37 datasets found
  1. Envestnet | Yodlee's USA Consumer Spending Data (De-Identified) |...

    • datarade.ai
    .sql, .txt
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Envestnet | Yodlee, Envestnet | Yodlee's USA Consumer Spending Data (De-Identified) | Row/Aggregate Level | Consumer Data covering 3600+ public and private corporations [Dataset]. https://datarade.ai/data-products/envestnet-yodlee-s-de-identified-consumer-spending-data-r-envestnet-yodlee
    Explore at:
    .sql, .txtAvailable download formats
    Dataset provided by
    Yodlee
    Envestnethttp://envestnet.com/
    Authors
    Envestnet | Yodlee
    Area covered
    United States of America
    Description

    Envestnet®| Yodlee®'s Consumer Spending Data (Aggregate/Row) Panels consist of de-identified, near-real time (T+1) USA credit/debit/ACH transaction level data – offering a wide view of the consumer activity ecosystem. The underlying data is sourced from end users leveraging the aggregation portion of the Envestnet®| Yodlee®'s financial technology platform.

    Envestnet | Yodlee Consumer Panels (Aggregate/Row) include data relating to millions of transactions, including ticket size and merchant location. The dataset includes de-identified credit/debit card and bank transactions (such as a payroll deposit, account transfer, or mortgage payment). Our coverage offers insights into areas such as consumer, TMT, energy, REITs, internet, utilities, ecommerce, MBS, CMBS, equities, credit, commodities, FX, and corporate activity. We apply rigorous data science practices to deliver key KPIs daily that are focused, relevant, and ready to put into production.

    We offer free trials. Our team is available to provide support for loading, validation, sample scripts, or other services you may need to generate insights from our data.

    Investors, corporate researchers, and corporates can use our data to answer some key business questions such as: - How much are consumers spending with specific merchants/brands and how is that changing over time? - Is the share of consumer spend at a specific merchant increasing or decreasing? - How are consumers reacting to new products or services launched by merchants? - For loyal customers, how is the share of spend changing over time? - What is the company’s market share in a region for similar customers? - Is the company’s loyal user base increasing or decreasing? - Is the lifetime customer value increasing or decreasing?

    Use Cases Categories (Our data provides an innumerable amount of use cases, and we look forward to working with new ones): 1. Market Research: Company Analysis, Company Valuation, Competitive Intelligence, Competitor Analysis, Competitor Analytics, Competitor Insights, Customer Data Enrichment, Customer Data Insights, Customer Data Intelligence, Demand Forecasting, Ecommerce Intelligence, Employee Pay Strategy, Employment Analytics, Job Income Analysis, Job Market Pricing, Marketing, Marketing Data Enrichment, Marketing Intelligence, Marketing Strategy, Payment History Analytics, Price Analysis, Pricing Analytics, Retail, Retail Analytics, Retail Intelligence, Retail POS Data Analysis, and Salary Benchmarking

    1. Investment Research: Financial Services, Hedge Funds, Investing, Mergers & Acquisitions (M&A), Stock Picking, Venture Capital (VC)

    2. Consumer Analysis: Consumer Data Enrichment, Consumer Intelligence

    3. Market Data: Analytics B2C Data Enrichment, Bank Data Enrichment, Behavioral Analytics, Benchmarking, Customer Insights, Customer Intelligence, Data Enhancement, Data Enrichment, Data Intelligence, Data Modeling, Ecommerce Analysis, Ecommerce Data Enrichment, Economic Analysis, Financial Data Enrichment, Financial Intelligence, Local Economic Forecasting, Location-based Analytics, Market Analysis, Market Analytics, Market Intelligence, Market Potential Analysis, Market Research, Market Share Analysis, Sales, Sales Data Enrichment, Sales Enablement, Sales Insights, Sales Intelligence, Spending Analytics, Stock Market Predictions, and Trend Analysis.

    Additional Use Cases: - Use spending data to analyze sales/revenue broadly (sector-wide) or granular (company-specific). Historically, our tracked consumer spend has correlated above 85% with company-reported data from thousands of firms. Users can sort and filter by many metrics and KPIs, such as sales and transaction growth rates and online or offline transactions, as well as view customer behavior within a geographic market at a state or city level. - Reveal cohort consumer behavior to decipher long-term behavioral consumer spending shifts. Measure market share, wallet share, loyalty, consumer lifetime value, retention, demographics, and more.) - Study the effects of inflation rates via such metrics as increased total spend, ticket size, and number of transactions. - Seek out alpha-generating signals or manage your business strategically with essential, aggregated transaction and spending data analytics.

  2. Top brands sales per category

    • kaggle.com
    Updated Jul 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Arrinna (2025). Top brands sales per category [Dataset]. https://www.kaggle.com/datasets/arinado/ozon-top-brands-per-category
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 27, 2025
    Dataset provided by
    Kaggle
    Authors
    Arrinna
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Top 100 brands in sales @ marketplace per category

    Source - https://data.ozon.ru/app

    Timeframe - 01.07.2024 - 30.06.2025

    Columns Description:

    -Category = Category or subcategory of a product -Brand = Details on best-selling brands in the selected category

    -Ordered total = Total cost of ordered products -Orders total dynamics = Change in the total cost of ordered goods compared to the previous period -Products ordered = Total number of products ordered

    -Average price = The average price that sellers have set for product, without taking into account the additional discount, for which we award points -Average price dynamics = Change in the average price that sellers have set for product, without taking into account the additional discount for for which we award points in comparison with

    -Number of sellers = Number of sellers that have at least 1 product sold -Number of clusters = The number of clusters in which at least 1 product of the category has been ordered (cluster - geographical unit) -Redeemed orders share = Percentage of ordered products that were not canceled or returned -Share in category = What percentage of the total turnover comes from a particular brand, seller, scheme, sales area or price segment. -Total turnover is the turnover of the category, sellers and brands selected in the filter by gender

  3. Retail dataset

    • kaggle.com
    Updated Jul 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Samyak (2022). Retail dataset [Dataset]. https://www.kaggle.com/datasets/braniac2000/retail-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 1, 2022
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Samyak
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    Sales records for the year 2011-2014 with 3 Product, 17 sub-categories over different segments is recorded. Objective is to expand the business in profitable regions based on the growth percentage and profits.

    Data Dictionary

    Order ID: A unique ID given to each order placed. Order Date: The date at which the order was placed. Customer Name: Name of the customer placing the order. Country: The country to which the customer belongs to. State: The state to which the customer belongs from the country. City:Detail about the city to which the customer resides in. Region: Contains the region details. Segment:The ordered product belongs to what segment. Ship Mode: The mode of shipping of the order to the customer location. Category: Contains the details about what category the product belongs to. Sub : Category: Contains the details about what sub - category the product belongs to. Product Name:The name of the product ordered by the customer. Discount: The discount applicable on a product. Sales: The actual sales happened for a particular order. Profit: Profit earned on an order. Quantity:The total quantity of the product ordered in a single order. Feedback: The feedback given by the customer on the complete shopping experience. If feedback provided, then TRUE. If no feedback provided, then FALSE.

    Inspiration

    This data-set can be helpful to analyze data to develop marketing strategies and to measure parameters like customer retention rate,churn rate etc.

