100+ datasets found
  1. g

    Coronavirus (Covid-19) Data in the United States

    • github.com
    • openicpsr.org
    • +4more
    csv
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://github.com/nytimes/covid-19-data
    Explore at:
    csvAvailable download formats
    Dataset provided by
    New York Times
    License

    https://github.com/nytimes/covid-19-data/blob/master/LICENSEhttps://github.com/nytimes/covid-19-data/blob/master/LICENSE

    Description

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since the first reported coronavirus case in Washington State on Jan. 21, 2020, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

  2. Covid-19 variants survival data

    • kaggle.com
    zip
    Updated Jan 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Massock Batalong Maurice Blaise (2025). Covid-19 variants survival data [Dataset]. https://www.kaggle.com/datasets/lumierebatalong/covid-19-variants-survival-data
    Explore at:
    zip(216589 bytes)Available download formats
    Dataset updated
    Jan 2, 2025
    Authors
    Massock Batalong Maurice Blaise
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Overview:

    This dataset provides a unique resource for researchers and data scientists interested in the global dynamics of the COVID-19 pandemic. It focuses on the impact of different SARS-CoV-2 variants and mutations on the duration of local epidemics. By combining variant information with epidemiological data, this dataset allows for a comprehensive analysis of factors influencing the trajectory of the pandemic.

    Key Features:

    • Global Coverage: Includes data from multiple countries.
    • Variant-Specific Information: Detailed records for various SARS-CoV-2 variants.
    • Epidemic Duration: Data on the duration of local epidemics, accounting for right-censoring.
    • Epidemiological Variables: Includes mortality rates, a proxy for R0, transmission proxies, and other pertinent variables.
    • Geographical characteristics: Include a continent variable for exploring geographical patterns
    • Time varying variables: Include the number of waves and the number of variants in the different countries for more in-depth exploration.

    Data Source: The data combines information from the Johns Hopkins University COVID-19 dataset (confirmed_cases.csv and deaths_cases.csv) and the covariants.org dataset (variants.csv). The dataset you see here is the combination of two datasets from Johns Hopkins University and covariants.org.

    Questions to Inspire Users:

    This dataset is designed for a diverse set of analytical questions. Here are some ideas to inspire the Kaggle community:

    Survival Analysis:

    1. How do different SARS-CoV-2 variants influence the duration of local epidemics?
    2. Which factors (mortality, R0, etc.) are most strongly associated with shorter or longer epidemic durations?
    3. Does the type of variant/mutation (mutation,S, Omicron, Delta, Other) have a significant impact on epidemic duration?
    4. Is there a geographical pattern to the duration of epidemics?

    Epidemiological Analysis:

    1. How do local transmission rates (represented by our proxy of R0) affect the duration of an epidemic?
    2. Do countries with higher mortality rates have different patterns of epidemic progression?
    3. How can we predict the duration of an epidemic based on its initial characteristics?
    4. How does the number of epidemic waves impact the duration of an epidemic?
    5. Does the number of variants in a country affect the duration of an épidémie?

    Data Science/Machine Learning:

    1. Can we develop a machine learning model to predict the duration of an epidemic?
    2. What features have the best predictive power ?
    3. Can we identify clusters of variants/regions with similar epidemic patterns?
    4. Are there interactions between variables that can explain the non-linearities that we have identified ?
  3. Global Covid-19 Data

    • kaggle.com
    zip
    Updated Dec 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Global Covid-19 Data [Dataset]. https://www.kaggle.com/datasets/thedevastator/global-covid-19-data
    Explore at:
    zip(15394324 bytes)Available download formats
    Dataset updated
    Dec 3, 2023
    Authors
    The Devastator
    Description

    Global Covid-19 Data

    Global Covid-19 data on cases, deaths, vaccinations, and more

    By Valtteri Kurkela [source]

    About this dataset

    The dataset is constantly updated and synced hourly to ensure up-to-date information. With over several columns available for analysis and exploration purposes, users can extract valuable insights from this extensive dataset.

    Some of the key metrics covered in the dataset include:

    1. Vaccinations: The dataset covers total vaccinations administered worldwide as well as breakdowns of people vaccinated per hundred people and fully vaccinated individuals per hundred people.

    2. Testing & Positivity: Information on total tests conducted along with new tests conducted per thousand people is provided. Additionally, details on positive rate (percentage of positive Covid-19 tests out of all conducted) are included.

    3. Hospital & ICU: Data on ICU patients and hospital patients are available along with corresponding figures normalized per million people. Weekly admissions to intensive care units and hospitals are also provided.

