87 datasets found
  1. C

    Poverty Rate

    • data.ccrpc.org
    csv
    Updated Oct 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Champaign County Regional Planning Commission (2024). Poverty Rate [Dataset]. https://data.ccrpc.org/dataset/poverty-rate
    Explore at:
    csvAvailable download formats
    Dataset updated
    Oct 17, 2024
    Dataset authored and provided by
    Champaign County Regional Planning Commission
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Description

    This poverty rate data shows what percentage of the measured population* falls below the poverty line. Poverty is closely related to income: different “poverty thresholds” are in place for different sizes and types of household. A family or individual is considered to be below the poverty line if that family or individual’s income falls below their relevant poverty threshold. For more information on how poverty is measured by the U.S. Census Bureau (the source for this indicator’s data), visit the U.S. Census Bureau’s poverty webpage.

    The poverty rate is an important piece of information when evaluating an area’s economic health and well-being. The poverty rate can also be illustrative when considered in the contexts of other indicators and categories. As a piece of data, it is too important and too useful to omit from any indicator set.

    The poverty rate for all individuals in the measured population in Champaign County has hovered around roughly 20% since 2005. However, it reached its lowest rate in 2021 at 14.9%, and its second lowest rate in 2023 at 16.3%. Although the American Community Survey (ACS) data shows fluctuations between years, given their margins of error, none of the differences between consecutive years’ estimates are statistically significant, making it impossible to identify a trend.

    Poverty rate data was sourced from the U.S. Census Bureau’s American Community Survey 1-Year Estimates, which are released annually.

    As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.

    Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.

    For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Poverty Status in the Past 12 Months by Age.

    *According to the U.S. Census Bureau document “How Poverty is Calculated in the ACS," poverty status is calculated for everyone but those in the following groups: “people living in institutional group quarters (such as prisons or nursing homes), people in military barracks, people in college dormitories, living situations without conventional housing, and unrelated individuals under 15 years old."

    Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (17 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (25 September 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (16 September 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (8 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (8 June 2021).; U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (14 September 2017).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).

  2. d

    EOA.B.1 - Number and percentage of residents living below the poverty level...

    • datasets.ai
    Updated Nov 12, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Austin (2020). EOA.B.1 - Number and percentage of residents living below the poverty level (poverty rate) [Dataset]. https://datasets.ai/datasets/number-and-percentage-of-residents-living-below-the-poverty-level-poverty-rate
    Explore at:
    Dataset updated
    Nov 12, 2020
    Dataset authored and provided by
    City of Austin
    Description

    This measure answers the question of what number and percentage of residents are living below the federal poverty level, which means they meet certain threshold set by a set of parameters and computation performed by the Census Bureau. Following the Office of Management and Budget's (OMB) Statistical Policy Directive 14, the Census Bureau uses a set of money income thresholds that vary by family size and composition to determine who is in poverty. If a family's total income is less than the family's threshold, then that family and every individual in it is considered in poverty. The official poverty thresholds do not vary geographically, but they are updated for inflation using the Consumer Price Index (CPI-U). The official poverty definition uses money income before taxes and does not include capital gains or noncash benefits (such as public housing, Medicaid, and food stamps). Data collected from the U.S. Census Bureau, American Communities Survey (1yr), Poverty Status in the Past 12 Months (Table S1701). American Communities Survey (ACS) is a survey with sampled statistics on the citywide level and is subject to a margin of error. ACS sample size and data quality measures can be found on the U.S. Census website in the Methodology section.

  3. Vital Signs: Poverty - by city

    • data.bayareametro.gov
    • open-data-demo.mtc.ca.gov
    csv, xlsx, xml
    Updated Dec 12, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau (2018). Vital Signs: Poverty - by city [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Poverty-by-city/if2n-3uk8
    Explore at:
    csv, xlsx, xmlAvailable download formats
    Dataset updated
    Dec 12, 2018
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    U.S. Census Bureau
    Description

    VITAL SIGNS INDICATOR Poverty (EQ5)

    FULL MEASURE NAME The share of the population living in households that earn less than 200 percent of the federal poverty limit

    LAST UPDATED December 2018

    DESCRIPTION Poverty refers to the share of the population living in households that earn less than 200 percent of the federal poverty limit, which varies based on the number of individuals in a given household. It reflects the number of individuals who are economically struggling due to low household income levels.

    DATA SOURCE U.S Census Bureau: Decennial Census http://www.nhgis.org (1980-1990) http://factfinder2.census.gov (2000)

    U.S. Census Bureau: American Community Survey Form C17002 (2006-2017) http://api.census.gov

    METHODOLOGY NOTES (across all datasets for this indicator) The U.S. Census Bureau defines a national poverty level (or household income) that varies by household size, number of children in a household, and age of householder. The national poverty level does not vary geographically even though cost of living is different across the United States. For the Bay Area, where cost of living is high and incomes are correspondingly high, an appropriate poverty level is 200% of poverty or twice the national poverty level, consistent with what was used for past equity work at MTC and ABAG. For comparison, however, both the national and 200% poverty levels are presented.