    Up-Vote⬆️ for more such dataset

  4. Dairy Supply Chain Sales Dataset

    • zenodo.org
    • data.niaid.nih.gov
    pdf, zip
    Updated Jul 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dimitris Iatropoulos; Konstantinos Georgakidis; Konstantinos Georgakidis; Ilias Siniosoglou; Ilias Siniosoglou; Christos Chaschatzis; Christos Chaschatzis; Anna Triantafyllou; Anna Triantafyllou; Athanasios Liatifis; Athanasios Liatifis; Dimitrios Pliatsios; Dimitrios Pliatsios; Thomas Lagkas; Thomas Lagkas; Vasileios Argyriou; Vasileios Argyriou; Panagiotis Sarigiannidis; Panagiotis Sarigiannidis; Dimitris Iatropoulos (2024). Dairy Supply Chain Sales Dataset [Dataset]. http://doi.org/10.21227/smv6-z405
    Explore at:
    zip, pdfAvailable download formats
    Dataset updated
    Jul 12, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Dimitris Iatropoulos; Konstantinos Georgakidis; Konstantinos Georgakidis; Ilias Siniosoglou; Ilias Siniosoglou; Christos Chaschatzis; Christos Chaschatzis; Anna Triantafyllou; Anna Triantafyllou; Athanasios Liatifis; Athanasios Liatifis; Dimitrios Pliatsios; Dimitrios Pliatsios; Thomas Lagkas; Thomas Lagkas; Vasileios Argyriou; Vasileios Argyriou; Panagiotis Sarigiannidis; Panagiotis Sarigiannidis; Dimitris Iatropoulos
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    1.Introduction

    Sales data collection is a crucial aspect of any manufacturing industry as it provides valuable insights about the performance of products, customer behaviour, and market trends. By gathering and analysing this data, manufacturers can make informed decisions about product development, pricing, and marketing strategies in Internet of Things (IoT) business environments like the dairy supply chain.

    One of the most important benefits of the sales data collection process is that it allows manufacturers to identify their most successful products and target their efforts towards those areas. For example, if a manufacturer could notice that a particular product is selling well in a certain region, this information could be utilised to develop new products, optimise the supply chain or improve existing ones to meet the changing needs of customers.

    This dataset includes information about 7 of MEVGAL’s products [1]. According to the above information the data published will help researchers to understand the dynamics of the dairy market and its consumption patterns, which is creating the fertile ground for synergies between academia and industry and eventually help the industry in making informed decisions regarding product development, pricing and market strategies in the IoT playground. The use of this dataset could also aim to understand the impact of various external factors on the dairy market such as the economic, environmental, and technological factors. It could help in understanding the current state of the dairy industry and identifying potential opportunities for growth and development.

    2. Citation

    Please cite the following papers when using this dataset:

    1. I. Siniosoglou, K. Xouveroudis, V. Argyriou, T. Lagkas, S. K. Goudos, K. E. Psannis and P. Sarigiannidis, "Evaluating the Effect of Volatile Federated Timeseries on Modern DNNs: Attention over Long/Short Memory," in the 12th International Conference on Circuits and Systems Technologies (MOCAST 2023), April 2023, Accepted

    3. Dataset Modalities

    The dataset includes data regarding the daily sales of a series of dairy product codes offered by MEVGAL. In particular, the dataset includes information gathered by the logistics division and agencies within the industrial infrastructures overseeing the production of each product code. The products included in this dataset represent the daily sales and logistics of a variety of yogurt-based stock. Each of the different files include the logistics for that product on a daily basis for three years, from 2020 to 2022.

    3.1 Data Collection

    The process of building this dataset involves several steps to ensure that the data is accurate, comprehensive and relevant.

    The first step is to determine the specific data that is needed to support the business objectives of the industry, i.e., in this publication’s case the daily sales data.

    Once the data requirements have been identified, the next step is to implement an effective sales data collection method. In MEVGAL’s case this is conducted through direct communication and reports generated each day by representatives & selling points.

    It is also important for MEVGAL to ensure that the data collection process conducted is in an ethical and compliant manner, adhering to data privacy laws and regulation. The industry also has a data management plan in place to ensure that the data is securely stored and protected from unauthorised access.

    The published dataset is consisted of 13 features providing information about the date and the number of products that have been sold. Finally, the dataset was anonymised in consideration to the privacy requirement of the data owner (MEVGAL).

    File

    Period

    Number of Samples (days)

    product 1 2020.xlsx

    01/01/2020–31/12/2020

    363

    product 1 2021.xlsx

    01/01/2021–31/12/2021

    364

    product 1 2022.xlsx

    01/01/2022–31/12/2022

    365

    product 2 2020.xlsx

    01/01/2020–31/12/2020

    363

    product 2 2021.xlsx

    01/01/2021–31/12/2021

    364

    product 2 2022.xlsx

    01/01/2022–31/12/2022

    365

    product 3 2020.xlsx

    01/01/2020–31/12/2020

    363

    product 3 2021.xlsx

    01/01/2021–31/12/2021

    364

    product 3 2022.xlsx

    01/01/2022–31/12/2022

    365

    product 4 2020.xlsx

    01/01/2020–31/12/2020

    363

    product 4 2021.xlsx

    01/01/2021–31/12/2021

    364

    product 4 2022.xlsx

    01/01/2022–31/12/2022

    364

    product 5 2020.xlsx

    01/01/2020–31/12/2020

    363

    product 5 2021.xlsx

    01/01/2021–31/12/2021

    364

    product 5 2022.xlsx

    01/01/2022–31/12/2022

    365

    product 6 2020.xlsx

    01/01/2020–31/12/2020

    362

    product 6 2021.xlsx

    01/01/2021–31/12/2021

    364

    product 6 2022.xlsx

    01/01/2022–31/12/2022

    365

    product 7 2020.xlsx

    01/01/2020–31/12/2020

    362

    product 7 2021.xlsx

    01/01/2021–31/12/2021

    364

    product 7 2022.xlsx

    01/01/2022–31/12/2022

    365

    3.2 Dataset Overview

    The following table enumerates and explains the features included across all of the included files.

    Feature

    Description

    Unit

    Day

    day of the month

    -

    Month

    Month

    -

    Year

    Year

    -

    daily_unit_sales

    Daily sales - the amount of products, measured in units, that during that specific day were sold

    units

    previous_year_daily_unit_sales

    Previous Year’s sales - the amount of products, measured in units, that during that specific day were sold the previous year

    units

    percentage_difference_daily_unit_sales

    The percentage difference between the two above values

    %

    daily_unit_sales_kg

    The amount of products, measured in kilograms, that during that specific day were sold

    kg

    previous_year_daily_unit_sales_kg

    Previous Year’s sales - the amount of products, measured in kilograms, that during that specific day were sold, the previous year

    kg

    percentage_difference_daily_unit_sales_kg

    The percentage difference between the two above values

    kg

    daily_unit_returns_kg

    The percentage of the products that were shipped to selling points and were returned

    %

    previous_year_daily_unit_returns_kg

    The percentage of the products that were shipped to

  5. Leading benefits of social media marketing according to marketers worldwide...

    • statista.com
    • ai-chatbox.pro
    • +1more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Christopher Ross, Leading benefits of social media marketing according to marketers worldwide 2024 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Christopher Ross
    Description

    During a 2024 survey among marketers worldwide, approximately 83 percent selected increased exposure as a benefit of social media marketing. Increased traffic followed, mentioned by 73 percent of the respondents, while 65 percent cited generated leads.

                  The multibillion-dollar social media ad industry
    
                  Between 2019 – the last year before the pandemic – and 2024, global social media advertising spending skyrocketed by 140 percent, surpassing an estimated 230 billion U.S. dollars in the latter year. That figure was forecast to increase by nearly 50 percent by the end of the decade, exceeding 345 billion dollars in 2029. As of 2024, the social media networks with the most monthly active users were Facebook, with over three billion, and YouTube, with more than 2.5 billion.
    
                  Pros and cons of GenAI for social media marketing
    
                  According to another 2024 survey, generative artificial intelligence's (GenAI) leading benefits for social media marketing according to professionals worldwide included increased efficiency and easier idea generation. The third place was a tie between increased content production and enhanced creativity. All those advantages were cited by between 33 and 38 percent of the interviewees. As for GenAI's top challenges for global social media marketing,
                  maintaining authenticity and the value of human creativity ranked first, mentioned by 43 and 40 percent of the respondents, respectively. Another 35 percent deemed ensuring the content resonates as an obstacle.
    
  6. Success.ai | B2B Company & Contact Data – 28M Verified Company Profiles -...

    • datarade.ai
    Updated Oct 15, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Success.ai (2024). Success.ai | B2B Company & Contact Data – 28M Verified Company Profiles - Global - Best Price Guarantee & 99% Data Accuracy [Dataset]. https://datarade.ai/data-products/success-ai-b2b-company-contact-data-28m-verified-compan-success-ai
    Explore at:
    .json, .csv, .bin, .xml, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Oct 15, 2024
    Dataset provided by
    Area covered
    Solomon Islands, United Republic of, Burundi, Côte d'Ivoire, India, Somalia, Poland, Hungary, Niger, Greenland
    Description

    Success.ai’s Company Data Solutions provide businesses with powerful, enterprise-ready B2B company datasets, enabling you to unlock insights on over 28 million verified company profiles. Our solution is ideal for organizations seeking accurate and detailed B2B contact data, whether you’re targeting large enterprises, mid-sized businesses, or small business contact data.

