oak. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Live Oak, the median income for all workers aged 15 years and older, regardless of work hours, was $55,656 for males and $38,659 for females.
These income figures highlight a substantial gender-based income gap in Live Oak. Women, regardless of work hours, earn 69 cents for each dollar earned by men. This significant gender pay gap, approximately 31%, underscores concerning gender-based income inequality in the city of Live Oak.
- Full-time workers, aged 15 years and older: In Live Oak, among full-time, year-round workers aged 15 years and older, males earned a median income of $59,760, while females earned $53,843, resulting in a 10% gender pay gap among full-time workers. This illustrates that women earn 90 cents for each dollar earned by men in full-time positions. While this gap shows a trend where women are inching closer to wage parity with men, it also exhibits a noticeable income difference for women working full-time in the city of Live Oak.Interestingly, when analyzing income across all roles, including non-full-time employment, the gender pay gap percentage was higher for women compared to men. It appears that full-time employment presents a more favorable income scenario for women compared to other employment patterns in Live Oak.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Live Oak median household income by race. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Maryland population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Maryland. The dataset can be utilized to understand the population distribution of Maryland by age. For example, using this dataset, we can identify the largest age group in Maryland.
Key observations
The largest age group in Maryland was for the group of age 35 to 39 years years with a population of 429,168 (6.95%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Maryland was the 80 to 84 years years with a population of 113,210 (1.83%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Maryland Population by Age. You can refer the same here
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Key Table Information.Table Title.Age and Sex.Table ID.ACSST1Y2024.S0101.Survey/Program.American Community Survey.Year.2024.Dataset.ACS 1-Year Estimates Subject Tables.Source.U.S. Census Bureau, 2024 American Community Survey, 1-Year Estimates.Dataset Universe.The dataset universe of the American Community Survey (ACS) is the U.S. resident population and housing. For more information about ACS residence rules, see the ACS Design and Methodology Report. Note that each table describes the specific universe of interest for that set of estimates..Methodology.Unit(s) of Observation.American Community Survey (ACS) data are collected from individuals living in housing units and group quarters, and about housing units whether occupied or vacant. For more information about ACS sampling and data collection, see the ACS Design and Methodology Report..Geography Coverage.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year.Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Sampling.The ACS consists of two separate samples: housing unit addresses and group quarters facilities. Independent housing unit address samples are selected for each county or county-equivalent in the U.S. and Puerto Rico, with sampling rates depending on a measure of size for the area. For more information on sampling in the ACS, see the Accuracy of the Data document..Confidentiality.The Census Bureau has modified or suppressed some estimates in ACS data products to protect respondents' confidentiality. Title 13 United States Code, Section 9, prohibits the Census Bureau from publishing results in which an individual's data can be identified. For more information on confidentiality protection in the ACS, see the Accuracy of the Data document..Technical Documentation/Methodology.Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables.Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Weights.ACS estimates are obtained from a raking ratio estimation procedure that results in the assignment of two sets of weights: a weight to each sample person record and a weight to each sample housing unit record. Estimates of person characteristics are based on the person weight. Estimates of family, household, and housing unit characteristics are based on the housing unit weight. For any given geographic area, a characteristic total is estimated by summing the weights assigned to the persons, households, families or housing units possessing the characteristic in the geographic area. For more information on weighting and estimation in the ACS, see the Accuracy of the Data document.Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and t...
Facebook
TwitterEstimated number of persons on July 1, by 5-year age groups and gender, and median age, for Canada, provinces and territories.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
NOTE: This dataset has been retired and marked as historical-only.
Weekly rates of COVID-19 cases, hospitalizations, and deaths among people living in Chicago by vaccination status and age.
Rates for fully vaccinated and unvaccinated begin the week ending April 3, 2021 when COVID-19 vaccines became widely available in Chicago. Rates for boosted begin the week ending October 23, 2021 after booster shots were recommended by the Centers for Disease Control and Prevention (CDC) for adults 65+ years old and adults in certain populations and high risk occupational and institutional settings who received Pfizer or Moderna for their primary series or anyone who received the Johnson & Johnson vaccine.
Chicago residency is based on home address, as reported in the Illinois Comprehensive Automated Immunization Registry Exchange (I-CARE) and Illinois National Electronic Disease Surveillance System (I-NEDSS).