    4. Confirmed Cases: The number of confirmed Covid-19 cases globally is captured in both absolute numbers as well as normalized values representing cases per million people.

    5.Confirmed Deaths: Total confirmed deaths due to Covid-19 worldwide are provided with figures adjusted for population size (total deaths per million).

    6.Reproduction Rate: The estimated reproduction rate (R) indicates the contagiousness of the virus within a particular country or region.

    7.Policy Responses: Besides healthcare-related metrics, this comprehensive dataset includes policy responses implemented by countries or regions such as lockdown measures or travel restrictions.

    8.Other Variables of InterestThe data encompasses various socioeconomic factors that may influence Covid-19 outcomes including population density,membership in a continent,gross domestic product(GDP)per capita;

    For demographic factors: -Age Structure : percentage populations aged 65 and older,aged (70)older,median age -Gender-specific factors: Percentage of female smokers -Lifestyle-related factors: Diabetes prevalence rate and extreme poverty rate

    1. Excess Mortality: The dataset further provides insights into excess mortality rates, indicating the percentage increase in deaths above the expected number based on historical data.

    The dataset consists of numerous columns providing specific information for analysis, such as ISO code for countries/regions, location names,and units of measurement for different parameters.

    Overall,this dataset serves as a valuable resource for researchers, analysts, and policymakers seeking to explore various aspects related to Covid-19

    How to use the dataset

    Introduction:

    • Understanding the Basic Structure:

      • The dataset consists of various columns containing different data related to vaccinations, testing, hospitalization, cases, deaths, policy responses, and other key variables.
      • Each row represents data for a specific country or region at a certain point in time.
    • Selecting Desired Columns:

      • Identify the specific columns that are relevant to your analysis or research needs.
      • Some important columns include population, total cases, total deaths, new cases per million people, and vaccination-related metrics.
    • Filtering Data:

      • Use filters based on specific conditions such as date ranges or continents to focus on relevant subsets of data.
      • This can help you analyze trends over time or compare data between different regions.
    • Analyzing Vaccination Metrics:

      • Explore variables like total_vaccinations, people_vaccinated, and people_fully_vaccinated to assess vaccination coverage in different countries.
      • Calculate metrics such as people_vaccinated_per_hundred or total_boosters_per_hundred for standardized comparisons across populations.
    • Investigating Testing Information:

      • Examine columns such as total_tests, new_tests, and tests_per_case to understand testing efforts in various countries.
      • Calculate rates like tests_per_case to assess testing efficiency or identify changes in testing strategies over time.
    • Exploring Hospitalization and ICU Data:

      • Analyze variables like hosp_patients, icu_patients, and hospital_beds_per_thousand to understand healthcare systems' strain.
      • Calculate rates like icu_patients_per_million or hosp_patients_per_million for cross-country comparisons.
    • Assessing Covid-19 Cases and Deaths:

      • Analyze variables like total_cases, new_ca...
  4. Estimated excess mortality (excluding COVID-19) during heat-periods, England...

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Oct 7, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2022). Estimated excess mortality (excluding COVID-19) during heat-periods, England (UKHSA) [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/estimatedexcessmortalityexcludingcovid19duringheatperiodsenglandukhsa
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Oct 7, 2022
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Area covered
    England
    Description

    Provisional data on excess mortality (excluding COVID-19) during heat-periods in the 65 years and over age group estimates in England, including the estimated number of deaths where the death occurred within 28 days of a positive COVID-19 result and the mean central England temperature.

  5. O

    COVID-19-Associated Deaths by Date of Death - ARCHIVE

    • data.ct.gov
    • datasets.ai
    • +1more
    csv, xlsx, xml
    Updated Jun 24, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Public Health (2022). COVID-19-Associated Deaths by Date of Death - ARCHIVE [Dataset]. https://data.ct.gov/Health-and-Human-Services/COVID-19-Associated-Deaths-by-Date-of-Death-ARCHIV/abag-bjkj
    Explore at:
    xlsx, csv, xmlAvailable download formats
    Dataset updated
    Jun 24, 2022
    Dataset authored and provided by
    Department of Public Health
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve.

    The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj.

    The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 .

    The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 .

    The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed.

    Count of COVID-19-associated deaths by date of death. Deaths reported to either the OCME or DPH are included in the COVID-19 data. COVID-19-associated deaths include persons who tested positive for COVID-19 around the time of death and persons who were not tested for COVID-19 whose death certificate lists COVID-19 disease as a cause of death or a significant condition contributing to death.

    Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical examiner) using their best clinical judgment. Additionally, all COVID-19 deaths, including suspected or related, are required to be reported to OCME. On April 4, 2020, CT DPH and OCME released a joint memo to providers and facilities within Connecticut providing guidelines for certifying deaths due to COVID-19 that were consistent with the CDC’s guidelines and a reminder of the required reporting to OCME.25,26 As of July 1, 2021, OCME had reviewed every case reported and performed additional investigation on about one-third of reported deaths to better ascertain if COVID-19 did or did not cause or contribute to the death. Some of these investigations resulted in the OCME performing postmortem swabs for PCR testing on individuals whose deaths were suspected to be due to COVID-19, but antemortem diagnosis was unable to be made.31 The OCME issued or re-issued about 10% of COVID-19 death certificates and, when appropriate, removed COVID-19 from the death certificate. For standardization and tabulation of mortality statistics, written cause of death statements made by the certifiers on death certificates are sent to the National Center for Health Statistics (NCHS) at the CDC which assigns cause of death codes according to the International Causes of Disease 10th Revision (ICD-10) classification system.25,26 COVID-19 deaths in this report are defined as those for which the death certificate has an ICD-10 code of U07.1 as either a primary (underlying) or a contributing cause of death. More information on COVID-19 mortality can be found at the following link: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Mortality/Mortality-Statistics

    Note the counts in this dataset may vary from the death counts in the other COVID-19-related datasets published on data.ct.gov, where deaths are counted on the date reported rather than the date of death.

    Starting in July 2020, this dataset will be updated every weekday. Data are subject to future revision as reporting changes.

  6. Single year of age and average age of death of people whose death was due to...

    • ons.gov.uk
    xlsx
    Updated Aug 23, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2023). Single year of age and average age of death of people whose death was due to or involved coronavirus (COVID-19) [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/singleyearofageandaverageageofdeathofpeoplewhosedeathwasduetoorinvolvedcovid19
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Aug 23, 2023
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Provisional deaths registration data for single year of age and average age of death (median and mean) of persons whose death involved coronavirus (COVID-19), England and Wales. Includes deaths due to COVID-19 and breakdowns by sex.

  7. d

    COVID-19 Cases and Deaths by Gender - ARCHIVE

    • catalog.data.gov
    • data.ct.gov
    Updated Aug 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ct.gov (2023). COVID-19 Cases and Deaths by Gender - ARCHIVE [Dataset]. https://catalog.data.gov/dataset/covid-19-cases-and-deaths-by-gender
    Explore at:
    Dataset updated
    Aug 12, 2023
    Dataset provided by
    data.ct.gov
    Description

    Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by gender. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the daily COVID-19 update. Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical examiner) using their best clinical judgment. Additionally, all COVID-19 deaths, including suspected or related, are required to be reported to OCME. On April 4, 2020, CT DPH and OCME released a joint memo to providers and facilities within Connecticut providing guidelines for certifying deaths due to COVID-19 that were consistent with the CDC’s guidelines and a reminder of the required reporting to OCME.25,26 As of July 1, 2021, OCME had reviewed every case reported and performed additional investigation on about one-third of reported deaths to better ascertain if COVID-19 did or did not cause or contribute to the death. Some of these investigations resulted in the OCME performing postmortem swabs for PCR testing on individuals whose deaths were suspected to be due to COVID-19, but antemortem diagnosis was unable to be made.31 The OCME issued or re-issued about 10% of COVID-19 death certificates and, when appropriate, removed COVID-19 from the death certificate. For standardization and tabulation of mortality statistics, written cause of death statements made by the certifiers on death certificates are sent to the National Center for Health Statistics (NCHS) at the CDC which assigns cause of death codes according to the International Causes of Disease 10th Revision (ICD-10) classification system.25,26 COVID-19 deaths in this report are defined as those for which the death certificate has an ICD-10 code of U07.1 as either a primary (underlying) or a contributing cause of death. More information on COVID-19 mortality can be found at the following link: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Mortality/Mortality-Statistics Data are reported daily, with timestamps indicated in the daily briefings posted at: portal.ct.gov/coronavirus. Data are subject to future revision as reporting changes. Starting in Ju

  8. COVID-19 Outcomes by Vaccination Status

    • kaggle.com
    zip
    Updated Jul 2, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kaushik D (2024). COVID-19 Outcomes by Vaccination Status [Dataset]. https://www.kaggle.com/datasets/kirbysasuke/covid-19
    Explore at:
    zip(90174 bytes)Available download formats
    Dataset updated
    Jul 2, 2024
    Authors
    Kaushik D
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    NOTE: This dataset has been retired and marked as historical-only.

    Weekly rates of COVID-19 cases, hospitalizations, and deaths among people living in Chicago by vaccination status and age.