    Success.ai offers B2B marketing data across industries and geographies, tailored to fit your specific business needs. With our white-glove service, you’ll receive curated, ready-to-use company datasets without the hassle of managing data platforms yourself. Whether you’re looking for UK B2B data or global datasets, Success.ai ensures a seamless experience with the most accurate and up-to-date information in the market.

    Why Choose Success.ai’s Company Data Solution? At Success.ai, we prioritize quality and relevancy. Every company profile is AI-validated for a 99% accuracy rate and manually reviewed to ensure you're accessing actionable and GDPR-compliant data. Our price match guarantee ensures you receive the best deal on the market, while our white-glove service provides personalized assistance in sourcing and delivering the data you need.

    Why Choose Success.ai?

    • Best Price Guarantee: We offer industry-leading pricing and beat any competitor.
    • Global Reach: Access over 28 million verified company profiles across 195 countries.
    • Comprehensive Data: Over 15 data points, including company size, industry, funding, and technologies used.
    • Accurate & Verified: AI-validated with a 99% accuracy rate, ensuring high-quality data.
    • Real-Time Updates: Stay ahead with continuously updated company information.
    • Ethically Sourced Data: Our B2B data is compliant with global privacy laws, ensuring responsible use.
    • Dedicated Service: Receive personalized, curated data without the hassle of managing platforms.
    • Tailored Solutions: Custom datasets are built to fit your unique business needs and industries.

    Our database spans 195 countries and covers 28 million public and private company profiles, with detailed insights into each company’s structure, size, funding history, and key technologies. We provide B2B company data for businesses of all sizes, from small business contact data to large corporations, with extensive coverage in regions such as North America, Europe, Asia-Pacific, and Latin America.

    Comprehensive Data Points: Success.ai delivers in-depth information on each company, with over 15 data points, including:

    Company Name: Get the full legal name of the company. LinkedIn URL: Direct link to the company's LinkedIn profile. Company Domain: Website URL for more detailed research. Company Description: Overview of the company’s services and products. Company Location: Geographic location down to the city, state, and country. Company Industry: The sector or industry the company operates in. Employee Count: Number of employees to help identify company size. Technologies Used: Insights into key technologies employed by the company, valuable for tech-based outreach. Funding Information: Track total funding and the most recent funding dates for investment opportunities. Maximize Your Sales Potential: With Success.ai’s B2B contact data and company datasets, sales teams can build tailored lists of target accounts, identify decision-makers, and access real-time company intelligence. Our curated datasets ensure you’re always focused on high-value leads—those who are most likely to convert into clients. Whether you’re conducting account-based marketing (ABM), expanding your sales pipeline, or looking to improve your lead generation strategies, Success.ai offers the resources you need to scale your business efficiently.

    Tailored for Your Industry: Success.ai serves multiple industries, including technology, healthcare, finance, manufacturing, and more. Our B2B marketing data solutions are particularly valuable for businesses looking to reach professionals in key sectors. You’ll also have access to small business contact data, perfect for reaching new markets or uncovering high-growth startups.

    From UK B2B data to contacts across Europe and Asia, our datasets provide global coverage to expand your business reach and identify new markets. With continuous data updates, Success.ai ensures you’re always working with the freshest information.

    Key Use Cases:

    • Targeted Lead Generation: Build accurate lead lists by filtering data by company size, industry, or location. Target decision-makers in key industries to streamline your B2B sales outreach.
    • Account-Based Marketing (ABM): Use B2B company data to personalize marketing campaigns, focusing on high-value accounts and improving conversion rates.
    • Investment Research: Track company growth, funding rounds, and employee trends to identify investment opportunities or potential M&A targets.
    • Market Research: Enrich your market intelligence initiatives by gain...
  7. e

    Flash Eurobarometer 128 (Cross-Border Commerce) - Dataset - B2FIND

    • b2find.eudat.eu
    Updated May 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Flash Eurobarometer 128 (Cross-Border Commerce) - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/a5c15b12-c3ae-5942-9d46-4f020e6a65b3
    Explore at:
    Dataset updated
    May 9, 2020
    Description

    Business and advertising practices of companies within the EU. Topics: impact of the following factors on cross-border sales of the company: development of internet and e-commerce within the EU, introduction of the euro; impact of each of the following factors on the development of the company’s sales and advertising throughout the EU: language differences, currency differences, compliance with different national regulations on commercial practices, compliance with different national fiscal regulations, higher risk of fraud and outstanding payments in cross-border sales, greater difficulties in resolving cross-border complaints and conflicts, greater difficulty in ensuring efficient cross-border after-sales service; efficiency of selected measures with regard to the development of sales and advertising of the company throughout the EU: better information for companies on regulations related to consumer protection in other EU countries, replacement of national currencies by the euro, setting up independent arbitration and conciliation services for cross-border complaints and disputes, abiding by a European code of conduct and complying with different national regulations on consumer protection, harmonizing national regulations in relation to advertising and commercial practices as well as to consumer protection; percentage of cross-border sales with regard to internet sales; percentage of cross-border sales with regard to mail-order or telesales; percentage of cross-border sales with regard to sales by representatives; percentage of cross-border sales with regard to retail sales; percentage of cross-border sales with regard to sales to final consumers; percentage of total marketing and advertising budget used to encourage cross-border sales; impact of an assumed harmonisation of regulations on advertising, commercial practices and other regulations on consumer protection on the share of the budget to be used to encourage cross-border sales; ; impact of an assumed harmonisation of regulations on advertising, commercial practices and other regulations on consumer protection on the share of the company’s cross-border sales. Demography: information about the company: number of employees in the own country, number of EU countries with subsidiaries or retail outlets, independent or part of national or international group; main activity of the company; sales or advertising to final consumers; position of respondent at the company. Additionally coded was: questionnaire number; date of interview; time of the beginning of the interview; duration of the interview; country; SIC-Code; NACE-Code; weighting factor. Bewertung von Verkauf und Werbung durch Firmen innerhalb der EU. Schwierigkeiten bei grenzüberschreitendem Verkauf und Werbung innerhalb der EU. Marketing- und Werbemaßnahmen. Harmonisierung von Handels- und Werbevorschriften innerhalb der EU. Themen: Einfluss von Internet, E-Commerce und Euro-Einführung auf grenzüberschreitende Verkäufe; Probleme bei grenzüberschreitender Werbung und grenzüberschreitenden Verkäufen innerhalb der EU (Sprachunterschiede, unterschiedliche Währung, unterschiedliche nationale Vorschriften, unterschiedliche nationale steuerliche Vorschriften, höheres Betrugs- und Außenständerisiko, größere Abwicklungsprobleme bei Beschwerden und Streitigkeiten, Probleme bei Gewährleistung eines grenzüberschreitenden Kundendienstes); Maßnahmen zur Vereinfachung eigener Verkäufe und Werbung innerhalb der EU; jeweiliger Prozentsatz der grenzüberschreitenden Verkäufe an Endverbraucher innerhalb der EU durch Internet, Versand- und Telekäufe, direkte Vertreter sowie Einzelhandelsgeschäfte im europäischen Ausland; Anteil der gesamten grenzüberschreitenden Verkäufe an Endverbraucher innerhalb der EU; Prozentanteil des Marketing- und Werbebudgets für die Förderung grenzüberschreitender Verkäufe innerhalb der EU; verstärkter Werbeeinsatz bei vollständig harmonisierten Verbraucherschutzvorschriften und erwartete Umsatzsteigerung. Demographie: Angaben zum Unternehmen: Anzahl der Mitarbeiter im eigenen Land, Anzahl der Niederlassungen in EU-Ländern, unabhängig oder Teil eines nationalen oder internationalen Konzerns; Hauptgeschäftsfeld des Unternehmens; Verkäufe oder Werbung an Endverbraucher; Position des Befragten im Unternehmen. Zusätzlich verkodet wurde: Fragebogennummer; Interviewdatum; Interviewdauer (Interviewbeginn und Interviewende); Land; SIC-Code; NACE-Code; Gewichtungsfaktor.