    For Vital Signs, the poverty rate is defined as the number of people (including children) living below twice the poverty level divided by the number of people for whom poverty status is determined. Poverty rates do not include unrelated individuals below 15 years old or people who live in the following: institutionalized group quarters, college dormitories, military barracks, and situations without conventional housing. The household income definitions for poverty change each year to reflect inflation. The official poverty definition uses money income before taxes and does not include capital gains or noncash benefits (such as public housing, Medicaid, and food stamps). For the national poverty level definitions by year, see: https://www.census.gov/hhes/www/poverty/data/threshld/index.html For an explanation on how the Census Bureau measures poverty, see: https://www.census.gov/hhes/www/poverty/about/overview/measure.html

    For the American Community Survey datasets, 1-year data was used for region, county, and metro areas whereas 5-year rolling average data was used for city and census tract.

    To be consistent across metropolitan areas, the poverty definition for non-Bay Area metros is twice the national poverty level. Data were not adjusted for varying income and cost of living levels across the metropolitan areas.

  4. U.S. poverty rate 1990-2024

    • statista.com
    Updated Nov 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). U.S. poverty rate 1990-2024 [Dataset]. https://www.statista.com/statistics/200463/us-poverty-rate-since-1990/
    Explore at:
    Dataset updated
    Nov 19, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2024, approximately 10.6 percent of the population was living below the national poverty line in the United States. This reflected a 0.5 percentage point decrease from the previous year. Most recently, poverty levels in the country peaked in 2010 at just over 15 percent. Poverty in the U.S. States The number of people living in poverty in the U.S. as well as poverty rates, vary greatly from state to state. With their large populations, California and Texas led that charts in terms of the size of their impoverished residents. On the other hand, Louisiana had the highest rates of poverty, standing at 20 percent in 2024. The state with the lowest poverty rate was New Hampshire at 5.9 percent. Vulnerable populations The poverty rate in the United States varies widely across different ethnic groups. American Indians and Alaska Natives are the ethnic group with the highest levels of poverty in 2024, with about 19 percent earning an income below the official threshold. In comparison, only about 7.5 percent of the White (non-Hispanic) and Asian populations were living below the poverty line. Children are one of the most poverty endangered population groups in the U.S. between 1990 and 2024. Child poverty peaked in 1993 with 22.7 percent of children living in poverty. Despite fluctuations, in 2024, poverty among minors reached its lowest level in decades, falling to 14.3 percent.

  5. variability in the poverty rate in the US counties

    • kaggle.com
    zip
    Updated Jan 16, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    rahul patil (2018). variability in the poverty rate in the US counties [Dataset]. https://www.kaggle.com/rrp170330/variability-in-the-poverty-rate-in-the-us-counties
    Explore at:
    zip(3382403 bytes)Available download formats
    Dataset updated
    Jan 16, 2018
    Authors
    rahul patil
    Area covered
    United States
    Description

    Goal and Objective : Primary objective is to study variability in the poverty rate in the US counties by means of one or more of independent or control variable and provide best suitable model to quantify relationships in determining target value Our goal is to design various models to take into consideration the effect of various factors like employment, population and education to predict the poverty rate in all US Counties We further wish to analyze the status of a county based on whether it is metropolitan or not

    List of datasets:

    Socioeconomic indicators like poverty rates, population change, unemployment rates, and education levels vary geographically across U.S. States and counties 1. Unemployment 2. PovertyEstimates 3.Population Estimates 4. Education

    All the four individual datasets have common unique id FIPS Code defined as State-County FIPS Code. It is unique for each county falling under the states. In our dataset, we are covering all 52 USA states including federal district DC and Puerto Rico.

    Data Modelling :

    Target Variable: Metro_2015 – This binary variable shows status of County as Metro or Non-Metro A decision tree model designed using Metro_2015 as target variable will efficiently determine the classification of the population into Metro and Non-metro counties. Dataset will be partitioned into training and validation datasets before implementing decision tree rules. The attributes that will be considered in selecting best model will be fit statistics, misclassification rate, and average square error.

    Clustering can be performed to create the collection of objects similar to each other which will give insight into data distribution. Variables will be standardized before performing clustering to avoid noisy data and outliers. Euclidean distance will be the measure to determine stability and separation.

    Recommendation :

    The regression equation determines % Poverty rate in a particular county based on significant factors. This model can be This model can be used by education boards to increase or decrease the funds spent on the education system in different counties in order to lower the poverty rate. Census board can use this model in identifying poverty line index based on a population estimate an average household income. By estimating the poverty rate and considering factors like unemployment and education, an analysis can be done to set up employment opportunities in targeted counties.

  6. Vital Signs: Poverty - by tract

    • data.bayareametro.gov
    csv, xlsx, xml
    Updated Dec 12, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau (2018). Vital Signs: Poverty - by tract [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Poverty-by-tract/974p-p6wz
    Explore at:
    csv, xlsx, xmlAvailable download formats
    Dataset updated
    Dec 12, 2018
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    U.S. Census Bureau
    Description

    VITAL SIGNS INDICATOR Poverty (EQ5)

    FULL MEASURE NAME The share of the population living in households that earn less than 200 percent of the federal poverty limit

    LAST UPDATED December 2018

    DESCRIPTION Poverty refers to the share of the population living in households that earn less than 200 percent of the federal poverty limit, which varies based on the number of individuals in a given household. It reflects the number of individuals who are economically struggling due to low household income levels.