    Rates for fully vaccinated and unvaccinated begin the week ending April 3, 2021 when COVID-19 vaccines became widely available in Chicago. Rates for boosted begin the week ending October 23, 2021 after booster shots were recommended by the Centers for Disease Control and Prevention (CDC) for adults 65+ years old and adults in certain populations and high risk occupational and institutional settings who received Pfizer or Moderna for their primary series or anyone who received the Johnson & Johnson vaccine.

    Chicago residency is based on home address, as reported in the Illinois Comprehensive Automated Immunization Registry Exchange (I-CARE) and Illinois National Electronic Disease Surveillance System (I-NEDSS).

    Outcomes: • Cases: People with a positive molecular (PCR) or antigen COVID-19 test result from an FDA-authorized COVID-19 test that was reported into I-NEDSS. A person can become re-infected with SARS-CoV-2 over time and so may be counted more than once in this dataset. Cases are counted by week the test specimen was collected. • Hospitalizations: COVID-19 cases who are hospitalized due to a documented COVID-19 related illness or who are admitted for any reason within 14 days of a positive SARS-CoV-2 test. Hospitalizations are counted by week of hospital admission. • Deaths: COVID-19 cases who died from COVID-19-related health complications as determined by vital records or a public health investigation. Deaths are counted by week of death.

    Vaccination status: • Fully vaccinated: Completion of primary series of a U.S. Food and Drug Administration (FDA)-authorized or approved COVID-19 vaccine at least 14 days prior to a positive test (with no other positive tests in the previous 45 days). • Boosted: Fully vaccinated with an additional or booster dose of any FDA-authorized or approved COVID-19 vaccine received at least 14 days prior to a positive test (with no other positive tests in the previous 45 days). • Unvaccinated: No evidence of having received a dose of an FDA-authorized or approved vaccine prior to a positive test.

    CLARIFYING NOTE: Those who started but did not complete all recommended doses of an FDA-authorized or approved vaccine prior to a positive test (i.e., partially vaccinated) are excluded from this dataset.

    Incidence rates for fully vaccinated but not boosted people (Vaccinated columns) are calculated as total fully vaccinated but not boosted with outcome divided by cumulative fully vaccinated but not boosted at the end of each week. Incidence rates for boosted (Boosted columns) are calculated as total boosted with outcome divided by cumulative boosted at the end of each week. Incidence rates for unvaccinated (Unvaccinated columns) are calculated as total unvaccinated with outcome divided by total population minus cumulative boosted, fully, and partially vaccinated at the end of each week. All rates are multiplied by 100,000.

    Incidence rate ratios (IRRs) are calculated by dividing the weekly incidence rates among unvaccinated people by those among fully vaccinated but not boosted and boosted people.

    Overall age-adjusted incidence rates and IRRs are standardized using the 2000 U.S. Census standard population.

    Population totals are from U.S. Census Bureau American Community Survey 1-year estimates for 2019.

    All data are provisional and subject to change. Information is updated as additional details are received and it is, in fact, very common for recent dates to be incomplete and to be updated as time goes on. This dataset reflects data known to CDPH at the time when the dataset is updated each week.

    Numbers in this dataset may differ from other public sources due to when data are reported and how City of Chicago boundaries are defined.

    For all datasets related to COVID-19, see https://data.cityofchic

  9. Determinants of COVID-19 mortality in the United States dataset(BrainX)

    • figshare.com
    txt
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Piyush Mathur; Anya Mathur; Tavpritesh Sethi; Simran Dua; Jacek B Cywinkski; Ashish K Khanna; Frank Papay; Kamal Maheswari (2023). Determinants of COVID-19 mortality in the United States dataset(BrainX) [Dataset]. http://doi.org/10.6084/m9.figshare.12780872.v4
    Explore at:
    txtAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Piyush Mathur; Anya Mathur; Tavpritesh Sethi; Simran Dua; Jacek B Cywinkski; Ashish K Khanna; Frank Papay; Kamal Maheswari
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    With the current COVID-19 pandemic, there have been various principal questions left unanswered. In response to these vital questions, many leading health professionals and researchers have brought forward new datasets. This data set uses several trusted sources to provide reliable information relating to the socioeconomic, racial, weather, healthcare resource utilization and travel data from all of the 50 states of the United States of America including District of Columbia in one dataset. The dataset includes numerous possible determinants of COVID-19 spread and mortality, all organized in a simple spreadsheet.COVID-19 positive rates and mortality in the dataset were obtained from https://covidtracking.com/data. All the data is accurate as of April 30,2020, reported through the sources.Two researchers collected data from available resources which include governmental and non-governmental sources.(See article and source table references below).With this dataset, explainable machine learning models showing relationship of these determinants with COVID-19 mortality in the United States cases were created.Reference: Mathur P, Sethi T, Mathur A, et al. Explainable machine learning models to understand determinants of COVID-19 mortality in the United States. medRxiv. 2020:2020.2005.2023.20110189.(Source table for the dataset is available as supplemental to this article.)This particular dataset was created for the purpose of continuing research into COVID-19. However, there are many other uses for this large dataset. With information from all 50 states and the District of Columbia, many US statistics can be compared.The data from this dataset can also be used to make new datasets with different purposes.

