71 datasets found
  1. T

    Vital Signs: Life Expectancy – by ZIP Code

    • data.bayareametro.gov
    application/rdfxml +5
    Updated Mar 22, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of California, Department of Health: Death Records (2017). Vital Signs: Life Expectancy – by ZIP Code [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Life-Expectancy-by-ZIP-Code/xym8-u3kc
    Explore at:
    tsv, json, application/rdfxml, xml, csv, application/rssxmlAvailable download formats
    Dataset updated
    Mar 22, 2017
    Dataset authored and provided by
    State of California, Department of Health: Death Records
    Description

    VITAL SIGNS INDICATOR Life Expectancy (EQ6)

    FULL MEASURE NAME Life Expectancy

    LAST UPDATED April 2017

    DESCRIPTION Life expectancy refers to the average number of years a newborn is expected to live if mortality patterns remain the same. The measure reflects the mortality rate across a population for a point in time.

    DATA SOURCE State of California, Department of Health: Death Records (1990-2013) No link

    California Department of Finance: Population Estimates Annual Intercensal Population Estimates (1990-2010) Table P-2: County Population by Age (2010-2013) http://www.dof.ca.gov/Forecasting/Demographics/Estimates/

    U.S. Census Bureau: Decennial Census ZCTA Population (2000-2010) http://factfinder.census.gov

    U.S. Census Bureau: American Community Survey 5-Year Population Estimates (2013) http://factfinder.census.gov

    CONTACT INFORMATION vitalsigns.info@mtc.ca.gov

    METHODOLOGY NOTES (across all datasets for this indicator) Life expectancy is commonly used as a measure of the health of a population. Life expectancy does not reflect how long any given individual is expected to live; rather, it is an artificial measure that captures an aspect of the mortality rates across a population that can be compared across time and populations. More information about the determinants of life expectancy that may lead to differences in life expectancy between neighborhoods can be found in the Bay Area Regional Health Inequities Initiative (BARHII) Health Inequities in the Bay Area report at http://www.barhii.org/wp-content/uploads/2015/09/barhii_hiba.pdf. Vital Signs measures life expectancy at birth (as opposed to cohort life expectancy). A statistical model was used to estimate life expectancy for Bay Area counties and ZIP Codes based on current life tables which require both age and mortality data. A life table is a table which shows, for each age, the survivorship of a people from a certain population.

    Current life tables were created using death records and population estimates by age. The California Department of Public Health provided death records based on the California death certificate information. Records include age at death and residential ZIP Code. Single-year age population estimates at the regional- and county-level comes from the California Department of Finance population estimates and projections for ages 0-100+. Population estimates for ages 100 and over are aggregated to a single age interval. Using this data, death rates in a population within age groups for a given year are computed to form unabridged life tables (as opposed to abridged life tables). To calculate life expectancy, the probability of dying between the jth and (j+1)st birthday is assumed uniform after age 1. Special consideration is taken to account for infant mortality.

    For the ZIP Code-level life expectancy calculation, it is assumed that postal ZIP Codes share the same boundaries as ZIP Code Census Tabulation Areas (ZCTAs). More information on the relationship between ZIP Codes and ZCTAs can be found at http://www.census.gov/geo/reference/zctas.html. ZIP Code-level data uses three years of mortality data to make robust estimates due to small sample size. Year 2013 ZIP Code life expectancy estimates reflects death records from 2011 through 2013. 2013 is the last year with available mortality data. Death records for ZIP Codes with zero population (like those associated with P.O. Boxes) were assigned to the nearest ZIP Code with population. ZIP Code population for 2000 estimates comes from the Decennial Census. ZIP Code population for 2013 estimates are from the American Community Survey (5-Year Average). ACS estimates are adjusted using Decennial Census data for more accurate population estimates. An adjustment factor was calculated using the ratio between the 2010 Decennial Census population estimates and the 2012 ACS 5-Year (with middle year 2010) population estimates. This adjustment factor is particularly important for ZCTAs with high homeless population (not living in group quarters) where the ACS may underestimate the ZCTA population and therefore underestimate the life expectancy. The ACS provides ZIP Code population by age in five-year age intervals. Single-year age population estimates were calculated by distributing population within an age interval to single-year ages using the county distribution. Counties were assigned to ZIP Codes based on majority land-area.

    ZIP Codes in the Bay Area vary in population from over 10,000 residents to less than 20 residents. Traditional life expectancy estimation (like the one used for the regional- and county-level Vital Signs estimates) cannot be used because they are highly inaccurate for small populations and may result in over/underestimation of life expectancy. To avoid inaccurate estimates, ZIP Codes with populations of less than 5,000 were aggregated with neighboring ZIP Codes until the merged areas had a population of more than 5,000. ZIP Code 94103, representing Treasure Island, was dropped from the dataset due to its small population and having no bordering ZIP Codes. In this way, the original 305 Bay Area ZIP Codes were reduced to 217 ZIP Code areas for 2013 estimates. Next, a form of Bayesian random-effects analysis was used which established a prior distribution of the probability of death at each age using the regional distribution. This prior is used to shore up the life expectancy calculations where data were sparse.

  2. O

    COVID-19 case rate per 100,000 population and percent test positivity in the...

    • data.ct.gov
    • catalog.data.gov
    application/rdfxml +5
    Updated Oct 22, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Public Health (2020). COVID-19 case rate per 100,000 population and percent test positivity in the last 14 days by town - ARCHIVE [Dataset]. https://data.ct.gov/Health-and-Human-Services/COVID-19-case-rate-per-100-000-population-and-perc/hree-nys2
    Explore at:
    application/rssxml, xml, csv, json, tsv, application/rdfxmlAvailable download formats
    Dataset updated
    Oct 22, 2020
    Dataset authored and provided by
    Department of Public Health
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve.

    The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj.

    The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 .

    The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 .

    The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed.

    This dataset includes a count and rate per 100,000 population for COVID-19 cases, a count of COVID-19 molecular diagnostic tests, and a percent positivity rate for tests among people living in community settings for the previous two-week period. Dates are based on date of specimen collection (cases and positivity).

    A person is considered a new case only upon their first COVID-19 testing result because a case is defined as an instance or bout of illness. If they are tested again subsequently and are still positive, it still counts toward the test positivity metric but they are not considered another case.

    Percent positivity is calculated as the number of positive tests among community residents conducted during the 14 days divided by the total number of positive and negative tests among community residents during the same period. If someone was tested more than once during that 14 day period, then those multiple test results (regardless of whether they were positive or negative) are included in the calculation.

    These case and test counts do not include cases or tests among people residing in congregate settings, such as nursing homes, assisted living facilities, or correctional facilities.

    These data are updated weekly and reflect the previous two full Sunday-Saturday (MMWR) weeks (https://wwwn.cdc.gov/nndss/document/MMWR_week_overview.pdf).

    DPH note about change from 7-day to 14-day metrics: Prior to 10/15/2020, these metrics were calculated using a 7-day average rather than a 14-day average. The 7-day metrics are no longer being updated as of 10/15/2020 but the archived dataset can be accessed here: https://data.ct.gov/Health-and-Human-Services/COVID-19-case-rate-per-100-000-population-and-perc/s22x-83rd

    As you know, we are learning more about COVID-19 all the time, including the best ways to measure COVID-19 activity in our communities. CT DPH has decided to shift to 14-day rates because these are more stable, particularly at the town level, as compared to 7-day rates. In addition, since the school indicators were initially published by DPH last summer, CDC has recommended 14-day rates and other states (e.g., Massachusetts) have started to implement 14-day metrics for monitoring COVID transmission as well.