Outcomes: • Cases: People with a positive molecular (PCR) or antigen COVID-19 test result from an FDA-authorized COVID-19 test that was reported into I-NEDSS. A person can become re-infected with SARS-CoV-2 over time and so may be counted more than once in this dataset. Cases are counted by week the test specimen was collected. • Hospitalizations: COVID-19 cases who are hospitalized due to a documented COVID-19 related illness or who are admitted for any reason within 14 days of a positive SARS-CoV-2 test. Hospitalizations are counted by week of hospital admission. • Deaths: COVID-19 cases who died from COVID-19-related health complications as determined by vital records or a public health investigation. Deaths are counted by week of death.
Vaccination status: • Fully vaccinated: Completion of primary series of a U.S. Food and Drug Administration (FDA)-authorized or approved COVID-19 vaccine at least 14 days prior to a positive test (with no other positive tests in the previous 45 days). • Boosted: Fully vaccinated with an additional or booster dose of any FDA-authorized or approved COVID-19 vaccine received at least 14 days prior to a positive test (with no other positive tests in the previous 45 days). • Unvaccinated: No evidence of having received a dose of an FDA-authorized or approved vaccine prior to a positive test.
CLARIFYING NOTE: Those who started but did not complete all recommended doses of an FDA-authorized or approved vaccine prior to a positive test (i.e., partially vaccinated) are excluded from this dataset.
Incidence rates for fully vaccinated but not boosted people (Vaccinated columns) are calculated as total fully vaccinated but not boosted with outcome divided by cumulative fully vaccinated but not boosted at the end of each week. Incidence rates for boosted (Boosted columns) are calculated as total boosted with outcome divided by cumulative boosted at the end of each week. Incidence rates for unvaccinated (Unvaccinated columns) are calculated as total unvaccinated with outcome divided by total population minus cumulative boosted, fully, and partially vaccinated at the end of each week. All rates are multiplied by 100,000.
Incidence rate ratios (IRRs) are calculated by dividing the weekly incidence rates among unvaccinated people by those among fully vaccinated but not boosted and boosted people.
Overall age-adjusted incidence rates and IRRs are standardized using the 2000 U.S. Census standard population.
Population totals are from U.S. Census Bureau American Community Survey 1-year estimates for 2019.
All data are provisional and subject to change. Information is updated as additional details are received and it is, in fact, very common for recent dates to be incomplete and to be updated as time goes on. This dataset reflects data known to CDPH at the time when the dataset is updated each week.
Numbers in this dataset may differ from other public sources due to when data are reported and how City of Chicago boundaries are defined.
For all datasets related to COVID-19, see https://data.cityofchic
Facebook
TwitterThis web map displays data from the voter registration database as the percent of registered voters by census tract in King County, Washington. The data for this web map is compiled from King County Elections voter registration data for the years 2013-2019. The total number of registered voters is based on the geo-location of the voter's registered address at the time of the general election for each year. The eligible voting population, age 18 and over, is based on the estimated population increase from the US Census Bureau and the Washington Office of Financial Management and was calculated as a projected 6 percent population increase for the years 2010-2013, 7 percent population increase for the years 2010-2014, 9 percent population increase for the years 2010-2015, 11 percent population increase for the years 2010-2016 & 2017, 14 percent population increase for the years 2010-2018 and 17 percent population increase for the years 2010-2019. The total population 18 and over in 2010 was 1,517,747 in King County, Washington. The percentage of registered voters represents the number of people who are registered to vote as compared to the eligible voting population, age 18 and over. The voter registration data by census tract was grouped into six percentage range estimates: 50% or below, 51-60%, 61-70%, 71-80%, 81-90% and 91% or above with an overall 84 percent registration rate. In the map the lighter colors represent a relatively low percentage range of voter registration and the darker colors represent a relatively high percentage range of voter registration. PDF maps of these data can be viewed at King County Elections downloadable voter registration maps. The 2019 General Election Voter Turnout layer is voter turnout data by historical precinct boundaries for the corresponding year. The data is grouped into six percentage ranges: 0-30%, 31-40%, 41-50% 51-60%, 61-70%, and 71-100%. The lighter colors represent lower turnout and the darker colors represent higher turnout. The King County Demographics Layer is census data for language, income, poverty, race and ethnicity at the census tract level and is based on the 2010-2014 American Community Survey 5 year Average provided by the United States Census Bureau. Since the data is based on a survey, they are considered to be estimates and should be used with that understanding. The demographic data sets were developed and are maintained by King County Staff to support the King County Equity and Social Justice program. Other data for this map is located in the King County GIS Spatial Data Catalog, where data is managed by the King County GIS Center, a multi-department enterprise GIS in King County, Washington. King County has nearly 1.3 million registered voters and is the largest jurisdiction in the United States to conduct all elections by mail. In the map you can view the percent of registered voters by census tract, compare registration within political districts, compare registration and demographic data, verify your voter registration or register to vote through a link to the VoteWA, Washington State Online Voter Registration web page.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the data for the Maryland population pyramid, which represents the Maryland population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Maryland Population by Age. You can refer the same here
Facebook
TwitterNumber of deaths and mortality rates, by age group, sex, and place of residence, 1991 to most recent year.