  10. Excess Deaths Associated with COVID-19

    • catalog.data.gov
    • healthdata.gov
    • +8more
    Updated Apr 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Excess Deaths Associated with COVID-19 [Dataset]. https://catalog.data.gov/dataset/excess-deaths-associated-with-covid-19
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    Effective September 27, 2023, this dataset will no longer be updated. Similar data are accessible from wonder.cdc.gov. Estimates of excess deaths can provide information about the burden of mortality potentially related to COVID-19, beyond the number of deaths that are directly attributed to COVID-19. Excess deaths are typically defined as the difference between observed numbers of deaths and expected numbers. This visualization provides weekly data on excess deaths by jurisdiction of occurrence. Counts of deaths in more recent weeks are compared with historical trends to determine whether the number of deaths is significantly higher than expected. Estimates of excess deaths can be calculated in a variety of ways, and will vary depending on the methodology and assumptions about how many deaths are expected to occur. Estimates of excess deaths presented in this webpage were calculated using Farrington surveillance algorithms (1). For each jurisdiction, a model is used to generate a set of expected counts, and the upper bound of the 95% Confidence Intervals (95% CI) of these expected counts is used as a threshold to estimate excess deaths. Observed counts are compared to these upper bound estimates to determine whether a significant increase in deaths has occurred. Provisional counts are weighted to account for potential underreporting in the most recent weeks. However, data for the most recent week(s) are still likely to be incomplete. Only about 60% of deaths are reported within 10 days of the date of death, and there is considerable variation by jurisdiction. More detail about the methods, weighting, data, and limitations can be found in the Technical Notes.

  11. O

    COVID-19 Cases and Deaths by Race/Ethnicity - ARCHIVE

    • data.ct.gov
    • s.cnmilf.com
    • +2more
    csv, xlsx, xml
    Updated Jun 24, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Public Health (2022). COVID-19 Cases and Deaths by Race/Ethnicity - ARCHIVE [Dataset]. https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-and-Deaths-by-Race-Ethnicity-ARCHIV/7rne-efic
    Explore at:
    xlsx, csv, xmlAvailable download formats
    Dataset updated
    Jun 24, 2022
    Dataset authored and provided by
    Department of Public Health
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve.

    The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj.

    The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 .

    The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 .

    The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed.

    COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by race and ethnicity. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the COVID-19 update.

    The following data show the number of COVID-19 cases and associated deaths per 100,000 population by race and ethnicity. Crude rates represent the total cases or deaths per 100,000 people. Age-adjusted rates consider the age of the person at diagnosis or death when estimating the rate and use a standardized population to provide a fair comparison between population groups with different age distributions. Age-adjustment is important in Connecticut as the median age of among the non-Hispanic white population is 47 years, whereas it is 34 years among non-Hispanic blacks, and 29 years among Hispanics. Because most non-Hispanic white residents who died were over 75 years of age, the age-adjusted rates are lower than the unadjusted rates. In contrast, Hispanic residents who died tend to be younger than 75 years of age which results in higher age-adjusted rates.

    The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used.

    Rates are standardized to the 2000 US Millions Standard population (data available here: https://seer.cancer.gov/stdpopulations/). Standardization was done using 19 age groups (0, 1-4, 5-9, 10-14, ..., 80-84, 85 years and older). More information about direct standardization for age adjustment is available here: https://www.cdc.gov/nchs/data/statnt/statnt06rv.pdf

    Categories are mutually exclusive. The category “multiracial” includes people who answered ‘yes’ to more than one race category. Counts may not add up to total case counts as data on race and ethnicity may be missing. Age adjusted rates calculated only for groups with more than 20 deaths. Abbreviation: NH=Non-Hispanic.

    Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical examiner) using their best clinical judgment. Additionally, all COVID-19 deaths, including suspected or related, are required to be reported to OCME. On April 4, 2020, CT DPH and OCME released a joint memo to providers and facilities within Connecticut providing guidelines for certifying deaths due to COVID-19 that were consistent with the CDC’s guidelines and a reminder of the required reporting to OCME.25,26 As of July 1, 2021, OCME had reviewed every case reported and performed additional investigation on about one-third of reported deaths to better ascertain if COVID-19 did or did not cause or contribute to the death. Some of these investigations resulted in the OCME performing postmortem swabs for PCR testing on individuals whose deaths were suspected to be due to COVID-19, but antemortem diagnosis was unable to be made.31 The OCME issued or re-issued about 10% of COVID-19 death certificates and, when appropriate, removed COVID-19 from the death certificate. For standardization and tabulation of mortality statistics, written cause of death statements made by the certifiers on death certificates are sent to the National Center for Health Statistics (NCHS) at the CDC which assigns cause of death codes according to the International Causes of Disease 10th Revision (ICD-10) classification system.25,26 COVID-19 deaths in this report are defined as those for which the death certificate has an ICD-10 code of U07.1 as either a primary (underlying) or a contributing cause of death. More information on COVID-19 mortality can be found at the following link: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Mortality/Mortality-Statistics

    Data are subject to future revision as reporting changes.

    Starting in July 2020, this dataset will be updated every weekday.

    Additional notes: A delay in the data pull schedule occurred on 06/23/2020. Data from 06/22/2020 was processed on 06/23/2020 at 3:30 PM. The normal data cycle resumed with the data for 06/23/2020.

    A network outage on 05/19/2020 resulted in a change in the data pull schedule. Data from 5/19/2020 was processed on 05/20/2020 at 12:00 PM. Data from 5/20/2020 was processed on 5/20/2020 8:30 PM. The normal data cycle resumed on 05/20/2020 with the 8:30 PM data pull. As a result of the network outage, the timestamp on the datasets on the Open Data Portal differ from the timestamp in DPH's daily PDF reports.

    Starting 5/10/2021, the date field will represent the date this data was updated on data.ct.gov. Previously the date the data was pulled by DPH was listed, which typically coincided with the date before the data was published on data.ct.gov. This change was made to standardize the COVID-19 data sets on data.ct.gov.

  12. a

    Data from: All-Cause Mortality

    • ph-lacounty.hub.arcgis.com
    • data.lacounty.gov
    • +1more
    Updated Dec 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2023). All-Cause Mortality [Dataset]. https://ph-lacounty.hub.arcgis.com/datasets/all-cause-mortality
    Explore at:
    Dataset updated
    Dec 21, 2023
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    Death rate has been age-adjusted by the 2000 U.S. standard populaton. All-cause mortality is an important measure of community health. All-cause mortality is heavily driven by the social determinants of health, with significant inequities observed by race and ethnicity and socioeconomic status. Black residents have consistently experienced the highest all-cause mortality rate compared to other racial and ethnic groups. During the COVID-19 pandemic, Latino residents also experienced a sharp increase in their all-cause mortality rate compared to White residents, demonstrating a reversal in the previously observed mortality advantage, in which Latino individuals historically had higher life expectancy and lower mortality than White individuals despite having lower socioeconomic status on average. The disproportionately high all-cause mortality rates observed among Black and Latino residents, especially since the onset of the COVID-19 pandemic, are due to differences in social and economic conditions and opportunities that unfairly place these groups at higher risk of developing and dying from a wide range of health conditions, including COVID-19.For more information about the Community Health Profiles Data Initiative, please see the initiative homepage.

  13. Data from: Estimated Deaths, Intensive Care Admissions and Hospitalizations...

    • figshare.com
    xlsx
    Updated Feb 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David Fisman (2023). Estimated Deaths, Intensive Care Admissions and Hospitalizations Averted in Canada during the COVID-19 Pandemic [Dataset]. http://doi.org/10.6084/m9.figshare.14036549.v3
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Feb 28, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    David Fisman
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Canada
    Description

    These datasets explore disparities in COVID-19 mortality observed in the US and Canada between January 2020 and early March 2021. Table 1 provides counts of deaths, hospitalizations, ICU admissions, and cases, by age, for Ontario, Canada (Canada's most populous province).

    Table 2 estimates deaths averted by Canada's response to the COVID-19 pandemic, relative to that in the United States, by "Canada-standardizing" the US epidemic (i.e., by applying US age-specific mortality to Canadian populations, in order to estimate the deaths that would have occurred in a Canadian pandemic with the same rates of death as have been observed in the US). Observed Canadian deaths are compared to "expected" deaths with a US-like response in order to estimate both deaths averted and SMR (Table 2).