    DATA SOURCE U.S Census Bureau: Decennial Census http://www.nhgis.org (1980-1990) http://factfinder2.census.gov (2000)

    U.S. Census Bureau: American Community Survey Form C17002 (2006-2017) http://api.census.gov

    METHODOLOGY NOTES (across all datasets for this indicator) The U.S. Census Bureau defines a national poverty level (or household income) that varies by household size, number of children in a household, and age of householder. The national poverty level does not vary geographically even though cost of living is different across the United States. For the Bay Area, where cost of living is high and incomes are correspondingly high, an appropriate poverty level is 200% of poverty or twice the national poverty level, consistent with what was used for past equity work at MTC and ABAG. For comparison, however, both the national and 200% poverty levels are presented.

    For Vital Signs, the poverty rate is defined as the number of people (including children) living below twice the poverty level divided by the number of people for whom poverty status is determined. Poverty rates do not include unrelated individuals below 15 years old or people who live in the following: institutionalized group quarters, college dormitories, military barracks, and situations without conventional housing. The household income definitions for poverty change each year to reflect inflation. The official poverty definition uses money income before taxes and does not include capital gains or noncash benefits (such as public housing, Medicaid, and food stamps). For the national poverty level definitions by year, see: https://www.census.gov/hhes/www/poverty/data/threshld/index.html For an explanation on how the Census Bureau measures poverty, see: https://www.census.gov/hhes/www/poverty/about/overview/measure.html

    For the American Community Survey datasets, 1-year data was used for region, county, and metro areas whereas 5-year rolling average data was used for city and census tract.

    To be consistent across metropolitan areas, the poverty definition for non-Bay Area metros is twice the national poverty level. Data were not adjusted for varying income and cost of living levels across the metropolitan areas.

  7. ACS Poverty Status Variables - Boundaries

    • hub.arcgis.com
    • covid-hub.gio.georgia.gov
    • +6more
    Updated Oct 22, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Poverty Status Variables - Boundaries [Dataset]. https://hub.arcgis.com/maps/0e468b75bca545ee8dc4b039cbb5aff6
    Explore at:
    Dataset updated
    Oct 22, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows poverty status by age group. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Poverty status is based on income in past 12 months of survey. This layer is symbolized to show the percentage of the population whose income falls below the Federal poverty line. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B17020, C17002Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  8. Health Outcomes and Socioeconomic Factors

    • kaggle.com
    zip
    Updated Dec 3, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2022). Health Outcomes and Socioeconomic Factors [Dataset]. https://www.kaggle.com/datasets/thedevastator/uncovering-trends-in-health-outcomes-and-socioec/code
    Explore at:
    zip(355475 bytes)Available download formats
    Dataset updated
    Dec 3, 2022
    Authors
    The Devastator
    Description

    Health Outcomes and Socioeconomic Factors

    A Study of US County Data

    By Data Exercises [source]

    About this dataset

    This dataset contains a wealth of health-related information and socio-economic data aggregated from multiple sources such as the American Community Survey, clinicaltrials.gov, and cancer.gov, covering a variety of US counties. Your task is to use this collection of data to build an Ordinary Least Squares (OLS) regression model that predicts the target death rate in each county. The model should incorporate variables related to population size, health insurance coverage, educational attainment levels, median incomes and poverty rates. Additionally you will need to assess linearity between your model parameters; measure serial independence among errors; test for heteroskedasticity; evaluate normality in the residual distribution; identify any outliers or missing values and determine how categories variables are handled; compare models through implementation with k=10 cross validation within linear regressions as well as assessing multicollinearity among model parameters. Examine your results by utilizing statistical agreements such as R-squared values and Root Mean Square Error (RMSE) while also interpreting implications uncovered by your analysis based on health outcomes compared to correlates among demographics surrounding those effected most closely by land structure along geographic boundaries throughout the United States

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset provides data on health outcomes, demographics, and socio-economic factors for various US counties from 2010-2016. It can be used to uncover trends in health outcomes and socioeconomic factors across different counties in the US over a six year period.

    The dataset contains a variety of information including statefips (a two digit code that identifies the state), countyfips (a three digit code that identifies the county), avg household size, avg annual count of cancer cases, average deaths per year, target death rate, median household income, population estimate for 2015, poverty percent study per capita binned income as well as demographic information such as median age of male and female population percent married households adults with no high school diploma adults with high school diploma percentage with some college education bachelor's degree holders among adults over 25 years old employed persons 16 and over unemployed persons 16 and over private coverage available private coverage available alone temporary private coverage available public coverage available public coverage available alone percentages of white black Asian other race married households and birth rate.

    Using this dataset you can build a multivariate ordinary least squares regression model to predict “target_deathrate”. You will also need to implement k-fold (k=10) cross validation to best select your model parameters. Model diagnostics should be performed in order to assess linearity serial independence heteroskedasticity normality multicollinearity etc., while outliers missing values or categorical variables will also have an effect your model selection process. Finally it is important to interpret the resulting models within their context based upon all given factors associated with it such as outliers missing values demographic changes etc., before arriving at a meaningful conclusion which may explain trends in health outcomes and socioeconomic factors found within this dataset

    Research Ideas

    • Analysis of factors influencing target deathrates in different US counties.
    • Prediction of the effects of varying poverty levels on health outcomes in different US counties.
    • In-depth analysis of how various socio-economic factors (e.g., median income, educational attainment, etc.) contribute to overall public health outcomes in US counties

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. -...