Facebook
TwitterThis table contains mortality indicators by sex for Canada and all provinces except Prince Edward Island. These indicators are derived from three-year complete life tables. Mortality indicators derived from single-year life tables are also available (table 13-10-0837). For Prince Edward Island, Yukon, the Northwest Territories and Nunavut, mortality indicators derived from three-year abridged life tables are available (table 13-10-0140).
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Coronavirus (COVID-19) vaccination rates for people aged 18 years and over in England. Estimates by socio-demographic characteristic, region and local authority.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Key Table Information.Table Title.Selected Population Profile in the United States.Table ID.ACSSPP1Y2024.S0201.Survey/Program.American Community Survey.Year.2024.Dataset.ACS 1-Year Estimates Selected Population Profiles.Source.U.S. Census Bureau, 2024 American Community Survey, 1-Year Estimates.Dataset Universe.The dataset universe of the American Community Survey (ACS) is the U.S. resident population and housing. For more information about ACS residence rules, see the ACS Design and Methodology Report. Note that each table describes the specific universe of interest for that set of estimates..Methodology.Unit(s) of Observation.American Community Survey (ACS) data are collected from individuals living in housing units and group quarters, and about housing units whether occupied or vacant. For more information about ACS sampling and data collection, see the ACS Design and Methodology Report..Geography Coverage.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year.Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Sampling.The ACS consists of two separate samples: housing unit addresses and group quarters facilities. Independent housing unit address samples are selected for each county or county-equivalent in the U.S. and Puerto Rico, with sampling rates depending on a measure of size for the area. For more information on sampling in the ACS, see the Accuracy of the Data document..Confidentiality.The Census Bureau has modified or suppressed some estimates in ACS data products to protect respondents' confidentiality. Title 13 United States Code, Section 9, prohibits the Census Bureau from publishing results in which an individual's data can be identified. For more information on confidentiality protection in the ACS, see the Accuracy of the Data document..Technical Documentation/Methodology.Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables.Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Weights.ACS estimates are obtained from a raking ratio estimation procedure that results in the assignment of two sets of weights: a weight to each sample person record and a weight to each sample housing unit record. Estimates of person characteristics are based on the person weight. Estimates of family, household, and housing unit characteristics are based on the housing unit weight. For any given geographic area, a characteristic total is estimated by summing the weights assigned to the persons, households, families or housing units possessing the characteristic in the geographic area. For more information on weighting and estimation in the ACS, see the Accuracy of the Data document.Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, ci...
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
National and subnational mid-year population estimates for the UK and its constituent countries by administrative area, age and sex (including components of population change, median age and population density).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Time series data for the statistic Poverty_Headcount_Ratio_at_1.90USD_a_Day and country Estonia. Indicator Definition:Poverty headcount ratio at $1.90 a day is the percentage of the population living on less than $1.90 a day at 2011 international prices. As a result of revisions in PPP exchange rates, poverty rates for individual countries cannot be compared with poverty rates reported in earlier editions.The statistic "Poverty Headcount Ratio at 1.90USD a Day" stands at 0.3 percent as of 12/31/2023, the lowest value since 12/31/1999. Regarding the One-Year-Change of the series, the current value constitutes a decrease of -0.2 percentage points compared to the value the year prior.The 1 year change in percentage points is -0.2.The 3 year change in percentage points is -0.1.The 5 year change in percentage points is -0.1.The 10 year change in percentage points is -0.8.The Serie's long term average value is 1.12 percent. It's latest available value, on 12/31/2023, is 0.822 percentage points lower, compared to it's long term average value.The Serie's change in percentage points from it's minimum value, on 12/31/1998, to it's latest available value, on 12/31/2023, is +0.3.The Serie's change in percentage points from it's maximum value, on 12/31/2003, to it's latest available value, on 12/31/2023, is -3.30.