    With respect to geography, we also have learned that many people are looking at the town-level data to inform decision making, despite emphasis on the county-level metrics in the published addenda. This is understandable as there has been variation within counties in COVID-19 activity (for example, rates that are higher in one town than in most other towns in the county).

    Additional notes: As of 11/5/2020, CT DPH has added antigen testing for SARS-CoV-2 to reported test counts in this dataset. The tests included in this dataset include both molecular and antigen datasets. Molecular tests reported include polymerase chain reaction (PCR) and nucleic acid amplicfication (NAAT) tests.

    The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used.

    Data suppression is applied when the rate is <5 cases per 100,000 or if there are <5 cases within the town. Information on why data suppression rules are applied can be found online here: https://www.cdc.gov/cancer/uscs/technical_notes/stat_methods/suppression.htm

  3. T

    Vital Signs: Life Expectancy – Bay Area

    • data.bayareametro.gov
    application/rdfxml +5
    Updated Mar 22, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of California, Department of Health: Death Records (2017). Vital Signs: Life Expectancy – Bay Area [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Life-Expectancy-Bay-Area/emjt-svg9
    Explore at:
    xml, csv, tsv, application/rssxml, json, application/rdfxmlAvailable download formats
    Dataset updated
    Mar 22, 2017
    Dataset authored and provided by
    State of California, Department of Health: Death Records
    Area covered
    San Francisco Bay Area
    Description

    VITAL SIGNS INDICATOR Life Expectancy (EQ6)

    FULL MEASURE NAME Life Expectancy

    LAST UPDATED April 2017

    DESCRIPTION Life expectancy refers to the average number of years a newborn is expected to live if mortality patterns remain the same. The measure reflects the mortality rate across a population for a point in time.

    DATA SOURCE State of California, Department of Health: Death Records (1990-2013) No link

    California Department of Finance: Population Estimates Annual Intercensal Population Estimates (1990-2010) Table P-2: County Population by Age (2010-2013) http://www.dof.ca.gov/Forecasting/Demographics/Estimates/

    CONTACT INFORMATION vitalsigns.info@mtc.ca.gov

    METHODOLOGY NOTES (across all datasets for this indicator) Life expectancy is commonly used as a measure of the health of a population. Life expectancy does not reflect how long any given individual is expected to live; rather, it is an artificial measure that captures an aspect of the mortality rates across a population. Vital Signs measures life expectancy at birth (as opposed to cohort life expectancy). A statistical model was used to estimate life expectancy for Bay Area counties and Zip codes based on current life tables which require both age and mortality data. A life table is a table which shows, for each age, the survivorship of a people from a certain population.

    Current life tables were created using death records and population estimates by age. The California Department of Public Health provided death records based on the California death certificate information. Records include age at death and residential Zip code. Single-year age population estimates at the regional- and county-level comes from the California Department of Finance population estimates and projections for ages 0-100+. Population estimates for ages 100 and over are aggregated to a single age interval. Using this data, death rates in a population within age groups for a given year are computed to form unabridged life tables (as opposed to abridged life tables). To calculate life expectancy, the probability of dying between the jth and (j+1)st birthday is assumed uniform after age 1. Special consideration is taken to account for infant mortality. For the Zip code-level life expectancy calculation, it is assumed that postal Zip codes share the same boundaries as Zip Code Census Tabulation Areas (ZCTAs). More information on the relationship between Zip codes and ZCTAs can be found at https://www.census.gov/geo/reference/zctas.html. Zip code-level data uses three years of mortality data to make robust estimates due to small sample size. Year 2013 Zip code life expectancy estimates reflects death records from 2011 through 2013. 2013 is the last year with available mortality data. Death records for Zip codes with zero population (like those associated with P.O. Boxes) were assigned to the nearest Zip code with population. Zip code population for 2000 estimates comes from the Decennial Census. Zip code population for 2013 estimates are from the American Community Survey (5-Year Average). The ACS provides Zip code population by age in five-year age intervals. Single-year age population estimates were calculated by distributing population within an age interval to single-year ages using the county distribution. Counties were assigned to Zip codes based on majority land-area.

    Zip codes in the Bay Area vary in population from over 10,000 residents to less than 20 residents. Traditional life expectancy estimation (like the one used for the regional- and county-level Vital Signs estimates) cannot be used because they are highly inaccurate for small populations and may result in over/underestimation of life expectancy. To avoid inaccurate estimates, Zip codes with populations of less than 5,000 were aggregated with neighboring Zip codes until the merged areas had a population of more than 5,000. In this way, the original 305 Bay Area Zip codes were reduced to 218 Zip code areas for 2013 estimates. Next, a form of Bayesian random-effects analysis was used which established a prior distribution of the probability of death at each age using the regional distribution. This prior is used to shore up the life expectancy calculations where data were sparse.

  4. d

    COVID-19 case rate per 100,000 population and percent test positivity in the...

    • datasets.ai
    • data.ct.gov
    • +1more
    23, 40, 55, 8
    Updated Sep 8, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Connecticut (2024). COVID-19 case rate per 100,000 population and percent test positivity in the last 7 days by town - ARCHIVE [Dataset]. https://datasets.ai/datasets/covid-19-case-rate-per-100000-population-and-percent-test-positivity-in-the-last-7-days-by
    Explore at:
    23, 55, 40, 8Available download formats
    Dataset updated
    Sep 8, 2024
    Dataset authored and provided by
    State of Connecticut
    Description

    DPH note about change from 7-day to 14-day metrics: As of 10/15/2020, this dataset is no longer being updated. Starting on 10/15/2020, these metrics will be calculated using a 14-day average rather than a 7-day average. The new dataset using 14-day averages can be accessed here: https://data.ct.gov/Health-and-Human-Services/COVID-19-case-rate-per-100-000-population-and-perc/hree-nys2

    As you know, we are learning more about COVID-19 all the time, including the best ways to measure COVID-19 activity in our communities. CT DPH has decided to shift to 14-day rates because these are more stable, particularly at the town level, as compared to 7-day rates. In addition, since the school indicators were initially published by DPH last summer, CDC has recommended 14-day rates and other states (e.g., Massachusetts) have started to implement 14-day metrics for monitoring COVID transmission as well.

    With respect to geography, we also have learned that many people are looking at the town-level data to inform decision making, despite emphasis on the county-level metrics in the published addenda. This is understandable as there has been variation within counties in COVID-19 activity (for example, rates that are higher in one town than in most other towns in the county).

    This dataset includes a weekly count and weekly rate per 100,000 population for COVID-19 cases, a weekly count of COVID-19 PCR diagnostic tests, and a weekly percent positivity rate for tests among people living in community settings. Dates are based on date of specimen collection (cases and positivity).

    A person is considered a new case only upon their first COVID-19 testing result because a case is defined as an instance or bout of illness. If they are tested again subsequently and are still positive, it still counts toward the test positivity metric but they are not considered another case.

    These case and test counts do not include cases or tests among people residing in congregate settings, such as nursing homes, assisted living facilities, or correctional facilities.