  8. e

    Flash Eurobarometer 128 (Cross-Border Commerce) - Dataset - B2FIND

    • b2find.eudat.eu
    Updated May 9, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Flash Eurobarometer 128 (Cross-Border Commerce) - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/b89a5928-a29e-5e92-8074-d3a674265967
    Explore at:
    Dataset updated
    May 9, 2020
    Description

    Bewertung von Verkauf und Werbung durch Firmen innerhalb der EU. Schwierigkeiten bei grenzüberschreitendem Verkauf und Werbung innerhalb der EU. Marketing- und Werbemaßnahmen. Harmonisierung von Handels- und Werbevorschriften innerhalb der EU. Themen: Einfluss von Internet, E-Commerce und Euro-Einführung auf grenzüberschreitende Verkäufe; Probleme bei grenzüberschreitender Werbung und grenzüberschreitenden Verkäufen innerhalb der EU (Sprachunterschiede, unterschiedliche Währung, unterschiedliche nationale Vorschriften, unterschiedliche nationale steuerliche Vorschriften, höheres Betrugs- und Außenständerisiko, größere Abwicklungsprobleme bei Beschwerden und Streitigkeiten, Probleme bei Gewährleistung eines grenzüberschreitenden Kundendienstes); Maßnahmen zur Vereinfachung eigener Verkäufe und Werbung innerhalb der EU; jeweiliger Prozentsatz der grenzüberschreitenden Verkäufe an Endverbraucher innerhalb der EU durch Internet, Versand- und Telekäufe, direkte Vertreter sowie Einzelhandelsgeschäfte im europäischen Ausland; Anteil der gesamten grenzüberschreitenden Verkäufe an Endverbraucher innerhalb der EU; Prozentanteil des Marketing- und Werbebudgets für die Förderung grenzüberschreitender Verkäufe innerhalb der EU; verstärkter Werbeeinsatz bei vollständig harmonisierten Verbraucherschutzvorschriften und erwartete Umsatzsteigerung. Demographie: Angaben zum Unternehmen: Anzahl der Mitarbeiter im eigenen Land, Anzahl der Niederlassungen in EU-Ländern, unabhängig oder Teil eines nationalen oder internationalen Konzerns; Hauptgeschäftsfeld des Unternehmens; Verkäufe oder Werbung an Endverbraucher; Position des Befragten im Unternehmen. Zusätzlich verkodet wurde: Fragebogennummer; Interviewdatum; Interviewdauer (Interviewbeginn und Interviewende); Land; SIC-Code; NACE-Code; Gewichtungsfaktor. Business and advertising practices of companies within the EU. Topics: impact of the following factors on cross-border sales of the company: development of internet and e-commerce within the EU, introduction of the euro; impact of each of the following factors on the development of the company’s sales and advertising throughout the EU: language differences, currency differences, compliance with different national regulations on commercial practices, compliance with different national fiscal regulations, higher risk of fraud and outstanding payments in cross-border sales, greater difficulties in resolving cross-border complaints and conflicts, greater difficulty in ensuring efficient cross-border after-sales service; efficiency of selected measures with regard to the development of sales and advertising of the company throughout the EU: better information for companies on regulations related to consumer protection in other EU countries, replacement of national currencies by the euro, setting up independent arbitration and conciliation services for cross-border complaints and disputes, abiding by a European code of conduct and complying with different national regulations on consumer protection, harmonizing national regulations in relation to advertising and commercial practices as well as to consumer protection; percentage of cross-border sales with regard to internet sales; percentage of cross-border sales with regard to mail-order or telesales; percentage of cross-border sales with regard to sales by representatives; percentage of cross-border sales with regard to retail sales; percentage of cross-border sales with regard to sales to final consumers; percentage of total marketing and advertising budget used to encourage cross-border sales; impact of an assumed harmonisation of regulations on advertising, commercial practices and other regulations on consumer protection on the share of the budget to be used to encourage cross-border sales; ; impact of an assumed harmonisation of regulations on advertising, commercial practices and other regulations on consumer protection on the share of the company’s cross-border sales. Demography: information about the company: number of employees in the own country, number of EU countries with subsidiaries or retail outlets, independent or part of national or international group; main activity of the company; sales or advertising to final consumers; position of respondent at the company. Additionally coded was: questionnaire number; date of interview; time of the beginning of the interview; duration of the interview; country; SIC-Code; NACE-Code; weighting factor. Telephone interview In der EU angesiedelte Unternehmen mit mindestens 10 Mitarbeitern, Landwirtschaft ausgeschlossen

  9. b

    Small Business Statistics and Trends for 2025

    • bizplanr.ai
    html
    Updated Jun 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bizplanr (2025). Small Business Statistics and Trends for 2025 [Dataset]. https://bizplanr.ai/blog/small-business-statistics
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Jun 1, 2025
    Dataset authored and provided by
    Bizplanr
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    Global
    Description

    A comprehensive dataset covering small business statistics in 2025, including failure rates, growth data, average revenue, number of employees, and market insights.

  10. Coffee Chain Sales Analysis

    • kaggle.com
    Updated Oct 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Amrutha yenikonda (2023). Coffee Chain Sales Analysis [Dataset]. https://www.kaggle.com/datasets/amruthayenikonda/coffee-chain-sales-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 2, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Amrutha yenikonda
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    The Coffee Sales Data dataset provides valuable insights into the performance of a coffee chain across various locations.

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F13090611%2F0f25997ba9b63b33c901471cb874aa83%2Fcisco_blog_canada_coffee.png?generation=1696189849175111&alt=media" alt=""> Key Attributes:

    1.Area Code: A unique identifier for different geographical areas or regions where the coffee chain operates.

    2.COGS (Cost of Goods Sold): The total cost incurred by the coffee chain in producing or purchasing the products it sells.

    3.Difference between Actual and Target Profit: This attribute indicates how well the company performed in terms of profit compared to its target. It reflects the financial performance against predefined goals.

    4.Date: The date of sales transactions, which allows for time-based analysis of sales trends and patterns.

    5.Inventory Margin: The difference between the cost of maintaining inventory and the revenue generated from selling those inventory items.

    6.Margin: The profit margin, which is the percentage of profit earned from sales. It's a critical financial metric.

    7.Market Size: Information about the size of the market in each area, helping to understand the potential customer base and market dynamics.

    8.Profit: financial gain achieved by the company after deducting the cost of goods sold (COGS) and other expenses from the revenue generated through sales.

    9.Sales: represent the revenue generated from the coffee chain's products, reflecting its financial performance and customer demand.

  11. Social media revenue of selected companies 2023

    • statista.com
    • es.statista.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, Social media revenue of selected companies 2023 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    In 2023, Meta Platforms had a total annual revenue of over 134 billion U.S. dollars, up from 116 billion in 2022. LinkedIn reported its highest annual revenue to date, generating over 15 billion USD, whilst Snapchat reported an annual revenue of 4.6 billion USD.

  12. Digital Marketing Company

    • kaggle.com
    Updated Aug 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Arpit Mishra (2024). Digital Marketing Company [Dataset]. https://www.kaggle.com/datasets/arpit2712/digital-marketing-company/versions/1
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 9, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Arpit Mishra
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Digital Marketing Analytics

    This dataset provides an in-depth look at customer interactions and campaign performance within the digital marketing realm. It includes key metrics and demographic information that are crucial for analyzing marketing effectiveness and customer engagement. The dataset comprises the following columns:

    Customer Id:

    Unique identifier for each customer, facilitating individual tracking and analysis.

    Age:

    Customer's age, offering insights into demographic segmentation and targeting strategies.

    Gender:

    Customer's gender, useful for understanding gender-based preferences and behavior.

    Income:

    Customer's income level, providing context on purchasing power and conversion potential.

    Campaign Channel:

    The medium through which the marketing campaign was delivered (e.g., email, social media).