Facebook
TwitterExtreme poverty is defined as living below the International Poverty Line, which is $1.90 per day in 2011 prices and $2.15 per day in 2017 prices.
The International Poverty Line is set by the World Bank to be representative of national definitions of poverty adopted in the world’s poorest countries. In addition to this very low poverty line the World Bank also sets two higher global poverty lines for measuring poverty: one that reflects the definitions of poverty adopted in lower-middle income countries, and one that reflects the definitions adopted in upper-middle income countries. Within the updated methodology, these lines are set at $3.65 and $6.85 in 2017 international-$, replacing the previous $3.20 and $5.50 lines expressed in 2011 international-$.
International dollars (int.-$) are a hypothetical currency that is used for this. It is the result of adjusting both for inflation within countries over time and for differences in the cost of living between countries. The goal of international-$ is to provide a unit whose purchasing power is held fixed over time and across countries, such that one int.-$ can buy the same quantity and quality of goods and services no matter where or when it is spent. The price level in the US is used as the benchmark – or ‘numeraire’ – so that one 2017 int.-$ is defined as the value of goods and services that one US dollar would buy in the US in 2017.
Data Source: From $1.90 to $2.15 a day: the updated International Poverty Line Thumbnail Image: Towfiqu barbhuiya's Unspash
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Sumter population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Sumter across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Sumter was 42,766, a 0.07% increase year-by-year from 2022. Previously, in 2022, Sumter population was 42,734, a decline of 1.03% compared to a population of 43,180 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Sumter increased by 2,477. In this period, the peak population was 43,420 in the year 2020. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Sumter Population by Year. You can refer the same here
Facebook
TwitterThe New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.
Facebook
TwitterOn 1 April 2025 responsibility for fire and rescue transferred from the Home Office to the Ministry of Housing, Communities and Local Government.
This information covers fires, false alarms and other incidents attended by fire crews, and the statistics include the numbers of incidents, fires, fatalities and casualties as well as information on response times to fires. The Ministry of Housing, Communities and Local Government (MHCLG) also collect information on the workforce, fire prevention work, health and safety and firefighter pensions. All data tables on fire statistics are below.
MHCLG has responsibility for fire services in England. The vast majority of data tables produced by the Ministry of Housing, Communities and Local Government are for England but some (0101, 0103, 0201, 0501, 1401) tables are for Great Britain split by nation. In the past the Department for Communities and Local Government (who previously had responsibility for fire services in England) produced data tables for Great Britain and at times the UK. Similar information for devolved administrations are available at https://www.firescotland.gov.uk/about/statistics/">Scotland: Fire and Rescue Statistics, https://statswales.gov.wales/Catalogue/Community-Safety-and-Social-Inclusion/Community-Safety">Wales: Community safety and https://www.nifrs.org/home/about-us/publications/">Northern Ireland: Fire and Rescue Statistics.
If you use assistive technology (for example, a screen reader) and need a version of any of these documents in a more accessible format, please email alternativeformats@communities.gov.uk. Please tell us what format you need. It will help us if you say what assistive technology you use.