  9. Percentage People Below Poverty Level

    • kaggle.com
    zip
    Updated Aug 6, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mustafa Ali Bilkay (2019). Percentage People Below Poverty Level [Dataset]. https://www.kaggle.com/musti12/percentage-people-below-poverty-level
    Explore at:
    zip(214004 bytes)Available download formats
    Dataset updated
    Aug 6, 2019
    Authors
    Mustafa Ali Bilkay
    Description

    Dataset

    This dataset was created by Mustafa Ali Bilkay

    Contents

  10. M

    Vital Signs: Poverty - Bay Area

    • open-data-demo.mtc.ca.gov
    • data.bayareametro.gov
    csv, xlsx, xml
    Updated Jan 8, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau (2019). Vital Signs: Poverty - Bay Area [Dataset]. https://open-data-demo.mtc.ca.gov/widgets/38fe-vd33
    Explore at:
    xml, csv, xlsxAvailable download formats
    Dataset updated
    Jan 8, 2019
    Dataset authored and provided by
    U.S. Census Bureau
    Area covered
    San Francisco Bay Area
    Description

    VITAL SIGNS INDICATOR Poverty (EQ5)

    FULL MEASURE NAME The share of the population living in households that earn less than 200 percent of the federal poverty limit

    LAST UPDATED December 2018

    DESCRIPTION Poverty refers to the share of the population living in households that earn less than 200 percent of the federal poverty limit, which varies based on the number of individuals in a given household. It reflects the number of individuals who are economically struggling due to low household income levels.

    DATA SOURCE U.S Census Bureau: Decennial Census http://www.nhgis.org (1980-1990) http://factfinder2.census.gov (2000)

    U.S. Census Bureau: American Community Survey Form C17002 (2006-2017) http://api.census.gov

    METHODOLOGY NOTES (across all datasets for this indicator) The U.S. Census Bureau defines a national poverty level (or household income) that varies by household size, number of children in a household, and age of householder. The national poverty level does not vary geographically even though cost of living is different across the United States. For the Bay Area, where cost of living is high and incomes are correspondingly high, an appropriate poverty level is 200% of poverty or twice the national poverty level, consistent with what was used for past equity work at MTC and ABAG. For comparison, however, both the national and 200% poverty levels are presented.

    For Vital Signs, the poverty rate is defined as the number of people (including children) living below twice the poverty level divided by the number of people for whom poverty status is determined. Poverty rates do not include unrelated individuals below 15 years old or people who live in the following: institutionalized group quarters, college dormitories, military barracks, and situations without conventional housing. The household income definitions for poverty change each year to reflect inflation. The official poverty definition uses money income before taxes and does not include capital gains or noncash benefits (such as public housing, Medicaid, and food stamps). For the national poverty level definitions by year, see: https://www.census.gov/hhes/www/poverty/data/threshld/index.html For an explanation on how the Census Bureau measures poverty, see: https://www.census.gov/hhes/www/poverty/about/overview/measure.html

    For the American Community Survey datasets, 1-year data was used for region, county, and metro areas whereas 5-year rolling average data was used for city and census tract.

    To be consistent across metropolitan areas, the poverty definition for non-Bay Area metros is twice the national poverty level. Data were not adjusted for varying income and cost of living levels across the metropolitan areas.

  11. g

    Strategic Measure EOA.B.1 Number and percentage of residents living below...

    • gimi9.com
    Updated Jul 6, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). Strategic Measure EOA.B.1 Number and percentage of residents living below the poverty level | gimi9.com [Dataset]. https://gimi9.com/dataset/data-gov_strategic-measure-eoa-b-1-number-and-percentage-of-residents-living-below-the-poverty-leve/
    Explore at:
    Dataset updated
    Jul 6, 2017
    Description

    This is a historical measure for Strategic Direction 2023. For more data on Austin demographics please visit austintexas.gov/demographics. This measure answers the question of what number and percentage of residents are living below the federal poverty level, which means they meet certain thresholds set by a set of parameters and computation performed by the Census Bureau. Following the Office of Management and Budget's (OMB) Statistical Policy Directive 14, the Census Bureau uses a set of money income thresholds that vary by family size and composition to determine who is in poverty. If a family's total income is less than the family's threshold, then that family and every individual in it is considered in poverty. The official poverty thresholds do not vary geographically, but they are updated for inflation using the Consumer Price Index (CPI-U). The official poverty definition uses money income before taxes and does not include capital gains or noncash benefits (such as public housing, Medicaid, and food stamps). Data collected from the U.S. Census Bureau, American Communities Survey (1yr), Poverty Status in the Past 12 Months (Table S1701). American Communities Survey (ACS) is a survey with sampled statistics on the citywide level and is subject to a margin of error. ACS sample size and data quality measures can be found on the U.S. Census website in the Methodology section. View more details and insights related to this data set on the story page:https://data.austintexas.gov/stories/s/kgf9-tcgd