    Campaign Type:

    The nature of the marketing campaign (e.g., promotional offer, product launch), helping to assess campaign effectiveness.

    Ad Spend:

    Amount spent on advertisements, crucial for evaluating cost-efficiency and ROI.

    Click Through Rate (CTR):

    Ratio of clicks to impressions, indicating ad engagement and effectiveness.

    Conversion Rate:

    Percentage of users who complete a desired action after interacting with an ad, reflecting the success of the campaign in driving actual sales or goals.

    Website Visit:

    Number of visits to the website by the customer, measuring engagement and interest.

    This dataset is ideal for exploring customer behavior, optimizing marketing strategies, and evaluating the success of various campaigns. Perfect for data scientists and marketers looking to derive actionable insights from digital marketing data.

  13. Plant Co. Sales Performance Report 2024

    • kaggle.com
    Updated Sep 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Salman Hafiz (2024). Plant Co. Sales Performance Report 2024 [Dataset]. https://www.kaggle.com/datasets/salmanhafiz14/image1
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 5, 2024
    Dataset provided by
    Kaggle
    Authors
    Salman Hafiz
    Description

    Here's a more concise summary of the Power BI dashboard's analysis:

    Summary of Power BI Dashboard Insights for Plant Co. (2022-2024):

    Key Insights: - Sales Performance: YTD sales for 2024 are $3.57M, down by $135.89K from PYTD ($3.71M), indicating a negative sales trend. - Profitability: The gross profit percentage (GP%) is 39.15%, reflecting stable margins but potential for further profitability improvements. - Monthly Sales Trends: February saw the highest growth, while April experienced the largest decline, suggesting a need to review strategies for April. - Country Performance: Significant sales drops were observed in Canada, Colombia, and Croatia, with Canada facing the largest deficit of $73.71K. - Product Performance: Sales fluctuations across Indoor, Landscape, and Outdoor categories were noted, particularly in March and April. - Account Analysis: A scatter plot of accounts shows varied GP% and YTD sales, highlighting areas needing targeted improvement.

    Key Achievements: - Sales Tracking: Effective monitoring of monthly and yearly sales trends. - Market Insights: Identification of underperforming countries and months. - Profit Margins: Maintained a strong GP% of 39.15% despite sales decline.

    Key Takeaways: - Address Sales Decline: Immediate focus needed on the $135.89K YTD sales decline. - Profitability Management: Maintain profitability through cost management and pricing strategies. - Market Focus: Target recovery efforts in underperforming regions. - Product Optimization: Identify and optimize lagging product categories.

    Decision-Making Improvements: - Targeted Strategy: Direct resources to struggling markets and product lines. - Profitability Monitoring: Utilize GP% insights for better pricing and cost decisions. - Trend Analysis: Understand seasonal patterns for more accurate forecasting. - Resource Optimization: Adjust marketing, inventory, and resource allocation based on actionable insights.

  14. e

    Flash Eurobarometer 186 (Business attitudes towards cross-border sales and...

    • b2find.eudat.eu
    Updated Oct 21, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Flash Eurobarometer 186 (Business attitudes towards cross-border sales and consumer protection) - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/8285b40b-c3c6-55b0-9a99-280ae8e32a3c
    Explore at:
    Dataset updated
    Oct 21, 2023
    Description

    Attitudes of retailers towards cross-border trade. Topics: 1. Information about the company: retail sales channels; number of EU countries active marketing or advertising to final consumers is made to; percentage of the total marketing and advertising budget used to encourage consumers from other EU countries to buy own products or services; estimated percentage of sales made by consumers on holidays or on a shopping trip who live in other EU countries; number of EU languages currently used in transactions with consumers. 2. Cross-border sales: number of EU countries cross-border sales to final consumers are made to; impact of the internet and eCommerce on cross-border sales of the company; percentage of eCommerce and internet sales going to consumers in other EU countries; percentage of mail order or telephone sales going to consumers in other EU countries; percentage of sales made by representatives going to consumers in other EU countries; percentage of total sales from the aforementioned channels going to consumers in other EU countries; percentage of total sales from the aforementioned channels going to consumers in non-EU countries. 3. Obstacles to B2B cross-border trade: importance of selected obstacles to cross-border sales: different length of cooling off periods, provision of differing consumer information, different consequences for failing to comply with information requirements, differing rights of withdrawal, different treatment of costs of return, different definitions of delivery, different legislation in member states regarding goods not in conformity with consumer contract; rating of the possible extra compliance costs for cross-border sales due to different legal regulations of transactions with consumers in other EU countries; importance of further obstacles: additional costs of compliance with different national tax regulations and regulations on consumer transactions, higher costs of cross-border delivery compared to domestic delivery, greater difficulty in resolving complaints and disputes cross-border, higher risk of fraud and non-payments, greater difficulty in ensuring efficient after-sales services, extra costs arising from language differences. 4. Measures to facilitate B2B cross-border trade: expected development of the company’s cross-border sales in case of the assumed provision of common EU laws on regulating transactions; number of EU countries cross-border sales to final consumers are made to; knowledge where to find information on consumer protection in other EU countries; use of Alternative Dispute Resolution (ADR). Demography: information about the company: number of employees, direct selling to final consumers, independent or part of national or international group, number of EU countries with subsidiaries or retail outlets. Additionally coded was: interview number; respondent ID; interviewer ID; language of the interview; country; date of interview; time of the beginning of the interview; duration of the interview; call history; NACE-Code; weighting factor. Einstellung von Unternehmen zum grenzüberschreitenden Handel innerhalb der Europäischen Union. Themen: Absatzkanäle; Anzahl der Länder, in denen direkt an den Endverbraucher verkauft wird; prozentualer Anteil des Werbebudgets für die Anwerbung europäischer Kunden, prozentualer Anteil des Umsatzes verursacht durch Touristen; Anzahl der Fremdsprachen, in denen mit Endverbrauchern gehandelt wird. 1. Grenzüberschreitender Vertrieb : Anzahl der Absatz-Länder in der EU; eCommerce und Internet als Schub für den grenzüberschreitenden Verkauf; prozentualer Anteil an eCommerce und Internet-Verkäufen bzw. Mailorder und Telefonverkäufen sowie an Verkäufen durch Vertreter an Endverbraucher in anderen EU-Ländern. 2. Hemmnisse für den grenzüberschreitenden Handel: Bedeutung von rechtlichen Unterschieden als Hemmnis für grenzüberschreitenden Handel: Unterschiede in der Dauer der Widerrufsfrist, Unterschiede der Informationspflicht der Unternehmen, Unterschiede im Fall einer versäumten Information des Kunden, Unterschiede beim Vertragswiderrufsrecht, Unterschiede in der Behandlung der Kosten für den Rückversand, Unterschiede in der Definition von Lieferung, unterschiedliche Gesetzgebungen hinsichtlich Reklamationen; Einschätzung der Kosten für die Einhaltung unterschiedlicher nationaler Gesetze zur Regulation von grenzüberschreitendem Handel mit Endverbrauchern in anderen EU-Ländern; Einschätzung der Hemmnisse für grenzüberschreitenden Handel mit Endverbrauchern in anderen EU-Ländern: Zusatzkosten für die Aufrechterhaltung unterschiedlicher nationaler Steuervorschriften, zur Befolgung unterschiedlicher nationaler Gesetzgebungen zur Regelung von Geschäften mit Endverbrauchern, Zusatzkosten für grenzüberschreitende Lieferungen, Kosten resultierend aus Sprachunterschieden, größere Schwierigkeiten für die Behandlung von Beschwerden im Ausland sowie die Sicherstellung eines effizienten After-Sales-Services, höheres Risiko von Betrug und ausbleibender Zahlung. 3. Maßnahmen zur Erleichterung von grenzüberschreitendem Handel: Einschätzung der Konsequenzen harmonisierter Gesetze für Geschäfte mit Verbrauchern in allen EU-Ländern hinsichtlich: Zunahme der grenzüberschreitenden Verkäufe, der Verkäufe über das Internet, des Marketing-Budgets für grenzüberschreitenden Handel; Anzahl der Länder, für die die Vorbereitungen zum grenzüberschreitenden Handel im Unternehmen abgeschlossen sind; Kenntnis über Informationsquellen zu Verbraucherschutzregelungen in anderen EU-Ländern; Nutzung alternativer Konfliktlösungsmöglichkeiten im grenzüberschreitenden Handel (z.B.Arbitratoren, Ombudsmänner). Demographie: Angaben zum Unternehmen: Anzahl der Mitarbeiter, Direktverkauf an Endverbraucher, unabhängig oder Teil eines nationalen oder internationalen Konzerns; Anzahl der Niederlassungen in EU-Ländern. Zusätzlich verkodet wurde: Interviewnummer; Befragten-ID; Interviewer-ID; Interviewsprache; Land; Interviewdatum; Interviewdauer (Interviewbeginn und Interviewende); Anzahl der Kontaktversuche; NACE-Code; Gewichtungsfaktor.