    As Canadian age groups for purposes of death reporting are slightly different from those used in the US (e.g., 0-17 in the US vs. 0-19 in Canada), we reallocate Canadian deaths based on proportions of deaths occurring in 2-year age categories in Ontario (Table 1).

    Ontario age-specific case-fatality is used to inflate the deaths averted, in order to estimate cases averted. Ontario age-specific hospitalization and ICU risk (again derived from Table 1) are used to estimate hospitalizations and ICU admissions averted (Table 2).

    As of August 9, 2022, a new dataset has been added which applies the methodology described above to compare deaths in Canada to those in the United Kingdom, France, and Australia. Estimates of QALY loss, and healthcare costs averted, have also been added. Uncertainty bounds are estimated either as parametric confidence intervals, or as upper and lower bound 95% credible intervals through simulation (implemented using the random draw funding in Microsoft Excel).

    Errors in confidence intervals for QALY losses in France and Australia corrected February 28, 2023.

  14. l

    Cumulative COVID-19 Mortality

    • data.lacounty.gov
    • geohub.lacity.org
    • +1more
    Updated Dec 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2023). Cumulative COVID-19 Mortality [Dataset]. https://data.lacounty.gov/datasets/lacounty::cumulative-covid-19-mortality/about
    Explore at:
    Dataset updated
    Dec 21, 2023
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    Deaths were determined to be COVID-associated if they met the Department of Public Health's surveillance definition at the time of death.The cumulative COVID-19 mortality rate can be used to measure the most severe impacts of COVID-19 in a community. There have been documented inequities in COVID-19 mortality rates by demographic and geographic factors. Black and Brown residents, seniors, and those living in areas with higher rates of poverty have all been disproportionally impacted.For more information about the Community Health Profiles Data Initiative, please see the initiative homepage.

  15. Provisional Percent of Deaths for COVID-19, Influenza, and RSV

    • catalog.data.gov
    • data.virginia.gov
    • +3more
    Updated Sep 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Provisional Percent of Deaths for COVID-19, Influenza, and RSV [Dataset]. https://catalog.data.gov/dataset/provisional-percent-of-deaths-for-covid-19-influenza-and-rsv
    Explore at:
    Dataset updated
    Sep 28, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    This file contains the provisional percent of total deaths by week for COVID-19, Influenza, and Respiratory Syncytial Virus for deaths occurring among residents in the United States. Provisional data are based on non-final counts of deaths based on the flow of mortality data in National Vital Statistics System.

  16. Monthly COVID-19 Death Rates per 100,000 Population by Age Group, Race and...

    • catalog.data.gov
    • data.virginia.gov
    • +4more
    Updated Sep 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Monthly COVID-19 Death Rates per 100,000 Population by Age Group, Race and Ethnicity, Sex, and Region with Double Stratification [Dataset]. https://catalog.data.gov/dataset/monthly-covid-19-death-rates-per-100000-population-by-age-group-race-and-ethnicity-sex-and-98960
    Explore at:
    Dataset updated
    Sep 17, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    Monthly COVID-19 death rates per 100,000 population stratified by age group, race/ethnicity, sex, and region, with race/ethnicity by age group and age group by race/ethnicity double stratification

  17. COVID-19 Time-Series Metrics by County and State (ARCHIVED)

    • data.chhs.ca.gov
    • data.ca.gov
    • +3more
    csv, xlsx, zip
    Updated Nov 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). COVID-19 Time-Series Metrics by County and State (ARCHIVED) [Dataset]. https://data.chhs.ca.gov/dataset/covid-19-time-series-metrics-by-county-and-state
    Explore at:
    csv(7729431), csv(6223281), xlsx(11305), xlsx(7811), csv(3313), csv(4836928), xlsx(6471), zipAvailable download formats
    Dataset updated
    Nov 7, 2025
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    Description

    Note: This COVID-19 data set is no longer being updated as of December 1, 2023. Access current COVID-19 data on the CDPH respiratory virus dashboard (https://www.cdph.ca.gov/Programs/CID/DCDC/Pages/Respiratory-Viruses/RespiratoryDashboard.aspx) or in open data format (https://data.chhs.ca.gov/dataset/respiratory-virus-dashboard-metrics).

    As of August 17, 2023, data is being updated each Friday.

    For death data after December 31, 2022, California uses Provisional Deaths from the Center for Disease Control and Prevention’s National Center for Health Statistics (NCHS) National Vital Statistics System (NVSS). Prior to January 1, 2023, death data was sourced from the COVID-19 registry. The change in data source occurred in July 2023 and was applied retroactively to all 2023 data to provide a consistent source of death data for the year of 2023.