  12. County-level Data Sets

    • agdatacommons.nal.usda.gov
    • catalog.data.gov
    • +2more
    bin
    Updated Apr 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    USDA Economic Research Service (2025). County-level Data Sets [Dataset]. https://agdatacommons.nal.usda.gov/articles/dataset/County-level_Data_Sets/25696599
    Explore at:
    binAvailable download formats
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    Economic Research Servicehttp://www.ers.usda.gov/
    Authors
    USDA Economic Research Service
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Socioeconomic indicators like the poverty rate, population change, unemployment rate, and education levels vary across the nation. ERS has compiled the latest data on these measures into a mapping and data display/download application that allows users to identify and compare States and counties on these indicators.This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: Poverty Population Unemployment Education Web page with links to Excel files For complete information, please visit https://data.gov.

  13. Racially or Ethnically Concentrated Areas of Poverty (R/ECAPs)

    • data.lojic.org
    • catalog.data.gov
    • +3more
    Updated Aug 21, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Housing and Urban Development (2023). Racially or Ethnically Concentrated Areas of Poverty (R/ECAPs) [Dataset]. https://data.lojic.org/datasets/56de4edea8264fe5a344da9811ef5d6e
    Explore at:
    Dataset updated
    Aug 21, 2023
    Dataset provided by
    United States Department of Housing and Urban Developmenthttp://www.hud.gov/
    Authors
    Department of Housing and Urban Development
    Area covered
    Description

    To assist communities in identifying racially/ethnically-concentrated areas of poverty (R/ECAPs), HUD has developed a census tract-based definition of R/ECAPs. The definition involves a racial/ethnic concentration threshold and a poverty test. The racial/ethnic concentration threshold is straightforward: R/ECAPs must have a non-white population of 50 percent or more. Regarding the poverty threshold, Wilson (1980) defines neighborhoods of extreme poverty as census tracts with 40 percent or more of individuals living at or below the poverty line. Because overall poverty levels are substantially lower in many parts of the country, HUD supplements this with an alternate criterion. Thus, a neighborhood can be a R/ECAP if it has a poverty rate that exceeds 40% or is three or more times the average tract poverty rate for the metropolitan/micropolitan area, whichever threshold is lower. Census tracts with this extreme poverty that satisfy the racial/ethnic concentration threshold are deemed R/ECAPs. This translates into the following equation: Where i represents census tracts, () is the metropolitan/micropolitan (CBSA) mean tract poverty rate, is the ith tract poverty rate, () is the non-Hispanic white population in tract i, and Pop is the population in tract i.While this definition of R/ECAP works well for tracts in CBSAs, place outside of these geographies are unlikely to have racial or ethnic concentrations as high as 50 percent. In these areas, the racial/ethnic concentration threshold is set at 20 percent.

    Data Source: American Community Survey (ACS), 2009-2013; Decennial Census (2010); Brown Longitudinal Tract Database (LTDB) based on decennial census data, 1990, 2000 & 2010.

    Related AFFH-T Local Government, PHA Tables/Maps: Table 4, 7; Maps 1-17. Related AFFH-T State Tables/Maps: Table 4, 7; Maps 1-15, 18.

    References:Wilson, William J. (1980). The Declining Significance of Race: Blacks and Changing American Institutions. Chicago: University of Chicago Press.

    To learn more about R/ECAPs visit:https://www.hud.gov/program_offices/fair_housing_equal_opp/affh ; https://www.hud.gov/sites/dfiles/FHEO/documents/AFFH-T-Data-Documentation-AFFHT0006-July-2020.pdf, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. Date of Coverage: 11/2017

  14. d

    Low Food Access Areas

    • catalog.data.gov
    • datasets.ai
    • +3more
    Updated Feb 4, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Washington, DC (2025). Low Food Access Areas [Dataset]. https://catalog.data.gov/dataset/low-food-access-areas
    Explore at:
    Dataset updated
    Feb 4, 2025
    Dataset provided by
    City of Washington, DC
    Description

    Polygons in this layer represent low food access areas: areas of the District of Columbia which are estimated to be more than a 10-minute walk from the nearest full-service grocery store. These have been merged with Census poverty data to estimate how much of the population within these areas is food insecure (below 185% of the federal poverty line in addition to living in a low food access area).Office of Planning GIS followed several steps to create this layer, including: transit analysis, to eliminate areas of the District within a 10-minute walk of a grocery store; non-residential analysis, to eliminate areas of the District which do not contain residents and cannot classify as low food access areas (such as parks and the National Mall); and Census tract division, to estimate population and poverty rates within the newly created polygon boundaries.Fields contained in this layer include:Intermediary calculation fields for the aforementioned analysis, and:PartPop2: The total population estimated to live within the low food access area polygon (derived from Census tract population, assuming even distribution across the polygon after removing non-residential areas, followed by the removal of population living within a grocery store radius.)PrtOver185: The portion of PartPop2 which is estimated to have household income above 185% of the federal poverty line (the food secure population)PrtUnd185: The portion of PartPop2 which is estimated to have household income below 185% of the federal poverty line (the food insecure population)PercentUnd185: A calculated field showing PrtUnd185 as a percent of PartPop2. This is the percent of the population in the polygon which is food insecure (both living in a low food access area and below 185% of the federal poverty line).Note that the polygon representing Joint Base Anacostia-Bolling was removed from this analysis. While technically classifying as a low food access area based on the OP Grocery Stores layer (since the JBAB Commissary, which only serves military members, is not included in that layer), it is recognized that those who do live on the base have access to the commissary for grocery needs.Last updated November 2017.