  15. Forecast revenue big data market worldwide 2011-2027

    • statista.com
    Updated Feb 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Forecast revenue big data market worldwide 2011-2027 [Dataset]. https://www.statista.com/statistics/254266/global-big-data-market-forecast/
    Explore at:
    Dataset updated
    Feb 13, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    The global big data market is forecasted to grow to 103 billion U.S. dollars by 2027, more than double its expected market size in 2018. With a share of 45 percent, the software segment would become the large big data market segment by 2027.

    What is Big data?

    Big data is a term that refers to the kind of data sets that are too large or too complex for traditional data processing applications. It is defined as having one or some of the following characteristics: high volume, high velocity or high variety. Fast-growing mobile data traffic, cloud computing traffic, as well as the rapid development of technologies such as artificial intelligence (AI) and the Internet of Things (IoT) all contribute to the increasing volume and complexity of data sets.

    Big data analytics

    Advanced analytics tools, such as predictive analytics and data mining, help to extract value from the data and generate new business insights. The global big data and business analytics market was valued at 169 billion U.S. dollars in 2018 and is expected to grow to 274 billion U.S. dollars in 2022. As of November 2018, 45 percent of professionals in the market research industry reportedly used big data analytics as a research method.

  16. e

    Flash Eurobarometer 186 (Business attitudes towards cross-border sales and...

    • b2find.eudat.eu
    Updated Feb 3, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2019). Flash Eurobarometer 186 (Business attitudes towards cross-border sales and consumer protection) - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/cad6ee45-ccf0-5964-a9b8-62b01e93c14d
    Explore at:
    Dataset updated
    Feb 3, 2019
    Description

    Einstellung von Unternehmen zum grenzüberschreitenden Handel innerhalb der Europäischen Union. Themen: Absatzkanäle; Anzahl der Länder, in denen direkt an den Endverbraucher verkauft wird; prozentualer Anteil des Werbebudgets für die Anwerbung europäischer Kunden, prozentualer Anteil des Umsatzes verursacht durch Touristen; Anzahl der Fremdsprachen, in denen mit Endverbrauchern gehandelt wird. 1. Grenzüberschreitender Vertrieb : Anzahl der Absatz-Länder in der EU; eCommerce und Internet als Schub für den grenzüberschreitenden Verkauf; prozentualer Anteil an eCommerce und Internet-Verkäufen bzw. Mailorder und Telefonverkäufen sowie an Verkäufen durch Vertreter an Endverbraucher in anderen EU-Ländern. 2. Hemmnisse für den grenzüberschreitenden Handel: Bedeutung von rechtlichen Unterschieden als Hemmnis für grenzüberschreitenden Handel: Unterschiede in der Dauer der Widerrufsfrist, Unterschiede der Informationspflicht der Unternehmen, Unterschiede im Fall einer versäumten Information des Kunden, Unterschiede beim Vertragswiderrufsrecht, Unterschiede in der Behandlung der Kosten für den Rückversand, Unterschiede in der Definition von Lieferung, unterschiedliche Gesetzgebungen hinsichtlich Reklamationen; Einschätzung der Kosten für die Einhaltung unterschiedlicher nationaler Gesetze zur Regulation von grenzüberschreitendem Handel mit Endverbrauchern in anderen EU-Ländern; Einschätzung der Hemmnisse für grenzüberschreitenden Handel mit Endverbrauchern in anderen EU-Ländern: Zusatzkosten für die Aufrechterhaltung unterschiedlicher nationaler Steuervorschriften, zur Befolgung unterschiedlicher nationaler Gesetzgebungen zur Regelung von Geschäften mit Endverbrauchern, Zusatzkosten für grenzüberschreitende Lieferungen, Kosten resultierend aus Sprachunterschieden, größere Schwierigkeiten für die Behandlung von Beschwerden im Ausland sowie die Sicherstellung eines effizienten After-Sales-Services, höheres Risiko von Betrug und ausbleibender Zahlung. 3. Maßnahmen zur Erleichterung von grenzüberschreitendem Handel: Einschätzung der Konsequenzen harmonisierter Gesetze für Geschäfte mit Verbrauchern in allen EU-Ländern hinsichtlich: Zunahme der grenzüberschreitenden Verkäufe, der Verkäufe über das Internet, des Marketing-Budgets für grenzüberschreitenden Handel; Anzahl der Länder, für die die Vorbereitungen zum grenzüberschreitenden Handel im Unternehmen abgeschlossen sind; Kenntnis über Informationsquellen zu Verbraucherschutzregelungen in anderen EU-Ländern; Nutzung alternativer Konfliktlösungsmöglichkeiten im grenzüberschreitenden Handel (z.B.Arbitratoren, Ombudsmänner). Demographie: Angaben zum Unternehmen: Anzahl der Mitarbeiter, Direktverkauf an Endverbraucher, unabhängig oder Teil eines nationalen oder internationalen Konzerns; Anzahl der Niederlassungen in EU-Ländern. Zusätzlich verkodet wurde: Interviewnummer; Befragten-ID; Interviewer-ID; Interviewsprache; Land; Interviewdatum; Interviewdauer (Interviewbeginn und Interviewende); Anzahl der Kontaktversuche; NACE-Code; Gewichtungsfaktor. Attitudes of retailers towards cross-border trade. Topics: 1. Information about the company: retail sales channels; number of EU countries active marketing or advertising to final consumers is made to; percentage of the total marketing and advertising budget used to encourage consumers from other EU countries to buy own products or services; estimated percentage of sales made by consumers on holidays or on a shopping trip who live in other EU countries; number of EU languages currently used in transactions with consumers. 2. Cross-border sales: number of EU countries cross-border sales to final consumers are made to; impact of the internet and eCommerce on cross-border sales of the company; percentage of eCommerce and internet sales going to consumers in other EU countries; percentage of mail order or telephone sales going to consumers in other EU countries; percentage of sales made by representatives going to consumers in other EU countries; percentage of total sales from the aforementioned channels going to consumers in other EU countries; percentage of total sales from the aforementioned channels going to consumers in non-EU countries. 3. Obstacles to B2B cross-border trade: importance of selected obstacles to cross-border sales: different length of cooling off periods, provision of differing consumer information, different consequences for failing to comply with information requirements, differing rights of withdrawal, different treatment of costs of return, different definitions of delivery, different legislation in member states regarding goods not in conformity with consumer contract; rating of the possible extra compliance costs for cross-border sales due to different legal regulations of transactions with consumers in other EU countries; importance of further obstacles: additional costs of compliance with different national tax regulations and regulations on consumer transactions, higher costs of cross-border delivery compared to domestic delivery, greater difficulty in resolving complaints and disputes cross-border, higher risk of fraud and non-payments, greater difficulty in ensuring efficient after-sales services, extra costs arising from language differences. 4. Measures to facilitate B2B cross-border trade: expected development of the company’s cross-border sales in case of the assumed provision of common EU laws on regulating transactions; number of EU countries cross-border sales to final consumers are made to; knowledge where to find information on consumer protection in other EU countries; use of Alternative Dispute Resolution (ADR). Demography: information about the company: number of employees, direct selling to final consumers, independent or part of national or international group, number of EU countries with subsidiaries or retail outlets. Additionally coded was: interview number; respondent ID; interviewer ID; language of the interview; country; date of interview; time of the beginning of the interview; duration of the interview; call history; NACE-Code; weighting factor.