    These data are updated weekly; the previous week period for each dataset is the previous Sunday-Saturday, known as an MMWR week (https://wwwn.cdc.gov/nndss/document/MMWR_week_overview.pdf). The date listed is the date the dataset was last updated and corresponds to a reporting period of the previous MMWR week. For instance, the data for 8/20/2020 corresponds to a reporting period of 8/9/2020-8/15/2020.

    Notes: 9/25/2020: Data for Mansfield and Middletown for the week of Sept 13-19 were unavailable at the time of reporting due to delays in lab reporting.

  5. Life expectancy at various ages, by population group and sex, Canada

    • www150.statcan.gc.ca
    • datasets.ai
    • +2more
    Updated Dec 17, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2015). Life expectancy at various ages, by population group and sex, Canada [Dataset]. http://doi.org/10.25318/1310013401-eng
    Explore at:
    Dataset updated
    Dec 17, 2015
    Dataset provided by
    Government of Canadahttp://www.gg.ca/
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    This table contains 2394 series, with data for years 1991 - 1991 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (1 items: Canada ...), Population group (19 items: Entire cohort; Income adequacy quintile 1 (lowest);Income adequacy quintile 2;Income adequacy quintile 3 ...), Age (14 items: At 25 years; At 30 years; At 40 years; At 35 years ...), Sex (3 items: Both sexes; Females; Males ...), Characteristics (3 items: Life expectancy; High 95% confidence interval; life expectancy; Low 95% confidence interval; life expectancy ...).

  6. A

    ‘COVID-19 case rate per 100,000 population and percent test positivity in...

    • analyst-2.ai
    Updated Feb 13, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘COVID-19 case rate per 100,000 population and percent test positivity in the last 14 days by town’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-covid-19-case-rate-per-100000-population-and-percent-test-positivity-in-the-last-14-days-by-town-d334/760f38b9/?iid=006-207&v=presentation
    Explore at:
    Dataset updated
    Feb 13, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘COVID-19 case rate per 100,000 population and percent test positivity in the last 14 days by town’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/d5e87e00-5f12-4c5e-9fb7-9718e5dbef35 on 13 February 2022.

    --- Dataset description provided by original source is as follows ---

    This dataset includes a count and rate per 100,000 population for COVID-19 cases, a count of COVID-19 molecular diagnostic tests, and a percent positivity rate for tests among people living in community settings for the previous two-week period. Dates are based on date of specimen collection (cases and positivity).

    A person is considered a new case only upon their first COVID-19 testing result because a case is defined as an instance or bout of illness. If they are tested again subsequently and are still positive, it still counts toward the test positivity metric but they are not considered another case.

    Percent positivity is calculated as the number of positive tests among community residents conducted during the 14 days divided by the total number of positive and negative tests among community residents during the same period. If someone was tested more than once during that 14 day period, then those multiple test results (regardless of whether they were positive or negative) are included in the calculation.

    These case and test counts do not include cases or tests among people residing in congregate settings, such as nursing homes, assisted living facilities, or correctional facilities.

    These data are updated weekly and reflect the previous two full Sunday-Saturday (MMWR) weeks (https://wwwn.cdc.gov/nndss/document/MMWR_week_overview.pdf).

    DPH note about change from 7-day to 14-day metrics: Prior to 10/15/2020, these metrics were calculated using a 7-day average rather than a 14-day average. The 7-day metrics are no longer being updated as of 10/15/2020 but the archived dataset can be accessed here: https://data.ct.gov/Health-and-Human-Services/COVID-19-case-rate-per-100-000-population-and-perc/s22x-83rd

    As you know, we are learning more about COVID-19 all the time, including the best ways to measure COVID-19 activity in our communities. CT DPH has decided to shift to 14-day rates because these are more stable, particularly at the town level, as compared to 7-day rates. In addition, since the school indicators were initially published by DPH last summer, CDC has recommended 14-day rates and other states (e.g., Massachusetts) have started to implement 14-day metrics for monitoring COVID transmission as well.

    With respect to geography, we also have learned that many people are looking at the town-level data to inform decision making, despite emphasis on the county-level metrics in the published addenda. This is understandable as there has been variation within counties in COVID-19 activity (for example, rates that are higher in one town than in most other towns in the county).

    Additional notes: As of 11/5/2020, CT DPH has added antigen testing for SARS-CoV-2 to reported test counts in this dataset. The tests included in this dataset include both molecular and antigen datasets. Molecular tests reported include polymerase chain reaction (PCR) and nucleic acid amplicfication (NAAT) tests.

    The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used.

    Data suppression is applied when the rate is <5 cases per 100,000 or if there are <5 cases within the town. Information on why data suppression rules are applied can be found online here: https://www.cdc.gov/cancer/uscs/technical_notes/stat_methods/suppression.htm

    --- Original source retains full ownership of the source dataset ---

  7. d

    Voter Registration by Census Tract

    • catalog.data.gov
    • data.kingcounty.gov
    Updated Sep 23, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.kingcounty.gov (2021). Voter Registration by Census Tract [Dataset]. https://catalog.data.gov/dataset/voter-registration-by-census-tract
    Explore at:
    Dataset updated
    Sep 23, 2021
    Dataset provided by
    data.kingcounty.gov
    Description

    This web map displays data from the voter registration database as the percent of registered voters by census tract in King County, Washington. The data for this web map is compiled from King County Elections voter registration data for the years 2013-2019. The total number of registered voters is based on the geo-location of the voter's registered address at the time of the general election for each year. The eligible voting population, age 18 and over, is based on the estimated population increase from the US Census Bureau and the Washington Office of Financial Management and was calculated as a projected 6 percent population increase for the years 2010-2013, 7 percent population increase for the years 2010-2014, 9 percent population increase for the years 2010-2015, 11 percent population increase for the years 2010-2016 & 2017, 14 percent population increase for the years 2010-2018 and 17 percent population increase for the years 2010-2019. The total population 18 and over in 2010 was 1,517,747 in King County, Washington. The percentage of registered voters represents the number of people who are registered to vote as compared to the eligible voting population, age 18 and over. The voter registration data by census tract was grouped into six percentage range estimates: 50% or below, 51-60%, 61-70%, 71-80%, 81-90% and 91% or above with an overall 84 percent registration rate. In the map the lighter colors represent a relatively low percentage range of voter registration and the darker colors represent a relatively high percentage range of voter registration. PDF maps of these data can be viewed at King County Elections downloadable voter registration maps. The 2019 General Election Voter Turnout layer is voter turnout data by historical precinct boundaries for the corresponding year. The data is grouped into six percentage ranges: 0-30%, 31-40%, 41-50% 51-60%, 61-70%, and 71-100%. The lighter colors represent lower turnout and the darker colors represent higher turnout. The King County Demographics Layer is census data for language, income, poverty, race and ethnicity at the census tract level and is based on the 2010-2014 American Community Survey 5 year Average provided by the United States Census Bureau. Since the data is based on a survey, they are considered to be estimates and should be used with that understanding. The demographic data sets were developed and are maintained by King County Staff to support the King County Equity and Social Justice program. Other data for this map is located in the King County GIS Spatial Data Catalog, where data is managed by the King County GIS Center, a multi-department enterprise GIS in King County, Washington. King County has nearly 1.3 million registered voters and is the largest jurisdiction in the United States to conduct all elections by mail. In the map you can view the percent of registered voters by census tract, compare registration within political districts, compare registration and demographic data, verify your voter registration or register to vote through a link to the VoteWA, Washington State Online Voter Registration web page.