    As of May 11, 2023, data on cases, deaths, and testing is being updated each Thursday. Metrics by report date have been removed, but previous versions of files with report date metrics are archived below.

    All metrics include people in state and federal prisons, US Immigration and Customs Enforcement facilities, US Marshal detention facilities, and Department of State Hospitals facilities. Members of California's tribal communities are also included.

    The "Total Tests" and "Positive Tests" columns show totals based on the collection date. There is a lag between when a specimen is collected and when it is reported in this dataset. As a result, the most recent dates on the table will temporarily show NONE in the "Total Tests" and "Positive Tests" columns. This should not be interpreted as no tests being conducted on these dates. Instead, these values will be updated with the number of tests conducted as data is received.

  18. d

    Standardised excess mortality levels during the COVID-19 outbreak

    • datasets.ai
    8
    Updated Apr 28, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Plateforme ouverte des données publiques françaises (2020). Standardised excess mortality levels during the COVID-19 outbreak [Dataset]. https://datasets.ai/datasets/5ea7eaf11739179063ca0847
    Explore at:
    8Available download formats
    Dataset updated
    Apr 28, 2020
    Dataset authored and provided by
    Plateforme ouverte des données publiques françaises
    Description

    The actions of Public Health France

    Public Health France’s mission is to improve and protect the health of populations. During the health crisis linked to the COVID-19 epidemic, Public Health France is responsible for monitoring and understanding the dynamics of the epidemic, anticipating the various scenarios and implementing actions to prevent and limit the transmission of this virus on the national territory.

    Description of the dataset

    This dataset describes the level of standardised excess mortality during the COVID-19 outbreak, at the departmental and regional level.

    The level of excess mortality is described for two age categories: — for all ages; — for persons over 65 years of age.

    Method of calculating levels

    The data are derived from the administrative part of the death certificate, collected by the civil registry offices of the municipalities having a dematerialised transmission with INSEE. The observed number of deaths is compared to an expected number, estimated from a statistical model established by the EuroMomo consortium and used by 24 countries or regions in Europe.

    The estimation of excess deaths is based on the calculation of a standardised indicator (Z-score), which makes it possible to compare excesses between different geographical levels or age groups.

    The Z-score is calculated by the formula: (observed number — expected number)/standard deviation of expected number.

    The five categories of excess are defined as follows: — No excess: standardised Death Indicator (Z-score) < 2 — Moderate excess of death: standardised Death Indicator (Z-score) between 2 and 4.99 — High excess of death: standardised Death Indicator (Z-score) between 5 and 6.99: — Very high excess of death: standardised Death Indicator (Z-score) between 7 and 11.99: Exceptional excess of standardised death indicator of death (Z-score) greater than 12

    Limits of the calculation method

    The estimated excesses are established on a set of 3000 municipalities for which Santé publique France has a long history of data. These 3000 municipalities account for 77 % of national mortality, varying from 63 % to 96 % depending on the regions and from 42 % to 98 % depending on the departments.

    Taking into account the legal deadlines for declaring a death to civil status and the time taken by the civil registry office to enter the information, a period between the occurrence of the death and the arrival of the information at Santé publique France is observed. This period can be extended punctually (public holidays, extended weekends, bridges, school holidays, very strong epidemic period, confinement). Mortality data are considered consolidated within 30 days.

  19. Deaths due to COVID-19 by local area and deprivation

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated May 20, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2021). Deaths due to COVID-19 by local area and deprivation [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/deathsduetocovid19bylocalareaanddeprivation
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    May 20, 2021
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Provisional age-standardised mortality rates for deaths due to COVID-19 by sex, local authority and deprivation indices, and numbers of deaths by middle-layer super output area.

  20. Coronavirus (COVID-19) related deaths by occupation, England and Wales

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Jan 25, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2021). Coronavirus (COVID-19) related deaths by occupation, England and Wales [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/causesofdeath/datasets/coronaviruscovid19relateddeathsbyoccupationenglandandwales
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jan 25, 2021
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Provisional counts of the number of deaths and age-standardised mortality rates involving the coronavirus (COVID-19), by occupational groups, for deaths registered between 9 March and 28 December 2020 in England and Wales. Figures are provided for males and females.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://github.com/nytimes/covid-19-data

Coronavirus (Covid-19) Data in the United States

Explore at:
csvAvailable download formats
Dataset provided by
New York Times
License

https://github.com/nytimes/covid-19-data/blob/master/LICENSEhttps://github.com/nytimes/covid-19-data/blob/master/LICENSE

Description

The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

Since the first reported coronavirus case in Washington State on Jan. 21, 2020, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

Search
Clear search
Close search
Google apps
Main menu