  15. Adjusted Income and Poverty in the US

    • kaggle.com
    zip
    Updated Jan 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Adjusted Income and Poverty in the US [Dataset]. https://www.kaggle.com/datasets/thedevastator/equivalence-adjusted-income-and-poverty-in-the-u/code
    Explore at:
    zip(144680 bytes)Available download formats
    Dataset updated
    Jan 8, 2023
    Authors
    The Devastator
    Area covered
    United States
    Description

    Adjusted Income and Poverty in the US

    Changes in People and Health Insurance

    By U.S. Census Bureau [source]

    About this dataset

    The U.S. Bureau of the Census' Current Population Survey, Annual Social and Economic Supplements, presents an insightful look into American society at any given time period. Through it's annual data, one can understand the makeup of a nation across a multitude of parameters--including income level distribution measures, poverty status characteristics and health insurance coverage broken down by age, race/ethnicity and gender.

    This chart series is like a snapshot into America's past--allowing us to monitor both current progress made in regards to economic stability while also reflecting on the growth (or lack thereof) achieved over different decades in terms of racial discrepancies in poverty levels as well as an individual's ability present etc to maintain financial health. The series looks at data collected from 1959-2015; providing information on number/percentage all noninstitutionalized population (15+ years old) who are below or above poverty thresholds as well as median earnings for male/female earners adjusted for real inflation values (based on current dollars). Insights such as these enable us to gain key information about how economic disparities have fared during each year throughout this half century time span and how policy changes have impacted the overall wellbeing on a national level since then

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    Introduction

    This dataset contains information on the equivalence-adjusted income and poverty in the US from 1967 to 2015. It includes information on the population without health insurance coverage by state, total workers and full-time, year-round workers by sex and female-to-male earnings ratio, selected measures of equivalence-adjusted income dispersion, people in poverty by selected characteristics, and measures of income inequality. This guide will explain how to use this dataset effectively for analysis.

    Data Overview

    The datasets contain both summary statistics and detailed breakdowns for different categories throughout the years 1967 to 2015. In Table A1 you can find data on population without health insurance coverage by state during that time period. Table A4 contains total numbers of workers as well as real median earning details organized by sex and male/female earning ratios over time period in question. The tables A3 through 5 include more specific details related to measurements of Equivalence Adjusted Income Dispersion such as Gini Coefficient values.. Both table 2 & 3 provides detail breakdowns relating to Income distribution measurements between 2014 & 2015 along with other related statistical figures regarding individuals below poverty line during this time period based upon age , race , Hispanic Origin factors.

    Data Cleaning/Preparation Specifics

    This dataset follows a similar notation used throughout each table so it shouldn't be difficult understand what is being represented .However representing individual components like Gini Coefficient (TableA3) or Female ratio Vs Male earnings remains abstract in comparison especially when attempting visualization techniques (Charting). In order for users not familiar with certain terms like “Equivalence -Adjusted Income Dispersion” it would need explaining thoroughly or these terms should at least be highlighted & avoid confusing readers . Level out Missing Data that is within range statistically makes sense according “Census Technical Docs” . For example missing value data pertaining Individual Poverty estimates have based upon qualification requirements where numbers are rounded up after exchange calculations ( See official Raw Data column Notes available under Sources ).

    Visualization Strategies

    For effective visualization there needs be understanding between what counts supplied are actually representing For example: Column such as Difference Between Female & Male Earnings shown TableA4 helps gauge pay gap but difference between % Measures significantly important when charting any changes overtime diagrams or identifying movements visually from various bar /line graphs dealing this type data set . Other numerical aspects such Gender Ratio

    Research Ideas

    • Tracking changes in poverty levels over time by state and ethnicity
    • Examining the impact of government programs like the EITC and CTC on pov...
  16. US County Demographics

    • kaggle.com
    zip
    Updated Jan 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). US County Demographics [Dataset]. https://www.kaggle.com/datasets/thedevastator/us-county-demographics/data
    Explore at:
    zip(7779793 bytes)Available download formats
    Dataset updated
    Jan 24, 2023
    Authors
    The Devastator
    Area covered
    United States
    Description

    US County Demographics

    Social, Health, and Economic Indicators

    By Danny [source]

    About this dataset

    This dataset contains US county-level demographic data from 2016, giving insight into the health and economic conditions of counties in the United States. Aggregated and filtered from various sources such as the US Census Small Area Income and Poverty Estimates (SAIPE) Program, American Community Survey, CDC National Center for Health Statistics, and more, this comprehensive dataset provides information on population as well as desert population for each county. Additionally, data is split between metropolitan and nonmetropolitan areas according to the Office of Management and Budget's 2013 classification scheme. Valuable information pertaining to infant mortality rates and total population are also included in this detailed set of data. Use this dataset to gain a better understanding of one of our nation's most essential regions

