Individuals; Tax filers and dependants by total income, sex and age groups (final T1 Family File; T1FF).
Income of individuals by age group, sex and income source, Canada, provinces and selected census metropolitan areas, annual.
This table presents income shares, thresholds, tax shares, and total counts of individual Canadian tax filers, with a focus on high income individuals (95% income threshold, 99% threshold, etc.). Income thresholds are based on national threshold values, regardless of selected geography; for example, the number of Nova Scotians in the top 1% will be calculated as the number of taxfiling Nova Scotians whose total income exceeded the 99% national income threshold. Different definitions of income are available in the table namely market, total, and after-tax income, both with and without capital gains.
U.S. citizens with a professional degree had the highest median household income in 2023, at 172,100 U.S. dollars. In comparison, those with less than a 9th grade education made significantly less money, at 35,690 U.S. dollars. Household income The median household income in the United States has fluctuated since 1990, but rose to around 70,000 U.S. dollars in 2021. Maryland had the highest median household income in the United States in 2021. Maryland’s high levels of wealth is due to several reasons, and includes the state's proximity to the nation's capital. Household income and ethnicity The median income of white non-Hispanic households in the United States had been on the rise since 1990, but declining since 2019. While income has also been on the rise, the median income of Hispanic households was much lower than those of white, non-Hispanic private households. However, the median income of Black households is even lower than Hispanic households. Income inequality is a problem without an easy solution in the United States, especially since ethnicity is a contributing factor. Systemic racism contributes to the non-White population suffering from income inequality, which causes the opportunity for growth to stagnate.
DPH note about change from 7-day to 14-day metrics: As of 10/15/2020, this dataset is no longer being updated. Starting on 10/15/2020, these metrics will be calculated using a 14-day average rather than a 7-day average. The new dataset using 14-day averages can be accessed here: https://data.ct.gov/Health-and-Human-Services/COVID-19-case-rate-per-100-000-population-and-perc/hree-nys2
As you know, we are learning more about COVID-19 all the time, including the best ways to measure COVID-19 activity in our communities. CT DPH has decided to shift to 14-day rates because these are more stable, particularly at the town level, as compared to 7-day rates. In addition, since the school indicators were initially published by DPH last summer, CDC has recommended 14-day rates and other states (e.g., Massachusetts) have started to implement 14-day metrics for monitoring COVID transmission as well.
With respect to geography, we also have learned that many people are looking at the town-level data to inform decision making, despite emphasis on the county-level metrics in the published addenda. This is understandable as there has been variation within counties in COVID-19 activity (for example, rates that are higher in one town than in most other towns in the county).
This dataset includes a weekly count and weekly rate per 100,000 population for COVID-19 cases, a weekly count of COVID-19 PCR diagnostic tests, and a weekly percent positivity rate for tests among people living in community settings. Dates are based on date of specimen collection (cases and positivity).
A person is considered a new case only upon their first COVID-19 testing result because a case is defined as an instance or bout of illness. If they are tested again subsequently and are still positive, it still counts toward the test positivity metric but they are not considered another case.
These case and test counts do not include cases or tests among people residing in congregate settings, such as nursing homes, assisted living facilities, or correctional facilities.
These data are updated weekly; the previous week period for each dataset is the previous Sunday-Saturday, known as an MMWR week (https://wwwn.cdc.gov/nndss/document/MMWR_week_overview.pdf). The date listed is the date the dataset was last updated and corresponds to a reporting period of the previous MMWR week. For instance, the data for 8/20/2020 corresponds to a reporting period of 8/9/2020-8/15/2020.
Notes: 9/25/2020: Data for Mansfield and Middletown for the week of Sept 13-19 were unavailable at the time of reporting due to delays in lab reporting.
Distribution of employment income of individuals by sex and work activity, Canada, provinces and selected census metropolitan areas, annual.
https://www.incomebyzipcode.com/terms#TERMShttps://www.incomebyzipcode.com/terms#TERMS
A dataset listing the richest zip codes in New Jersey per the most current US Census data, including information on rank and average income.
https://www.incomebyzipcode.com/terms#TERMShttps://www.incomebyzipcode.com/terms#TERMS
A dataset listing the richest zip codes in West Virginia per the most current US Census data, including information on rank and average income.
https://www.incomebyzipcode.com/terms#TERMShttps://www.incomebyzipcode.com/terms#TERMS
A dataset listing the richest zip codes in South Carolina per the most current US Census data, including information on rank and average income.
https://www.incomebyzipcode.com/terms#TERMShttps://www.incomebyzipcode.com/terms#TERMS
A dataset listing the richest zip codes in Mississippi per the most current US Census data, including information on rank and average income.