Fire statistics guidance
Fire statistics incident level datasets
https://assets.publishing.service.gov.uk/media/68f0f810e8e4040c38a3cf96/FIRE0101.xlsx">FIRE0101: Incidents attended by fire and rescue services by nation and population (MS Excel Spreadsheet, 143 KB) Previous FIRE0101 tables
https://assets.publishing.service.gov.uk/media/68f0ffd528f6872f1663ef77/FIRE0102.xlsx">FIRE0102: Incidents attended by fire and rescue services in England, by incident type and fire and rescue authority (MS Excel Spreadsheet, 2.12 MB) Previous FIRE0102 tables
https://assets.publishing.service.gov.uk/media/68f20a3e06e6515f7914c71c/FIRE0103.xlsx">FIRE0103: Fires attended by fire and rescue services by nation and population (MS Excel Spreadsheet, 197 KB) Previous FIRE0103 tables
https://assets.publishing.service.gov.uk/media/68f20a552f0fc56403a3cfef/FIRE0104.xlsx">FIRE0104: Fire false alarms by reason for false alarm, England (MS Excel Spreadsheet, 443 KB) Previous FIRE0104 tables
https://assets.publishing.service.gov.uk/media/68f100492f0fc56403a3cf94/FIRE0201.xlsx">FIRE0201: Dwelling fires attended by fire and rescue services by motive, population and nation (MS Excel Spreadsheet, 192 KB) Previous FIRE0201 tables
<span class="gem
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The 1993 Turkish Demographic and Health Survey (TDHS) is a nationally representative survey of ever-married women less than 50 years old. The survey was designed to provide information on fertility levels and trends, infant and child mortality, family planning, and maternal and child health. The TDHS was conducted by the Hacettepe University Institute of Population Studies under a subcontract through an agreement between the General Directorate of Mother and Child Health and Family Planning, Ministry of Health and Macro International Inc. of Calverton, Maryland. Fieldwork was conducted from August to October 1993. Interviews were carried out in 8,619 households and with 6,519 women. The Turkish Demographic and Health Survey (TDHS) is a national sample survey of ever-married women of reproductive ages, designed to collect data on fertility, marriage patterns, family planning, early age mortality, socioeconomic characteristics, breastfeeding, immunisation of children, treatment of children during episodes of illness, and nutritional status of women and children. The TDHS, as part of the international DHS project, is also the latest survey in a series of national-level population and health surveys in Turkey, which have been conducted by the Institute of Population Studies, Haeettepe University (HIPS). More specifically, the objectives of the TDHS are to: Collect data at the national level that will allow the calculation of demographic rates, particularly fertility and childhood mortality rates; Analyse the direct and indirect factors that determine levels and trends in fertility and childhood mortality; Measure the level of contraceptive knowledge and practice by method, region, and urban- rural residence; Collect data on mother and child health, including immunisations, prevalence and treatment of diarrhoea, acute respiratory infections among children under five, antenatal care, assistance at delivery, and breastfeeding; Measure the nutritional status of children under five and of their mothers using anthropometric measurements. The TDHS information is intended to assist policy makers and administrators in evaluating existing programs and in designing new strategies for improving family planning and health services in Turkey. MAIN RESULTS Fertility in Turkey is continuing to decline. If Turkish women maintain current fertility rates during their reproductive years, they can expect to have all average of 2.7 children by the end of their reproductive years. The highest fertility rate is observed for the age group 20-24. There are marked regional differences in fertility rates, ranging from 4.4 children per woman in the East to 2.0 children per woman in the West. Fertility also varies widely by urban-rural residence and by education level. A woman living in rural areas will have almost one child more than a woman living in an urban area. Women who have no education have almost one child more than women who have a primary-level education and 2.5 children more than women with secondary-level education. The first requirement of success ill family planning is the knowledge of family planning methods. Knowledge of any method is almost universal among Turkish women and almost all those who know a method also know the source of the method. Eighty percent of currently married women have used a method sometime in their life. One third of currently married women report ever using the IUD. Overall, 63 percent of currently married women are currently using a method. The majority of these women are modern method users (35 percent), but a very substantial proportion use traditional methods (28 percent). the IUD is the most commonly used modern method (I 9 percent), allowed by the condom (7 percent) and the pill (5 percent). Regional differences are substantial. The level of current use is 42 percent in tile East, 72 percent in tile West and more than 60 percent in tile other three regions. "File common complaints about tile methods are side effects and health concerns; these are especially prevalent for the pill and IUD. One of the major child health indicators is immunisation coverage. Among children age 12-23 months, the coverage rates for BCG and the first two doses of DPT and polio were about 90 percent, with most of the children receiving those vaccines before age one. The results indicate that 65 percent of the children had received all vaccinations at some time before the survey. On a regional basis, coverage is significantly lower in the Eastern region (41 percent), followed by the Northern and Central regions (61 percent and 65 percent, respectively). Acute respiratory infections (ARI) and diarrhea are the two most prevalent diseases of children under age five in Turkey. In the two weeks preceding the survey, the prevalence of ARI was 12 percent and the prevalence of diarrhea was 25 percent for children under age five. Among children with diarrhea 56 percent were given more fluids than usual. Breastfeeding in Turkey is widespread. Almost all Turkish children (95 percent) are breastfed for some period of time. The median duration of breastfeeding is 12 months, but supplementary foods and liquids are introduced at an early age. One-third of children are being given supplementary food as early as one month of age and by the age of 2-3 months, half of the children are already being given supplementary foods or liquids. By age five, almost one-filth of children arc stunted (short for their age), compared to an international reference population. Stunting is more prevalent in rural areas, in the East, among children of mothers with little or no education, among children who are of higher birth order, and among those born less than 24 months after a prior birth. Overall, wasting is not a problem. Two percent of children are wasted (thin for their height), and I I percent of children under five are underweight for their age. The survey results show that obesity is d problem among mothers. According to Body Mass Index (BMI) calculations, 51 percent of mothers are overweight, of which 19 percent are obese.