  8. World Population Data

    • kaggle.com
    Updated Aug 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joakim Arvidsson (2023). World Population Data [Dataset]. https://www.kaggle.com/joebeachcapital/world-population-data/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 7, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Joakim Arvidsson
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Area covered
    World
    Description

    World Population Data from the United Nations (UN), United Nations Department of Economic and Social Affairs Population Division World Population Prospects 2022

    Notes
    File (CSV, 6 KB) Location notes.

    **Demographic Indicators ** Indicator reference (CSV, 4 KB) 1950-2100, medium (ZIP, 7.77 MB) 2022-2100, other scenarios (ZIP, 34.76 MB) Demographic Indicators:

    Total Population, as of 1 January (thousands)
    Total Population, as of 1 July (thousands)
    Male Population, as of 1 July (thousands)
    Female Population, as of 1 July (thousands)
    Population Density, as of 1 July (persons per square km)
    Population Sex Ratio, as of 1 July (males per 100 females)
    Median Age, as of 1 July (years)
    Natural Change, Births minus Deaths (thousands)
    Rate of Natural Change (per 1,000 population)
    Population Change (thousands)
    Population Growth Rate (percentage)
    Population Annual Doubling Time (years)
    Births (thousands)
    Births by women aged 15 to 19 (thousands)
    Crude Birth Rate (births per 1,000 population)
    Total Fertility Rate (live births per woman)
    Net Reproduction Rate (surviving daughters per woman)
    Mean Age Childbearing (years)
    Sex Ratio at Birth (males per 100 female births)
    Total Deaths (thousands)
    Male Deaths (thousands)
    Female Deaths (thousands)
    Crude Death Rate (deaths per 1,000 population)
    Life Expectancy at Birth, both sexes (years)
    Male Life Expectancy at Birth (years)
    Female Life Expectancy at Birth (years)
    Life Expectancy at Age 15, both sexes (years)
    Male Life Expectancy at Age 15 (years)
    Female Life Expectancy at Age 15 (years)
    Life Expectancy at Age 65, both sexes (years)
    Male Life Expectancy at Age 65 (years)
    Female Life Expectancy at Age 65 (years)
    Life Expectancy at Age 80, both sexes (years)
    Male Life Expectancy at Age 80 (years)
    Female Life Expectancy at Age 80 (years)
    Infant Deaths, under age 1 (thousands)
    Infant Mortality Rate (infant deaths per 1,000 live births)
    Live births Surviving to Age 1 (thousands)
    Deaths under age 5 (thousands)
    Under-five Mortality Rate (deaths under age 5 per 1,000 live births)
    Mortality before Age 40, both sexes (deaths under age 40 per 1,000 live births)
    Male mortality before Age 40 (deaths under age 40 per 1,000 male live births)
    Female mortality before Age 40 (deaths under age 40 per 1,000 female live births)
    Mortality before Age 60, both sexes (deaths under age 60 per 1,000 live births)
    Male mortality before Age 60 (deaths under age 60 per 1,000 male live births)
    Female mortality before Age 60 (deaths under age 60 per 1,000 female live births)
    Mortality between Age 15 and 50, both sexes (deaths under age 50 per 1,000 alive at age 15)
    Male mortality between Age 15 and 50 (deaths under age 50 per 1,000 males alive at age 15)
    Female mortality between Age 15 and 50 (deaths under age 50 per 1,000 females alive at age 15)
    Mortality between Age 15 and 60, both sexes (deaths under age 60 per 1,000 alive at age 15)
    Male mortality between Age 15 and 60 (deaths under age 60 per 1,000 males alive at age 15)
    Female mortality between Age 15 and 60 (deaths under age 60 per 1,000 females alive at age 15)
    Net Number of Migrants (thousands)
    Net Migration Rate (per 1,000 population)
    

    Fertility
    1950-2100, single age (ZIP, 78.01 MB) 1950-2100, 5-year age groups (ZIP, 22.38 MB)

    Age-specific Fertility Rate (ASFR)
    Percent Age-specific Fertility Rate (PASFR)
    Births (thousands)
    

    **Life Tables ** 1950-2021, medium (ZIP, 68.72 MB) 2022-2100, medium (ZIP, 74.62 MB) Abridged life tables up to age 100 by sex and both sexes combined providing a set of values showing the mortality experience of a hypothetical group of infants born at the same time and subject throughout their lifetime to the specific mortality rates of a given year, from 1950 to 2100. Only medium is available.

    mx: Central death rate, nmx, for the age interval (x, x+n)
    qx: Probability of dying (nqx), for an individual between age x and x+n
    px: Probability of surviving, (npx), for an individual of age x to age x+n
    lx: Number of survivors, (lx), at age (x) for 100000 births
    dx: Number of deaths, (ndx), between ages x and x+n
    Lx: Number of person-years lived, (nLx), between ages x and x+n
    Sx: Survival ratio (nSx) corresponding to proportion of the life table population in age group (x, x+n) who are alive n year later
    Tx: Person-years lived, (Tx), above age x
    ex: Expectation of life (ex) at age x, i.e., average number of years lived subsequent to age x by those reaching age x
    ax: Average number of years lived (nax) between ages x and x+n by those dying in the interval
    

    Life Tables 1950-2021 (ZIP, 94.76 MB) 2022-2100 (ZIP, 101.66 MB) Single age life tables up to age 10...

  9. P

    Population living in low elevation coastal zones (0-10m and 0-20m above sea...

    • pacificdata.org
    • pacific-data.sprep.org
    csv
    Updated Apr 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SPC (2025). Population living in low elevation coastal zones (0-10m and 0-20m above sea level) [Dataset]. https://pacificdata.org/data/dataset/population-living-in-low-elevation-coastal-zones-0-10m-and-0-20m-above-sea-level-df-pop-lecz
    Explore at:
    csvAvailable download formats
    Dataset updated
    Apr 1, 2025
    Dataset provided by
    SPC
    Time period covered
    Jan 1, 2010 - Dec 31, 2024
    Description

    Proportion of population in Pacific Island Countries and Territories (PICTs) living in Low Elevation Coastal Zones (LECZ) of 0-10 and 0-20 meters above sea level. LECZ were delineated using the bathub method overlaid on the Advanced Land Observing Satellite (ALOS) Global Digital Surface Model (AW3D30). Populations within the LECZs were estimated using the Pacific Community (SPC) Statistics for Development Division’s 100m2 population grids.

    Find more Pacific data on PDH.stat.

  10. FiveThirtyEight Police Locals Dataset

    • kaggle.com
    Updated Mar 26, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FiveThirtyEight (2019). FiveThirtyEight Police Locals Dataset [Dataset]. https://www.kaggle.com/fivethirtyeight/fivethirtyeight-police-locals-dataset/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 26, 2019
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    FiveThirtyEight
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Content

    Police Residence

    This folder contains data behind the story Most Police Don’t Live In The Cities They Serve.

    Includes the cities with the 75 largest police forces, with the exception of Honolulu for which data is not available. All calculations are based on data from the U.S. Census.

    The Census Bureau numbers are potentially going to differ from other counts for three reasons:

    1. The census category for police officers also includes sheriffs, transit police and others who might not be under the same jurisdiction as a city’s police department proper. The census category won’t include private security officers.
    2. The census data is estimated from 2006 to 2010; police forces may have changed in size since then.
    3. There is always a margin of error in census numbers; they are estimates, not complete counts.