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    • Look at the information within the 'About this Dataset' section to have an understanding of what data sources were used to create this dataset as well as any transformations that may have been done while creating it.
    • Familiarize yourself with the columns provided in the data set to understand what information is available for each county such as total population (totpop), parental education level (educationLvl), median household income (medianIncome), etc.,
    • Use a combination of filtering and sorting techniques to narrow down results and focus in on more specific county demographics that you are looking for such as total households living below poverty line by state or median household income per capita between two counties etc.,
    • Keep in mind any additional transformations/simplifications/aggregations done during step 2 when using your data for analysis. For example, if certain variables were pivoted during step two from being rows into columns because it was easier to work with multiple years of income levels by having them all consolidated into one column then be aware that some states may not appear in all records due to those transformations being applied differently between regions which could result in missing values or other inconsistencies when doing downstream analysis on your selected variables.
    • Utilize resources such as Wikipedia and government census estimates if you need more detailed information surrounding these demographic characteristics beyond what's available within our current dataset – these can be helpful when conducting further research outside of solely relying on our provided spreadsheet values alone!

    Research Ideas

    • Creating a US county-level heat map of infant mortality rates, offering insight into which areas are most at risk for poor health outcomes.
    • Generating predictive models from the population data to anticipate and prepare for future population trends in different states or regions.
    • Developing an interactive web-based tool for school districts to explore potential impacts of student mobility on their area's population stability and diversity

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.

    Columns

    File: Food Desert.csv | Column name | Description | |:--------------------|:----------------------------------------------------------------------------------| | year | The year the data was collected. (Integer) | | fips | The Federal Information Processing Standard (FIPS) code for the county. (Integer) | | state_fips | The FIPS code for the state. (Integer) | | county_fips | The FIPS code for the county. (Integer)...

  17. d

    Year and State wise Poverty Rate-Number of Persons and Percentage

    • dataful.in
    Updated Nov 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataful (Factly) (2025). Year and State wise Poverty Rate-Number of Persons and Percentage [Dataset]. https://dataful.in/datasets/21437
    Explore at:
    csv, xlsx, application/x-parquetAvailable download formats
    Dataset updated
    Nov 20, 2025
    Dataset authored and provided by
    Dataful (Factly)
    License

    https://dataful.in/terms-and-conditionshttps://dataful.in/terms-and-conditions

    Area covered
    States of India
    Variables measured
    Poverty Rate
    Description

    The dataset contains Year and State wise Poverty Rate-Number of Persons and Percentage

    Lakdawala Methodology: An older method to measure poverty in India based on minimum calorie intake (2,400 rural / 2,100 urban). It used a 30-day recall for all expenses but did not include health and education costs.

    Tendulkar Methodology:A revised method that considers actual spending on food, health, education, etc. It uses a mixed recall period and provides a more realistic estimate of poverty.

    Mixed Recall Period: Combines two recall periods: 30 days for regular items and 365 days for infrequent ones. This helps reduce errors and gives a better picture of total household spending.

    30-Day Recall Period: Collects data based on what households spent in the last 30 days for all items. It may miss big or occasional expenses and can underestimate actual consumption.

  18. ACS Poverty Status Variables - Centroids

    • covid-hub.gio.georgia.gov
    • center-for-community-investment-lincolninstitute.hub.arcgis.com
    • +4more
    Updated Oct 22, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Poverty Status Variables - Centroids [Dataset]. https://covid-hub.gio.georgia.gov/maps/ab08335514884c1f834e4cc43fb55c51
    Explore at:
    Dataset updated
    Oct 22, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows poverty status by age group. This is shown by tract, county, and state centroids. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Poverty status is based on income in past 12 months of survey. This layer is symbolized to show the count and percentage of the population whose income falls below the Federal poverty line. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B17020, C17002Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  19. H

    Global Subnational Atlas of Poverty

    • dataverse.harvard.edu
    • dataone.org
    Updated Jan 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hai-Anh H. Dang; Minh Cong Nguyen; Trong-Anh Trinh (2023). Global Subnational Atlas of Poverty [Dataset]. http://doi.org/10.7910/DVN/MLHFAF
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 14, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Hai-Anh H. Dang; Minh Cong Nguyen; Trong-Anh Trinh
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    The database (version August 2022) is built upon the released Global Subnational Atlas of Poverty (GSAP) (World Bank, 2021). In this database, we assemble a new panel dataset that provides (headcount) poverty rates using the daily poverty lines of US $1.90, $3.20, and $5.50 (based on the revised 2011 Purchasing Power Parity (PPP) dollars). This database is generated using household income and consumption surveys from the World Bank’s Global Monitoring Database (GMD), which underlie country official poverty statistics, and offers the most detailed subnational poverty data on a global scale to date. The Global Subnational Atlas of Poverty (GSAP) is produced by the World Bank’s Poverty and Equity Global Practice, coordinated by the Data for Goals (D4G) team, and supported by the six regional statistics teams in the Poverty and Equity Global Practice, and Global Poverty & Inequality Data Team (GPID) in Development Economics Data Group (DECDG) at the World Bank. The Global Monitoring Database (GMD) is the World Bank’s repository of multitopic income and expenditure household surveys used to monitor global poverty and shared prosperity. The household survey data are typically collected by national statistical offices in each country, and then compiled, processed, and harmonized. The process is coordinated by the Data for Goals (D4G) team and supported by the six regional statistics teams in the Poverty and Equity Global Practice. Global Poverty & Inequality Data Team (GPID) in Development Economics Data Group (DECDG) also contributed historical data from before 1990, and recent survey data from Luxemburg Income Studies (LIS). Selected variables have been harmonized to the extent possible such that levels and trends in poverty and other key sociodemographic attributes can be reasonably compared across and within countries over time. The GMD’s harmonized microdata are currently used in Poverty and Inequality Platform (PIP), World Bank’s Multidimensional Poverty Measures (WB MPM), the Global Database of Shared Prosperity (GDSP), and Poverty and Shared Prosperity Reports. Reference: World Bank. (2021). World Bank estimates based on data from the Global Subnational Atlas of Poverty, Global Monitoring Database. World Bank: Washington. https://datacatalog.worldbank.org/search/dataset/0042041