Facebook
TwitterThe Integrated Living Conditions Survey (ILCS), conducted annually by the NSS National Statistical Service of the Republic of Armenia, formed the basis for monitoring living conditions in Armenia. The ILCS is a universally recognized best-practice survey for collecting data to inform about the living standards of households. The ILCS comprises comprehensive and valuable data on the welfare of households and separate individuals which gives the NSS an opportunity to provide the public with up to date information on the population’s income, expenditures, the level of poverty and the other changes in living standards on an annual basis.
Urban and rural communities
Sample survey data [ssd]
During the 2001-2003 surveys two-stage random sample was used; the first stage covered the selection of settlements - cities and villages, while the second stage was focused on the selection of households in these settlements. The surveys were conducted on the principle of monthly rotation of households by clusters (sample units). In 2002 and 2003 the number of households was 387 with the sample covering 14 cities and 30 villages in 2002 and 17 cities and 20 villages in 2003.
During the 2004-2006 surveys the sampling frame for the ILCS was built using the database of addresses for the 2001 Population Census; the database was developed with the World Bank technical assistance. The database of addresses of all households in Armenia was divided into 48 strata including 12 communities of Yerevan city. The households from other regions (marzes) were grouped according to the following three categories: big towns with 15,000 and more population; villages, and other towns. Big towns formed 16 strata (the only exception was the Vayots Dzor marz where there are no big towns). The villages and other towns formed 10 strata each. According to this division, a random, two-step sample stratified at marz level was developed. All marzes, as well as all urban and rural settlements were included in the sample population according to the share of population residing in those settlements as percent to the total population in the country. In the first step, the settlements, i.e. primary sample units, were selected: 43 towns out of 48 or 90 percent of all towns in Armenia were surveyed during the year; also 216 villages out of 951 or 23 percent of all villages in the country were covered by the survey. In the second step, the respondent households were selected: 6,816 households (5,088 from urban and 1,728 from rural settlements). As a result, for the first time since 1996 survey data were representative at the marz level.
During the 2007-2012 surveys the sampling frame for ILCS was designed according to the database of addresses for the 2001 Population Census, which was developed with the World Bank technical assistance. The sample consisted of two parts: core sample and oversample.
1) For the creation of core sample, the sample frame (database of addresses of all households in Armenia) was divided into 48 strata including 12 communities of Yerevan city. The households from other regions (marzes) were grouped according to three categories: large towns (with population of 15000 and higher), villages and other towns. Large towns formed by 16 groups (strata), while the villages and towns formed by 10 strata each. According to that division, a random, two-step sample stratified at the marz level was developed. All marzes, as well as all urban and rural settlements were included in the sample population according to the share of households residing in those settlements as percent to the total households in the country. In the first step, using the PPS method the enumeration units (i.e., primary sample units to be surveyed during the year) were selected. 2007 sample includes 48 urban and 18 rural enumeration areas per month. 2) The oversample was drawn from the list of villages included in MCA-Armenia Rural Roads Rehabilitation Project. The enumeration areas of villages that were already in the core sample were excluded from that list. From the remaining enumeration areas 18 enumeration areas were selected per month. Thus, the rural sample size was doubled. 3) After merging the core sample and oversample, the survey households were selected in the second step. 656 households were surveyed per month, from which 368 from urban and 288 from rural settlements. Each month 82 interviewers had conducted field work, and their workload included 8 households per month. In 2007 number of surveyed households was 7,872 (4,416 from urban and 3,456 from rural areas).