  17. T

    Managed Database Services Market Report - Growth & Forecast 2025 to 2035

    • futuremarketinsights.com
    html, pdf
    Updated Apr 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Future Market Insights (2025). Managed Database Services Market Report - Growth & Forecast 2025 to 2035 [Dataset]. https://www.futuremarketinsights.com/reports/managed-database-services-market
    Explore at:
    pdf, htmlAvailable download formats
    Dataset updated
    Apr 22, 2025
    Dataset authored and provided by
    Future Market Insights
    License

    https://www.futuremarketinsights.com/privacy-policyhttps://www.futuremarketinsights.com/privacy-policy

    Time period covered
    2025 - 2035
    Area covered
    Worldwide
    Description

    By 2025, the managed database services market will likely hit USD 445,020.1 million and grow to USD 1,497,335 million by 2035, with a CAGR of 12.9%. The rise of using multi-cloud and mixed cloud plans, rising AI use for smart database upkeep, and more people using Database-as-a-Service are guiding the future of the industry. Also, more worry about keeping data safe and following rules is driving market growth.

    MetricValue
    Market Size (2025E)USD 445,020.1 Million
    Market Value (2035F)USD 1,497,335 Million
    CAGR (2025 to 2035)12.9%

    Country-wise Insights

    CountryCAGR (2025 to 2035)
    USA13.1%
    CountryCAGR (2025 to 2035)
    UK12.7%
    RegionCAGR (2025 to 2035)
    European Union (EU)12.9%
    CountryCAGR (2025 to 2035)
    Japan13.0%
    CountryCAGR (2025 to 2035)
    South Korea13.2%

    Managed Database Services Market - Segmentation Outlook

    ServiceMarket Share (2025)
    Database Administration38.0%
    ApplicationMarket Share (2025)
    Customer Relationship Management (CRM)46.0%

    Competitive Outlook

    Company NameEstimated Market Share (%)
    Amazon Web Services (AWS)18-22%
    Microsoft Corporation (Azure)14-18%
    Google Cloud Platform (GCP)12-16%
    Oracle Corporation10-14%
    IBM Corporation6-10%
    Other Companies (combined)30-40%
  18. e

    Flash Eurobarometer 415 (Innobarometer 2015 - The Innovation Trends at EU...

    • b2find.eudat.eu
    Updated Mar 30, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). Flash Eurobarometer 415 (Innobarometer 2015 - The Innovation Trends at EU Enterprises) - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/f4c7ab70-00de-555e-8670-ecfcb37f487f
    Explore at:
    Dataset updated
    Mar 30, 2016
    Area covered
    European Union
    Description

    Innovationen in europäischen Unternehmen. Themen: Einstellungen zum Einsatz von Design im Unternehmen: zentrales strategisches Element, integrales Element der Entwicklungsarbeit, nur als letzter Feinschliff genutzt, kein systematischer Einsatz, überhaupt nicht genutzt; seit Januar 2012 eingeführte neue oder wesentlich verbesserte: Produkte, Dienstleistungen, Prozesse, Marketingstrategien, Organisationsmethoden; Anteil der seit Januar 2012 eingeführten innovativen Produkte oder Dienstleistungen am Umsatz 2014 (in Prozent); Anteil der Investitionen seit Januar 2012 in die folgenden Maßnahmen gemessen am Gesamtumsatz (in Prozent): Schulung und Fortbildung, Softwareentwicklung, Unternehmensreputation und Markenbildung, Forschung und Entwicklung, Design von Produkten und Dienstleistungen, Verbesserung von Organisation und Geschäftsprozessen, Anschaffung notwendiger Ausstattung; Probleme und deren Bedeutung bei der Vermarktung innovativer Produkte oder Dienstleistungen seit Januar 2012: Mangel an Personal, Mangel an Finanzmitteln, Finden oder Nutzen von neuen Technologien, Kosten bzw. Komplexität der Erfüllung von Bestimmungen oder Normen, Schwierigkeiten mit Aspekten der Rechte am geistigen Eigentum, administrative oder rechtliche Fragen, Mangel an Marketingexpertise, Marktbeherrschung durch etablierte Konkurrenten, geringe Nachfrage, schwache Vertriebskanäle; präferierte öffentliche Fördermaßnahmen für die Vermarktung innovativer Produkte oder Dienstleistungen im Sinne der Unterstützung bei folgenden Punkten: Erfüllung von Bestimmungen oder Normen, Zugang zu oder Stärkung des Online-Verkaufs, Teilnahme an Konferenzen, Messen und Ausstellungen, Schulung von Mitarbeitern, Fragen bezüglich des Rechts des geistigen Eigentums, Marktests vor der Einführung, Zugang zu bzw. Stärkung der Unternehmenspräsenz in Exportmärkten; Anteil der Investitionen in Innovationen am Gesamtumsatz 2014 (in Prozent); geplante Entwicklung des Investitionsanteils in Innovationen in den nächsten zwölf Monaten; Schwerpunkt der geplanten Investitionen: Produkte, Dienstleistungen, Prozesse, Marketingstrategien, Organisationsmethoden; Hauptgründe für die Investition in Innovationen in den nächsten zwölf Monaten; Verwendung der folgenden Technologien: nachhaltige Fertigungstechnologien, intelligente IKT-gestützte Fertigung, Hochleistungsfertigung; Pläne zur Verwendung der vorgenannten Technologien in den nächsten zwölf Monaten; Aktivitäten des Unternehmens im Hinblick auf öffentliche Ausschreibungen seit Januar 2012: zumindest eine Ausschreibung gewonnen, zumindest ein Angebot mit noch offenem Ergebnis abgegeben, zumindest ein Angebot ohne Erfolg abgegeben, Möglichkeiten ohne Abgabe eines Angebots geprüft, bisher weder ein Angebot abgegeben noch Möglichkeiten geprüft; Einbringen eigener Innovationen im Rahmen einer gewonnen öffentlichen Ausschreibung. Demographie: Angaben zum Unternehmen: Anzahl der Mitarbeiter, Gründungsjahr, Übernahme durch oder Zusammenschluss mit einem anderen Unternehmen seit Beginn des Jahres 2012, unabhängig oder Teil eines nationalen oder internationalen Konzerns; Gesamtumsatz in 2014; Entwicklung des Gesamtumsatzes seit Januar 2012 (in Prozent); prozentualer Anteil der Verkäufe in den folgenden Märkten am Gesamtumsatz in 2014: lokaler Markt, nationaler Markt außerhalb der Region des Unternehmenssitzes, EU-Länder (einschließlich der Schweiz, Norwegen, Island und Liechtenstein), andere Länder. Zusätzlich verkodet wurde: Befragten-ID; Land; NACE-Code; Unternehmensgröße; Nationengruppe; Gewichtungsfaktor. Innovations in European companies. Topics: company’s attitudes towards design: central strategic element, integral element of development work, only used as last finish, not systematically used, not used at all; introduction since January 2012, of new or significantly improved: goods, services, processes, marketing strategies, organisational methods; percentage of the company’s turnover in 2014 due to innovative goods or services introduced since January 2012; share of total turnover invested in the following activities since January 2012 (in percent): training, software development, company reputation and branding, research and development, design of products and services, organisation of business process improvements, acquisition of equipment; encountered problems and respective significance with regard to the commercialisation of innovative goods or services since January 2012: lack of human resources, lack of financial resources, finding or using new technologies, high costs or complexity of meeting regulations or standards, difficulties in maintaining intellectual property rights, administrative or legal issues, lack of marketing expertise, market domination by established competitors, low demand, weak distribution channels; preferred measures of public support regarding the following issues in the commercialisation of innovative goods or services: meeting regulations or standards, accessing or reinforcing online selling, participating in conferences, trade fairs or exhibitions, staff training, issues regarding intellectual property rights, market-testing before launch, accessing or reinforcing company’s presence in export markets; share of total turnover in 2014 invested in innovation activities; planned development of the percentage of investment dedicated to innovation in the next twelve months; focus of planned investment: goods, services, processes, marketing strategies, organisational methods; main reasons for investment in innovation in the next twelve months; use of the following technologies: sustainable manufacturing technologies, ICT-enabled intelligent manufacturing, high performance manufacturing; plans to use the aforementioned technologies in the next twelve months; activities of the company regarding public procurement contracts since January 2012: won at least one contract, submission of at least one tender with unknown outcome, submission of at least one tender without success, investigation of opportunities without submitting a tender, never submitted a tender or investigated opportunities; inclusion of innovations in won public procurement contract. Demography: information about the company: number of employees, year of establishment, takeover by or merging with another company since the beginning of 2012, independent or part of a group; total turnover in 2014; development of turnover since January 2012 (in percent); percentage of the company’s turnover in 2014 coming from: local sales, sales in the own country outside the area in which company is located, sales in EU countries (including Switzerland, Norway, Iceland, or Liechtenstein), sales in other countries. Additionally coded was: respondent ID; country; NACE-Code; size of company; nation group; weighting factor.