  20. d

    NYSERDA Low- to Moderate-Income New York State Census Population Analysis...

    • catalog.data.gov
    • datasets.ai
    • +2more
    Updated Jun 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ny.gov (2025). NYSERDA Low- to Moderate-Income New York State Census Population Analysis Dataset: Average for 2013-2015 [Dataset]. https://catalog.data.gov/dataset/nyserda-low-to-moderate-income-new-york-state-census-population-analysis-dataset-aver-2013
    Explore at:
    Dataset updated
    Jun 28, 2025
    Dataset provided by
    data.ny.gov
    Area covered
    New York
    Description

    How does your organization use this dataset? What other NYSERDA or energy-related datasets would you like to see on Open NY? Let us know by emailing OpenNY@nyserda.ny.gov. The Low- to Moderate-Income (LMI) New York State (NYS) Census Population Analysis dataset is resultant from the LMI market database designed by APPRISE as part of the NYSERDA LMI Market Characterization Study (https://www.nyserda.ny.gov/lmi-tool). All data are derived from the U.S. Census Bureau’s American Community Survey (ACS) 1-year Public Use Microdata Sample (PUMS) files for 2013, 2014, and 2015. Each row in the LMI dataset is an individual record for a household that responded to the survey and each column is a variable of interest for analyzing the low- to moderate-income population. The LMI dataset includes: county/county group, households with elderly, households with children, economic development region, income groups, percent of poverty level, low- to moderate-income groups, household type, non-elderly disabled indicator, race/ethnicity, linguistic isolation, housing unit type, owner-renter status, main heating fuel type, home energy payment method, housing vintage, LMI study region, LMI population segment, mortgage indicator, time in home, head of household education level, head of household age, and household weight. The LMI NYS Census Population Analysis dataset is intended for users who want to explore the underlying data that supports the LMI Analysis Tool. The majority of those interested in LMI statistics and generating custom charts should use the interactive LMI Analysis Tool at https://www.nyserda.ny.gov/lmi-tool. This underlying LMI dataset is intended for users with experience working with survey data files and producing weighted survey estimates using statistical software packages (such as SAS, SPSS, or Stata).

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Champaign County Regional Planning Commission (2024). Poverty Rate [Dataset]. https://data.ccrpc.org/dataset/poverty-rate

Poverty Rate

Explore at:
csvAvailable download formats
Dataset updated
Oct 17, 2024
Dataset authored and provided by
Champaign County Regional Planning Commission
License

Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically

Description

This poverty rate data shows what percentage of the measured population* falls below the poverty line. Poverty is closely related to income: different “poverty thresholds” are in place for different sizes and types of household. A family or individual is considered to be below the poverty line if that family or individual’s income falls below their relevant poverty threshold. For more information on how poverty is measured by the U.S. Census Bureau (the source for this indicator’s data), visit the U.S. Census Bureau’s poverty webpage.

The poverty rate is an important piece of information when evaluating an area’s economic health and well-being. The poverty rate can also be illustrative when considered in the contexts of other indicators and categories. As a piece of data, it is too important and too useful to omit from any indicator set.

The poverty rate for all individuals in the measured population in Champaign County has hovered around roughly 20% since 2005. However, it reached its lowest rate in 2021 at 14.9%, and its second lowest rate in 2023 at 16.3%. Although the American Community Survey (ACS) data shows fluctuations between years, given their margins of error, none of the differences between consecutive years’ estimates are statistically significant, making it impossible to identify a trend.

Poverty rate data was sourced from the U.S. Census Bureau’s American Community Survey 1-Year Estimates, which are released annually.

As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.

Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.

For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Poverty Status in the Past 12 Months by Age.

*According to the U.S. Census Bureau document “How Poverty is Calculated in the ACS," poverty status is calculated for everyone but those in the following groups: “people living in institutional group quarters (such as prisons or nursing homes), people in military barracks, people in college dormitories, living situations without conventional housing, and unrelated individuals under 15 years old."

Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (17 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (25 September 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (16 September 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (8 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (8 June 2021).; U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (14 September 2017).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).

Search
Clear search
Close search
Google apps
Main menu