    How to read police-locals.csv

    HeaderDefinition
    cityU.S. city
    police_force_sizeNumber of police officers serving that city
    allPercentage of the total police force that lives in the city
    whitePercentage of white (non-Hispanic) police officers who live in the city
    non-whitePercentage of non-white police officers who live in the city
    blackPercentage of black police officers who live in the city
    hispanicPercentage of Hispanic police officers who live in the city
    asianPercentage of Asian police officers who live in the city

    Note: When a cell contains ** it means that there are fewer than 100 police officers of that race serving that city.

    Context

    This is a dataset from FiveThirtyEight hosted on their GitHub. Explore FiveThirtyEight data using Kaggle and all of the data sources available through the FiveThirtyEight organization page!

    • Update Frequency: This dataset is updated daily.

    Acknowledgements

    This dataset is maintained using GitHub's API and Kaggle's API.

    This dataset is distributed under the Attribution 4.0 International (CC BY 4.0) license.

  11. C1131 - Population with a Disability and Percentage Living Alone in Private...

    • datasalsa.com
    csv, json-stat, px +1
    Updated Jan 4, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Statistics Office (2022). C1131 - Population with a Disability and Percentage Living Alone in Private Households [Dataset]. https://datasalsa.com/dataset/?catalogue=data.gov.ie&name=c1131-population-with-a-disability-and-percentage-living-alone-in-private-households
    Explore at:
    px, csv, xlsx, json-statAvailable download formats
    Dataset updated
    Jan 4, 2022
    Dataset provided by
    Central Statistics Office Irelandhttps://www.cso.ie/en/
    Authors
    Central Statistics Office
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 4, 2022
    Description

    C1131 - Population with a Disability and Percentage Living Alone in Private Households. Published by Central Statistics Office. Available under the license Creative Commons Attribution 4.0 (CC-BY-4.0).Population with a Disability and Percentage Living Alone in Private Households...

  12. Mortality rates, by age group

    • www150.statcan.gc.ca
    • open.canada.ca
    • +1more
    Updated Dec 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2024). Mortality rates, by age group [Dataset]. http://doi.org/10.25318/1310071001-eng
    Explore at:
    Dataset updated
    Dec 4, 2024
    Dataset provided by
    Government of Canadahttp://www.gg.ca/
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Number of deaths and mortality rates, by age group, sex, and place of residence, 1991 to most recent year.

  13. A

    Climate Ready Boston Social Vulnerability

    • data.boston.gov
    • gis.data.mass.gov
    • +2more
    Updated Sep 21, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Boston Maps (2017). Climate Ready Boston Social Vulnerability [Dataset]. https://data.boston.gov/dataset/climate-ready-boston-social-vulnerability
    Explore at:
    arcgis geoservices rest api, html, csv, zip, geojson, kmlAvailable download formats
    Dataset updated
    Sep 21, 2017
    Dataset provided by
    BostonMaps
    Authors
    Boston Maps
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Area covered
    Boston
    Description
    Social vulnerability is defined as the disproportionate susceptibility of some social groups to the impacts of hazards, including death, injury, loss, or disruption of livelihood. In this dataset from Climate Ready Boston, groups identified as being more vulnerable are older adults, children, people of color, people with limited English proficiency, people with low or no incomes, people with disabilities, and people with medical illnesses.

    Source:

    The analysis and definitions used in Climate Ready Boston (2016) are based on "A framework to understand the relationship between social factors that reduce resilience in cities: Application to the City of Boston." Published 2015 in the International Journal of Disaster Risk Reduction by Atyia Martin, Northeastern University.

    Population Definitions:

    Older Adults:
    Older adults (those over age 65) have physical vulnerabilities in a climate event; they suffer from higher rates of medical illness than the rest of the population and can have some functional limitations in an evacuation scenario, as well as when preparing for and recovering from a disaster. Furthermore, older adults are physically more vulnerable to the impacts of extreme heat. Beyond the physical risk, older adults are more likely to be socially isolated. Without an appropriate support network, an initially small risk could be exacerbated if an older adult is not able to get help.
    Data source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract for population over 65 years of age.
    Attribute label: OlderAdult

    Children:
    Families with children require additional resources in a climate event. When school is cancelled, parents need alternative childcare options, which can mean missing work. Children are especially vulnerable to extreme heat and stress following a natural disaster.
    Data source: 2010 American Community Survey 5-year Estimates (ACS) data by census tract for population under 5 years of age.
    Attribute label: TotChild

    People of Color:
    People of color make up a majority (53 percent) of Boston’s population. People of color are more likely to fall into multiple vulnerable groups as
    well. People of color statistically have lower levels of income and higher levels of poverty than the population at large. People of color, many of whom also have limited English proficiency, may not have ready access in their primary language to information about the dangers of extreme heat or about cooling center resources. This risk to extreme heat can be compounded by the fact that people of color often live in more densely populated urban areas that are at higher risk for heat exposure due to the urban heat island effect.
    Data source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract: Black, Native American, Asian, Island, Other, Multi, Non-white Hispanics.
    Attribute label: POC2

    Limited English Proficiency:
    Without adequate English skills, residents can miss crucial information on how to prepare
    for hazards. Cultural practices for information sharing, for example, may focus on word-of-mouth communication. In a flood event, residents can also face challenges communicating with emergency response personnel. If residents are more socially
    isolated, they may be less likely to hear about upcoming events. Finally, immigrants, especially ones who are undocumented, may be reluctant to use government services out of fear of deportation or general distrust of the government or emergency personnel.
    Data Source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract, defined as speaks English only or speaks English “very well”.
    Attribute label: LEP

    Low to no Income:
    A lack of financial resources impacts a household’s ability to prepare for a disaster event and to support friends and neighborhoods. For example, residents without televisions, computers, or data-driven mobile phones may face challenges getting news about hazards or recovery resources. Renters may have trouble finding and paying deposits for replacement housing if their residence is impacted by flooding. Homeowners may be less able to afford insurance that will cover flood damage. Having low or no income can create difficulty evacuating in a disaster event because of a higher reliance on public transportation. If unable to evacuate, residents may be more at risk without supplies to stay in their homes for an extended period of time. Low- and no-income residents can also be more vulnerable to hot weather if running air conditioning or fans puts utility costs out of reach.
    Data source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract for low-to- no income populations. The data represents a calculated field that combines people who were 100% below the poverty level and those who were 100–149% of the poverty level.
    Attribute label: Low_to_No

    People with Disabilities:
    People with disabilities are among the most vulnerable in an emergency; they sustain disproportionate rates of illness, injury, and death in disaster events.46 People with disabilities can find it difficult to adequately prepare for a disaster event, including moving to a safer place. They are more likely to be left behind or abandoned during evacuations. Rescue and relief resources—like emergency transportation or shelters, for example— may not be universally accessible. Research has revealed a historic pattern of discrimination against people with disabilities in times of resource scarcity, like after a major storm and flood.
    Data source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract for total civilian non-institutionalized population, including: hearing difficulty, vision difficulty, cognitive difficulty, ambulatory difficulty, self-care difficulty, and independent living difficulty.
    Attribute label: TotDis