  19. Global retail e-commerce sales 2022-2028

    • statista.com
    Updated Jun 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Global retail e-commerce sales 2022-2028 [Dataset]. https://www.statista.com/statistics/379046/worldwide-retail-e-commerce-sales/
    Explore at:
    Dataset updated
    Jun 24, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Feb 2025
    Area covered
    Worldwide
    Description

    In 2024, global retail e-commerce sales reached an estimated ************ U.S. dollars. Projections indicate a ** percent growth in this figure over the coming years, with expectations to come close to ************** dollars by 2028. World players Among the key players on the world stage, the American marketplace giant Amazon holds the title of the largest e-commerce player globally, with a gross merchandise value of nearly *********** U.S. dollars in 2024. Amazon was also the most valuable retail brand globally, followed by mostly American competitors such as Walmart and the Home Depot. Leading e-tailing regions E-commerce is a dormant channel globally, but nowhere has it been as successful as in Asia. In 2024, the e-commerce revenue in that continent alone was measured at nearly ************ U.S. dollars, outperforming the Americas and Europe. That year, the up-and-coming e-commerce markets also centered around Asia. The Philippines and India stood out as the swiftest-growing e-commerce markets based on online sales, anticipating a growth rate surpassing ** percent.

  20. Sales of the H&M Group worldwide 2006-2024

    • statista.com
    Updated Jun 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Sales of the H&M Group worldwide 2006-2024 [Dataset]. https://www.statista.com/statistics/252190/gross-sales-of-the-h-und-m-group-worldwide/
    Explore at:
    Dataset updated
    Jun 2, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    This statistic depicts the sales of the H&M Group worldwide from 2006 to 2024. In the fiscal year 2024, global net sales of the H&M Group amounted to about 234 billion Swedish kronor. H&MH&M offers a broad and varied range of fashion including collections for women, men, teenagers and children. The range also includes sportswear, underwear, shoes, accessories and cosmetics, as well as home textiles and decorations from H&M Home.Germany is H&M's largest market. In 2024, over 35 billion Swedish kronor were generated from that country alone. The company operates roughly 4,253 stores worldwide and employs approximately 97,710 people. H&M dropped out of the top ten most valuable apparel brands in the world as of 2023.H&M aims to be a more sustainable choice for today’s increasingly aware customers. To this end, H&M’s investments in social improvements and reduced environmental impact extend throughout the product life cycle – from responsible use of natural resources to ensuring good working conditions at suppliers’ factories. Sustainability work is thoroughly integrated into the business, not only because it is an investment in the customer offering,but also because it is vital to the group’s long-term growth and development. However, there have been questions raised as to how effective and trustworthy H&M's sustainability practices really are.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Envestnet | Yodlee, Envestnet | Yodlee's USA Consumer Spending Data (De-Identified) | Row/Aggregate Level | Consumer Data covering 3600+ public and private corporations [Dataset]. https://datarade.ai/data-products/envestnet-yodlee-s-de-identified-consumer-spending-data-r-envestnet-yodlee
Organization logoOrganization logo

Envestnet | Yodlee's USA Consumer Spending Data (De-Identified) | Row/Aggregate Level | Consumer Data covering 3600+ public and private corporations

Explore at:
.sql, .txtAvailable download formats
Dataset provided by
Yodlee
Envestnethttp://envestnet.com/
Authors
Envestnet | Yodlee
Area covered
United States of America
Description

Envestnet®| Yodlee®'s Consumer Spending Data (Aggregate/Row) Panels consist of de-identified, near-real time (T+1) USA credit/debit/ACH transaction level data – offering a wide view of the consumer activity ecosystem. The underlying data is sourced from end users leveraging the aggregation portion of the Envestnet®| Yodlee®'s financial technology platform.

Envestnet | Yodlee Consumer Panels (Aggregate/Row) include data relating to millions of transactions, including ticket size and merchant location. The dataset includes de-identified credit/debit card and bank transactions (such as a payroll deposit, account transfer, or mortgage payment). Our coverage offers insights into areas such as consumer, TMT, energy, REITs, internet, utilities, ecommerce, MBS, CMBS, equities, credit, commodities, FX, and corporate activity. We apply rigorous data science practices to deliver key KPIs daily that are focused, relevant, and ready to put into production.

We offer free trials. Our team is available to provide support for loading, validation, sample scripts, or other services you may need to generate insights from our data.

Investors, corporate researchers, and corporates can use our data to answer some key business questions such as: - How much are consumers spending with specific merchants/brands and how is that changing over time? - Is the share of consumer spend at a specific merchant increasing or decreasing? - How are consumers reacting to new products or services launched by merchants? - For loyal customers, how is the share of spend changing over time? - What is the company’s market share in a region for similar customers? - Is the company’s loyal user base increasing or decreasing? - Is the lifetime customer value increasing or decreasing?

Use Cases Categories (Our data provides an innumerable amount of use cases, and we look forward to working with new ones): 1. Market Research: Company Analysis, Company Valuation, Competitive Intelligence, Competitor Analysis, Competitor Analytics, Competitor Insights, Customer Data Enrichment, Customer Data Insights, Customer Data Intelligence, Demand Forecasting, Ecommerce Intelligence, Employee Pay Strategy, Employment Analytics, Job Income Analysis, Job Market Pricing, Marketing, Marketing Data Enrichment, Marketing Intelligence, Marketing Strategy, Payment History Analytics, Price Analysis, Pricing Analytics, Retail, Retail Analytics, Retail Intelligence, Retail POS Data Analysis, and Salary Benchmarking

  1. Investment Research: Financial Services, Hedge Funds, Investing, Mergers & Acquisitions (M&A), Stock Picking, Venture Capital (VC)

  2. Consumer Analysis: Consumer Data Enrichment, Consumer Intelligence

  3. Market Data: Analytics B2C Data Enrichment, Bank Data Enrichment, Behavioral Analytics, Benchmarking, Customer Insights, Customer Intelligence, Data Enhancement, Data Enrichment, Data Intelligence, Data Modeling, Ecommerce Analysis, Ecommerce Data Enrichment, Economic Analysis, Financial Data Enrichment, Financial Intelligence, Local Economic Forecasting, Location-based Analytics, Market Analysis, Market Analytics, Market Intelligence, Market Potential Analysis, Market Research, Market Share Analysis, Sales, Sales Data Enrichment, Sales Enablement, Sales Insights, Sales Intelligence, Spending Analytics, Stock Market Predictions, and Trend Analysis.

Additional Use Cases: - Use spending data to analyze sales/revenue broadly (sector-wide) or granular (company-specific). Historically, our tracked consumer spend has correlated above 85% with company-reported data from thousands of firms. Users can sort and filter by many metrics and KPIs, such as sales and transaction growth rates and online or offline transactions, as well as view customer behavior within a geographic market at a state or city level. - Reveal cohort consumer behavior to decipher long-term behavioral consumer spending shifts. Measure market share, wallet share, loyalty, consumer lifetime value, retention, demographics, and more.) - Study the effects of inflation rates via such metrics as increased total spend, ticket size, and number of transactions. - Seek out alpha-generating signals or manage your business strategically with essential, aggregated transaction and spending data analytics.

Search
Clear search
Close search
Google apps
Main menu