For the survey 2013 the sample frame for ILCS was designed in accordance with the database of addresses of all private households in the country developed on basis of the 2001 Population Census results, with the technical assistance of the World Bank. The method of systematic representative probability sampling was used to frame the sample. For the purpose of drawing the sample, the sample frame was divided into 32 strata including 12 communities of Yerevan City (currently, the administrative districts). According to this division, a two-tier sample was drawn stratified by regions and by Yerevan. All regions and Yerevan, as well as all urban and rural communities were included in the sample in accordance to the shares of their resident households within the total number of households in the country. In the first round, enumeration areas - that is primary sample units to be surveyed during the year - were selected. The ILCS 2013 sample included 32 enumeration areas in urban and 16 enumeration areas in rural communities per month. The households to be surveyed were selected in the second round. A total of 432 households were surveyed per month, of which 279 and 153 households from urban and rural communities, respectively. Every month 48 interviewers went on field work with a workload of 9 households per month.
The sample frame for 2014-2016 was designed in accordance with the database of addresses of all private households in the country developed on basis of the 2011 Population Census results, with the technical assistance of the World Bank. The method of systematic representative probability sampling was used to frame the sample.
For drawing the sample, the sample frame was divided into 32 strata including 12 communities of Yerevan City (currently, the administrative districts). According to this division, a two-tier sample was drawn stratified by regions and by Yerevan. All regions and Yerevan, as well as all urban and rural communities were included in the sample in accordance to the shares of their resident households within the total number of households in the country. In the first round, enumeration areas - that is primary sample units to be surveyed during the year - were selected. The ILCS 2014 sample included 30 enumeration areas in urban and 18 enumeration areas in rural communities per month.
The method of representative probability sampling was used to frame the sample. At regional level, all communities were grouped into two categories - towns and villages. According to this division, a two-tier sample was drawn stratified by regions and by Yerevan. All regions and Yerevan, as well as all rural and urban communities were included in the sample in accordance to the shares of their resident households within the total number of households in the country. In the first round, enumeration districts - that is primary sample units to be surveyed during the year - were selected. The ILCS 2015 sample included 30 enumeration districts in urban and 18 enumeration districts in rural communities per month.
Face-to-face [f2f]
The Questionnaire is filled in by the interviewer during the least five visits to households per month. During face-to-face interviews with the household head or another knowledgeable adult member, the interviewer collects information on the composition and housing conditions of the household, the employment status, educational level and health condition of the members, availability and use of land, livestock, and agricultural machinery, monetary and commodity flows between households, and other information.
The 2016 survey questionnaire had the following sections: (1) "List of Household Members", (2) "Migration", (3) "Housing and Dwelling Conditions", (4) "Employment", (5) "Education", (6) "Agriculture", (7) "Food Production", (8) "Monetary and Commodity Flows between Households", (9) "Health (General) and Healthcare", (10) "Debts", (11) "Subjective Assessment of Living Conditions", (12) "Provision of Services", (13) "Social Assistance", (14) "Households as Employers for Service Personnel", and (15) "Household Monthly Consumption of Energy Resources".
The Diary is completed directly by the household for one month. Every day the household would record all its expenditures on food, non-food products and services, also giving a detailed description of such purchases; e.g. for food products the name, quantity, cost, and place of purchase of the product is recorded. Besides, the household records its consumption of food products received and used from its own land and livestock, as well as from other sources (e.g. gifts, humanitarian aid). Non-food products and services purchased or received for free are also recorded in the diary. Then, the household records its income received during the month. At the end of the month, information on rarely used food products, durable goods and ceremonies is recorded, as well. The records in the diary are verified by the interviewer in the course of 5
Facebook
TwitterThis table contains 2394 series, with data for years 1991 - 1991 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (1 items: Canada ...), Population group (19 items: Entire cohort; Income adequacy quintile 1 (lowest);Income adequacy quintile 2;Income adequacy quintile 3 ...), Age (14 items: At 25 years; At 30 years; At 40 years; At 35 years ...), Sex (3 items: Both sexes; Females; Males ...), Characteristics (3 items: Life expectancy; High 95% confidence interval; life expectancy; Low 95% confidence interval; life expectancy ...).