    Medical Illness:
    Symptoms of existing medical illnesses are often exacerbated by hot temperatures. For example, heat can trigger asthma attacks or increase already high blood pressure due to the stress of high temperatures put on the body. Climate events can interrupt access to normal sources of healthcare and even life-sustaining medication. Special planning is required for people experiencing medical illness. For example, people dependent on dialysis will have different evacuation and care needs than other Boston residents in a climate event.
    Data source: Medical illness is a proxy measure which is based on EASI data accessed through Simply Map. Health data at the local level in Massachusetts is not available beyond zip codes. EASI modeled the health statistics for the U.S. population based upon age, sex, and race probabilities using U.S. Census Bureau data. The probabilities are modeled against the census and current year and five year forecasts. Medical illness is the sum of asthma in children, asthma in adults, heart disease, emphysema, bronchitis, cancer, diabetes, kidney disease, and liver disease. A limitation is that these numbers may be over-counted as the result of people potentially having more than one medical illness. Therefore, the analysis may have greater numbers of people with medical illness within census tracts than actually present. Overall, the analysis was based on the relationship between social factors.
    Attribute label: MedIllnes

    Other attribute definitions:
    GEOID10: Geographic identifier: State Code (25), Country Code (025), 2010 Census Tract
    AREA_SQFT: Tract area (in square feet)
    AREA_ACRES: Tract area (in acres)
    POP100_RE: Tract population count
    HU100_RE: Tract housing unit count
    Name: Boston Neighborhood
  14. Estimates of the population for the UK, England, Wales, Scotland, and...

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Oct 8, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2024). Estimates of the population for the UK, England, Wales, Scotland, and Northern Ireland [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/datasets/populationestimatesforukenglandandwalesscotlandandnorthernireland
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Oct 8, 2024
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Area covered
    Ireland, England, United Kingdom
    Description

    National and subnational mid-year population estimates for the UK and its constituent countries by administrative area, age and sex (including components of population change, median age and population density).

  15. Communities and Crime Dataset (Unnormalized Data)

    • kaggle.com
    Updated Feb 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    John (2023). Communities and Crime Dataset (Unnormalized Data) [Dataset]. https://www.kaggle.com/datasets/johnp47/communities-and-crime-dataset/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 9, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    John
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Source:

    Creator: Michael Redmond (redmond '@' lasalle.edu); Computer Science; La Salle University; Philadelphia, PA, 19141, USA -- culled from 1990 US Census, 1995 US FBI Uniform Crime Report, 1990 US Law Enforcement Management and Administrative Statistics Survey, available from ICPSR at U of Michigan. -- Donor: Michael Redmond (redmond '@' lasalle.edu); Computer Science; La Salle University; Philadelphia, PA, 19141, USA -- Date: July 2009

    Data Set Information:

    Many variables are included so that algorithms that select or learn weights for attributes could be tested. However, clearly unrelated attributes were not included; attributes were picked if there was any plausible connection to crime (N=122), plus the attribute to be predicted (Per Capita Violent Crimes). The variables included in the dataset involve the community, such as the percent of the population considered urban, and the median family income, and involving law enforcement, such as per capita number of police officers, and percent of officers assigned to drug units.

    The per capita violent crimes variable was calculated using population and the sum of crime variables considered violent crimes in the United States: murder, rape, robbery, and assault. There was apparently some controversy in some states concerning the counting of rapes. These resulted in missing values for rape, which resulted in incorrect values for per capita violent crime. These cities are not included in the dataset. Many of these omitted communities were from the midwestern USA.

    Data is described below based on original values. All numeric data was normalized into the decimal range 0.00-1.00 using an Unsupervised, equal-interval binning method. Attributes retain their distribution and skew (hence for example the population attribute has a mean value of 0.06 because most communities are small). E.g. An attribute described as 'mean people per household' is actually the normalized (0-1) version of that value.

    The normalization preserves rough ratios of values WITHIN an attribute (e.g. double the value for double the population within the available precision - except for extreme values (all values more than 3 SD above the mean are normalized to 1.00; all values more than 3 SD below the mean are normalized to 0.00)).

    However, the normalization does not preserve relationships between values BETWEEN attributes (e.g. it would not be meaningful to compare the value for whitePerCap with the value for blackPerCap for a community)

    A limitation was that the LEMAS survey was of the police departments with at least 100 officers, plus a random sample of smaller departments. For our purposes, communities not found in both census and crime datasets were omitted. Many communities are missing LEMAS data.

    Attribute Information:

    '(125 predictive, 4 non-predictive, 18 potential goal) ', ' communityname: Community name - not predictive - for information only (string) ', ' state: US state (by 2 letter postal abbreviation)(nominal) ', ' countyCode: numeric code for county - not predictive, and many missing values (numeric) ', ' communityCode: numeric code for community - not predictive and many missing values (numeric) ', ' fold: fold number for non-random 10 fold cross validation, potentially useful for debugging, paired tests - not predictive (numeric - integer) ', ' population: population for community: (numeric - expected to be integer) ', ' householdsize: mean people per household (numeric - decimal) ', ' racepctblack: percentage of population that is african american (numeric - decimal) ', ' racePctWhite: percentage of population that is caucasian (numeric - decimal) ', ' racePctAsian: percentage of population that is of asian heritage (numeric - decimal) ', ' racePctHisp: percentage of population that is of hispanic heritage (numeric - decimal) ', ' agePct12t21: percentage of population that is 12-21 in age (numeric - decimal) ', ' agePct12t29: percentage of population that is 12-29 in age (numeric - decimal) ', ' agePct16t24: percentage of population that is 16-24 in age (numeric - decimal) ', ' agePct65up: percentage of population that is 65 and over in age (numeric - decimal) ', ' numbUrban: number of people living in areas classified as urban (numeric - expected to be integer) ', ' pctUrban: percentage of people living in areas classified as urban (numeric - decimal) ', ' medIncome: median household income (numeric - may be integer) ', ' pctWWage: percentage of households with wage or salary income in 1989 (numeric - decimal) ', ' pctWFarmSelf: percentage of households with farm or self employment income in 1989 (numeric - decimal) ', ' pctWInvInc: percentage of households with investment / rent income in 1989 (numeric - decimal) ', ' pctWSocSec: percentage of households with social security income in 1989 (numeric - decimal) ', ' pctWPubAsst: pe...

  16. a

    Preterm and Very Preterm Live Births by County 2010 - 2018

    • usc-geohealth-hub-uscssi.hub.arcgis.com
    Updated Oct 20, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Spatial Sciences Institute (2022). Preterm and Very Preterm Live Births by County 2010 - 2018 [Dataset]. https://usc-geohealth-hub-uscssi.hub.arcgis.com/datasets/USCSSI::preterm-and-very-preterm-live-births-by-county-2010-2018
    Explore at:
    Dataset updated
    Oct 20, 2022
    Dataset authored and provided by
    Spatial Sciences Institute
    Area covered
    Description

    Very preterm births are all live births less than 32 weeks of gestation. Important growth and development occur throughout pregnancy, especially in the final months and weeks. There is a higher risk of serious disability or death the earlier a baby is born.Data Dictionary: Column NameFormatDefinitionYearStringYear in which events occurredCountyStringMaternal County of residence (this is not necessarily the same County as where the birth occurred)Birth TypeStringEither Preterm or Very Preterm Births. Preterm births are all live births <37 weeks of gestation. Very preterm births are all live births <32 weeks of gestation. Gestational age is based on obstetric estimate at delivery. Data includes births with gestational age of 17-47 weeks. Total BirthsNumericTotal count of live births within yearEventsNumericCount of preterm or very preterm live births within year. Count is not shown when less than 10.PercentNumericCalculated by dividing the Count by Total Births, then multiplying by 100. Percents are not shown when the Count is less than 10.Lower 95% CINumericLower limit of 95% confidence interval. The 95% confidence limits depict the range within which the percentage would probably occur in 95 of 100 sets of data (if data similar to the present set were independently acquired on 100 separate occasions). In five of those 100 data sets, the percentage would fall outside the limits.Upper 95% CINumericUpper limit of 95% confidence interval. The 95% confidence limits depict the range within which the percentage would probably occur in 95 of 100 sets of data (if data similar to the present set were independently acquired on 100 separate occasions). In five of those 100 data sets, the percentage would fall outside the limits.