This table provides the age-standardized mortality rates per 100,000 population, for the three selected causes of death and all causes combined for both the local geographic area and Alberta for the most recent three-year period available. The three selected causes of death are Circulatory System, Neoplasms and External Causes (Injury). Age standardization is a technique applied to make rates comparable across groups with different age distributions. A simple rate is defined as the number of people with a particular condition divided by the whole population. An age-standardized rate is defined as the number of people with a condition divided by the population within each age group. Standardizing (adjusting) the rate across age groups allows a more accurate comparison between populations that have different age structures. Age standardization is typically done when comparing rates across time periods, different geographic areas, and or population sub-groups (e.g. ethnic group). This indicator dataset contains information at both Local Geographic Area (for example, Lacombe, Red Deer - North, Calgary - West Bow, etc.) and Alberta levels. Local geographic area refers to 132 geographic areas created by Alberta Health (AH) and Alberta Health Services (AHS) based on census boundaries. This table is the part of "Alberta Health Primary Health Care - Community Profiles" report published March 2015
Figure 7.1 provides the age-standardized mortality rates per 100,000 population, for the three selected causes of death and all causes combined. The three selected causes of death are Circulatory System, Neoplasms and External Causes (Injury). Age standardization is a technique applied to make rates comparable across groups with different age distributions. A simple rate is defined as the number of people with a particular condition divided by the whole population. An age-standardized rate is defined as the number of people with a condition divided by the population within each age group. Standardizing (adjusting) the rate across age groups allows a more accurate comparison between populations that have different age structures. Age standardization is typically done when comparing rates across time periods, different geographic areas, and or population sub-groups (e.g. ethnic group). This indicator dataset contains information at both Local Geographic Area (for example, Lacombe, Red Deer - North, Calgary - West Bow, etc.) and Alberta levels. Local geographic area refers to 132 geographic areas created by Alberta Health (AH) and Alberta Health Services (AHS) based on census boundaries. This table is the part of "Alberta Health Primary Health Care - Community Profiles" report published August 2022
Provides the age-standardized mortality rates per 100,000 population, for the three selected causes of death and all causes combined. The three selected causes of death are Circulatory System, Neoplasms and External Causes (Injury). Age standardization is a technique applied to make rates comparable across groups with different age distributions. A simple rate is defined as the number of people with a particular condition divided by the whole population. An age-standardized rate is defined as the number of people with a condition divided by the population within each age group. Standardizing (adjusting) the rate across age groups allows a more accurate comparison between populations that have different age structures. Age standardization is typically done when comparing rates across time periods, different geographic areas, and or population sub-groups (e.g. ethnic group). This indicator dataset contains information at both Local Geographic Area (for example, Lacombe, Red Deer - North, Calgary - West Bow, etc.) and Alberta levels. Local geographic area refers to 132 geographic areas created by Alberta Health (AH) and Alberta Health Services (AHS) based on census boundaries. This table is the part of "Alberta Health Primary Health Care - Community Profiles" report published March 2015
This table provides the age-standardized mortality rates per 100,000 population, for the three selected causes of death and all causes combined for both the local geographic area and Alberta for the most recent three-year period available. The three selected causes of death are Circulatory System, Neoplasms and External Causes (Injury). Age standardization is a technique applied to make rates comparable across groups with different age distributions. A simple rate is defined as the number of people with a particular condition divided by the whole population. An age-standardized rate is defined as the number of people with a condition divided by the population within each age group. Standardizing (adjusting) the rate across age groups allows a more accurate comparison between populations that have different age structures. Age standardization is typically done when comparing rates across time periods, different geographic areas, and or population sub-groups (e.g. ethnic group). This indicator dataset contains information at both Local Geographic Area (for example, Lacombe, Red Deer - North, Calgary - West Bow, etc.) and Alberta levels. Local geographic area refers to 132 geographic areas created by Alberta Health (AH) and Alberta Health Services (AHS) based on census boundaries. This table is the part of "Alberta Health Primary Health Care - Community Profiles" report published February 2019
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Individuals; Tax filers and dependants by total income, sex and age groups (final T1 Family File; T1FF).