  17. D

    NCHS - Teen Birth Rates for Age Group 15-19 in the United States by County

    • data.cdc.gov
    • data.virginia.gov
    • +2more
    application/rdfxml +5
    Updated Apr 8, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NCHS/DVS (2022). NCHS - Teen Birth Rates for Age Group 15-19 in the United States by County [Dataset]. https://data.cdc.gov/w/3h58-x6cd/tdwk-ruhb?cur=LJoyOo51Rsn
    Explore at:
    xml, csv, tsv, application/rdfxml, application/rssxml, jsonAvailable download formats
    Dataset updated
    Apr 8, 2022
    Dataset authored and provided by
    NCHS/DVS
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Area covered
    United States
    Description

    This data set contains estimated teen birth rates for age group 15–19 (expressed per 1,000 females aged 15–19) by county and year.

    DEFINITIONS

    Estimated teen birth rate: Model-based estimates of teen birth rates for age group 15–19 (expressed per 1,000 females aged 15–19) for a specific county and year. Estimated county teen birth rates were obtained using the methods described elsewhere (1,2,3,4). These annual county-level teen birth estimates “borrow strength” across counties and years to generate accurate estimates where data are sparse due to small population size (1,2,3,4). The inferential method uses information—including the estimated teen birth rates from neighboring counties across years and the associated explanatory variables—to provide a stable estimate of the county teen birth rate. Median teen birth rate: The middle value of the estimated teen birth rates for the age group 15–19 for counties in a state. Bayesian credible intervals: A range of values within which there is a 95% probability that the actual teen birth rate will fall, based on the observed teen births data and the model.

    NOTES

    Data on the number of live births for women aged 15–19 years were extracted from the National Center for Health Statistics’ (NCHS) National Vital Statistics System birth data files for 2003–2015 (5).

    Population estimates were extracted from the files containing intercensal and postcensal bridged-race population estimates provided by NCHS. For each year, the July population estimates were used, with the exception of the year of the decennial census, 2010, for which the April estimates were used.

    Hierarchical Bayesian space–time models were used to generate hierarchical Bayesian estimates of county teen birth rates for each year during 2003–2015 (1,2,3,4).

    The Bayesian analogue of the frequentist confidence interval is defined as the Bayesian credible interval. A 100*(1-α)% Bayesian credible interval for an unknown parameter vector θ and observed data vector y is a subset C of parameter space Ф such that 1-α≤P({C│y})=∫p{θ │y}dθ, where integration is performed over the set and is replaced by summation for discrete components of θ. The probability that θ lies in C given the observed data y is at least (1- α) (6).

    County borders in Alaska changed, and new counties were formed and others were merged, during 2003–2015. These changes were reflected in the population files but not in the natality files. For this reason, two counties in Alaska were collapsed so that the birth and population counts were comparable. Additionally, Kalawao County, a remote island county in Hawaii, recorded no births, and census estimates indicated a denominator of 0 (i.e., no females between the ages of 15 and 19 years residing in the county from 2003 through 2015). For this reason, Kalawao County was removed from the analysis. Also , Bedford City, Virginia, was added to Bedford County in 2015 and no longer appears in the mortality file in 2015. For consistency, Bedford City was merged with Bedford County, Virginia, for the entire 2003–2015 period. Final analysis was conducted on 3,137 counties for each year from 2003 through 2015. County boundaries are consistent with the vintage 2005–2007 bridged-race population file geographies (7).

  18. C

    Census 2011: Indicators by ACE census area

    • ckan.mobidatalab.eu
    csv, json
    Updated Apr 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technological and Digital Innovation Department (2023). Census 2011: Indicators by ACE census area [Dataset]. https://ckan.mobidatalab.eu/dataset/ds364-population-indicators-census-areas-2011c
    Explore at:
    json(315914), csv(158296)Available download formats
    Dataset updated
    Apr 23, 2023
    Dataset provided by
    Technological and Digital Innovation Department
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The dataset contains 32 statistical indicators calculated on the basis of data from the 2011 census for the 86 census areas (ACE). The indicators are defined as follows: * 1) Population density (ratio between the resident population in the area and the surface of the area in square kilometres); * 2) Average age of the population (Average of the ages weighted by the amount of the population of each age); * 3) Population over 65 per child (ratio between the population aged 65 and over and children under 6); * 4) Very elderly per 100 residents (Percentage ratio between the population aged 85 and over and the total population); * 5) Population of inactive age per 100 residents of active age (Percentage ratio between the population of inactive age, 0-14 years and 65 years and over, and the population of working age, 15-64 years); * 6) Foreigners per 100 residents (Percentage ratio between the foreign population and the total population); * 7) Average age of foreigners (Average of ages weighted by the amount of the foreign population in each age group); * 8) Underage foreigners every 100 foreigners (Percentage ratio between the underage foreign population and the total foreign population); * 9) Young foreign students for every 100 young foreigners (15-24 years old) (Percentage ratio between the foreign student population aged 15-24 and the total foreign population aged 15-24); * 10) Foreign employment rate (Percentage ratio between employed foreigners aged 15 and over and the total number of foreigners in the same age group); * 11) Young people without a secondary school leaving certificate for every 100 young people (Percentage ratio between the population aged 15-19 with an educational qualification lower than the secondary school leaving certificate and the population aged 15-19); * 12) Young people with a secondary school leaving the school system before graduating every 100 young people (Percentage ratio between the population aged 15-24 who is not a student with a secondary school certificate as the highest educational qualification and the population aged 15-24); * 13) Active young people for every 100 inactive young people (Percentage ratio between the active and non-active population aged 15-24); * 14) Youth unemployment rate (Percentage ratio between young people aged 15-24 looking for a job and the active population aged 15-24); * 15) Activity rate (Percentage ratio between the active population aged 15 and over and the total population aged 15 and over); * 16) Employment rate (Percentage ratio between the employed population aged 15 and over and the total population aged 15 and over); * 17) Unemployment rate (percentage ratio between the population aged 15 and over looking for work and the active population aged 15 and over); * 18) Diplomas or graduates every adult with only a middle school leaving certificate (ratio between the resident population aged 25-64 with a diploma or degree and the resident population of the same age group with a middle school leaving certificate); * 19) University-educated young adults per 100 young adults (Percentage ratio between the population aged 30-34 with a university degree and the total population aged 30-34; target of the Europe 2020 Strategy); * 20) Young people who do not work or study every 100 young people (Percentage ratio between the population aged 15-29 who is neither student nor employed and the total population aged 15-29); * 21) Owned homes for every 100 homes occupied by residents (Percentage ratio between the number of owned homes occupied by residents and the total number of homes occupied by residents); * 22) Rental homes for every 100 homes occupied by residents (Percentage ratio between the number of homes occupied by rented residents and the total homes occupied by residents); * 23) Average size of homes (ratio between the total area (m2) of homes occupied by residents and the total number of homes occupied by residents); * 24) Average number of members per family (ratio between the total number of residents in the family and the number of families); * 25) Families with only one member every 100 families (Percentage ratio between the number of one-member families and the total number of families); * 26) Families with 5 or more members every 100 families (Percentage ratio between the number of families with 5 or more members and the total number of families); * 27) Young couples with children for every 100 young couples (Percentage ratio between the number of young couples with children and the total number of young couples; both members of the couple less than 35 years old); * 28) Young people living alone for every 100 young people (Percentage ratio between the number of one-person households, without cohabitants, made up of a person aged 15-34 and the total population aged 15-34); * 29) Over 65-year-old population living alone every 100 over 65-year-olds (Percentage ratio between the number of one-person households, without cohabitants, made up of a person aged 65+ and the population aged 65+); * 30) Mixed couples every 100 couples (Percentage ratio between the number of couples with one foreign and one Italian component and the total number of couples); * 31) Unmarried couples every 100 couples (Percentage ratio between the number of unmarried couples and the total number of couples); * 32) Single-parent households for every 100 households with children (Percentage ratio between the number of single-parent households and the total of households with children). This dataset was released by the municipality of Milan.

  19. n

    Coronavirus (Covid-19) Data in the United States

    • nytimes.com
    • openicpsr.org
    • +2more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html
    Explore at:
    Dataset provided by
    New York Times
    Description

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

  20. a

    Indicator 1.4.1 The proportion of the population living in households with...

    • hub.arcgis.com
    • sdg-en-psaqatar.opendata.arcgis.com
    Updated Jan 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Planning Council (2025). Indicator 1.4.1 The proportion of the population living in households with access to basic services. [Dataset]. https://hub.arcgis.com/datasets/psaqatar::indicator-1-4-1-the-proportion-of-the-population-living-in-households-with-access-to-basic-services-
    Explore at:
    Dataset updated
    Jan 6, 2025
    Dataset authored and provided by
    National Planning Council
    Description

    Indicator 1.4.1The proportion of the population living in households with access to basic services.Methodology:The proportion of the population with access to basic services =100 (No. of people with access to ALL the basic services/population)Data Source:National Planning Council.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
State of California, Department of Health: Death Records (2017). Vital Signs: Life Expectancy – by ZIP Code [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Life-Expectancy-by-ZIP-Code/xym8-u3kc

Vital Signs: Life Expectancy – by ZIP Code

Explore at:
tsv, json, application/rdfxml, xml, csv, application/rssxmlAvailable download formats
Dataset updated
Mar 22, 2017
Dataset authored and provided by
State of California, Department of Health: Death Records
Description

VITAL SIGNS INDICATOR Life Expectancy (EQ6)

FULL MEASURE NAME Life Expectancy

LAST UPDATED April 2017

DESCRIPTION Life expectancy refers to the average number of years a newborn is expected to live if mortality patterns remain the same. The measure reflects the mortality rate across a population for a point in time.

DATA SOURCE State of California, Department of Health: Death Records (1990-2013) No link

California Department of Finance: Population Estimates Annual Intercensal Population Estimates (1990-2010) Table P-2: County Population by Age (2010-2013) http://www.dof.ca.gov/Forecasting/Demographics/Estimates/

U.S. Census Bureau: Decennial Census ZCTA Population (2000-2010) http://factfinder.census.gov

U.S. Census Bureau: American Community Survey 5-Year Population Estimates (2013) http://factfinder.census.gov

CONTACT INFORMATION vitalsigns.info@mtc.ca.gov

METHODOLOGY NOTES (across all datasets for this indicator) Life expectancy is commonly used as a measure of the health of a population. Life expectancy does not reflect how long any given individual is expected to live; rather, it is an artificial measure that captures an aspect of the mortality rates across a population that can be compared across time and populations. More information about the determinants of life expectancy that may lead to differences in life expectancy between neighborhoods can be found in the Bay Area Regional Health Inequities Initiative (BARHII) Health Inequities in the Bay Area report at http://www.barhii.org/wp-content/uploads/2015/09/barhii_hiba.pdf. Vital Signs measures life expectancy at birth (as opposed to cohort life expectancy). A statistical model was used to estimate life expectancy for Bay Area counties and ZIP Codes based on current life tables which require both age and mortality data. A life table is a table which shows, for each age, the survivorship of a people from a certain population.

Current life tables were created using death records and population estimates by age. The California Department of Public Health provided death records based on the California death certificate information. Records include age at death and residential ZIP Code. Single-year age population estimates at the regional- and county-level comes from the California Department of Finance population estimates and projections for ages 0-100+. Population estimates for ages 100 and over are aggregated to a single age interval. Using this data, death rates in a population within age groups for a given year are computed to form unabridged life tables (as opposed to abridged life tables). To calculate life expectancy, the probability of dying between the jth and (j+1)st birthday is assumed uniform after age 1. Special consideration is taken to account for infant mortality.

For the ZIP Code-level life expectancy calculation, it is assumed that postal ZIP Codes share the same boundaries as ZIP Code Census Tabulation Areas (ZCTAs). More information on the relationship between ZIP Codes and ZCTAs can be found at http://www.census.gov/geo/reference/zctas.html. ZIP Code-level data uses three years of mortality data to make robust estimates due to small sample size. Year 2013 ZIP Code life expectancy estimates reflects death records from 2011 through 2013. 2013 is the last year with available mortality data. Death records for ZIP Codes with zero population (like those associated with P.O. Boxes) were assigned to the nearest ZIP Code with population. ZIP Code population for 2000 estimates comes from the Decennial Census. ZIP Code population for 2013 estimates are from the American Community Survey (5-Year Average). ACS estimates are adjusted using Decennial Census data for more accurate population estimates. An adjustment factor was calculated using the ratio between the 2010 Decennial Census population estimates and the 2012 ACS 5-Year (with middle year 2010) population estimates. This adjustment factor is particularly important for ZCTAs with high homeless population (not living in group quarters) where the ACS may underestimate the ZCTA population and therefore underestimate the life expectancy. The ACS provides ZIP Code population by age in five-year age intervals. Single-year age population estimates were calculated by distributing population within an age interval to single-year ages using the county distribution. Counties were assigned to ZIP Codes based on majority land-area.

ZIP Codes in the Bay Area vary in population from over 10,000 residents to less than 20 residents. Traditional life expectancy estimation (like the one used for the regional- and county-level Vital Signs estimates) cannot be used because they are highly inaccurate for small populations and may result in over/underestimation of life expectancy. To avoid inaccurate estimates, ZIP Codes with populations of less than 5,000 were aggregated with neighboring ZIP Codes until the merged areas had a population of more than 5,000. ZIP Code 94103, representing Treasure Island, was dropped from the dataset due to its small population and having no bordering ZIP Codes. In this way, the original 305 Bay Area ZIP Codes were reduced to 217 ZIP Code areas for 2013 estimates. Next, a form of Bayesian random-effects analysis was used which established a prior distribution of the probability of death at each age using the regional distribution. This prior is used to shore up the life expectancy calculations where data were sparse.

Search
Clear search
Close search
Google apps
Main menu