5 datasets found
  1. Dropout and Success: Student Data Analysis

    • kaggle.com
    Updated Dec 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marouan daghmoumi (2023). Dropout and Success: Student Data Analysis [Dataset]. https://www.kaggle.com/datasets/marouandaghmoumi/dropout-and-success-student-data-analysis
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 31, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Marouan daghmoumi
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Summary

    dataset created from a higher education institution (acquired from several disjoint databases) related to students enrolled in different undergraduate degrees, such as agronomy, design, education, nursing, journalism, management, social service, and technologies. The dataset includes information known at the time of student enrollment (academic path, demographics, and social-economic factors) and the students' academic performance at the end of the first and second semesters. The data is used to build classification models to predict students' dropout and academic sucess. The problem is formulated as a three category classification task, in which there is a strong imbalance towards one of the classes.

    Introduction

    This dataset delves into the correlation between dropout rates and student success in various educational settings. It includes comprehensive information on student demographics, academic performance, and factors contributing to dropout incidents. The dataset aims to provide valuable insights for educators, policymakers, and researchers to enhance strategies for fostering student retention and academic achievement.

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F17474923%2Fc00e9ef81fed562fd0f70e620fef80f7%2Fcollege-dropouts1.jpg?generation=1704037747011701&alt=media" alt="">

    Dataset

    The dataset includes information known at the time of student enrollment – academic path, demographics, and social-economic factors.

    - Marital status: Categorical variable indicating the marital status of the individual. (1 – single 2 – married 3 – widower 4 – divorced 5 – facto union 6 – legally separated)

    - Application mode: Categorical variable indicating the mode of application. (1 - 1st phase - general contingent 2 - Ordinance No. 612/93 5 - 1st phase - special contingent (Azores Island) 7 - Holders of other higher courses 10 - Ordinance No. 854-B/99 15 - International student (bachelor) 16 - 1st phase - special contingent (Madeira Island) 17 - 2nd phase - general contingent 18 - 3rd phase - general contingent 26 - Ordinance No. 533-A/99, item b2) (Different Plan) 27 - Ordinance No. 533-A/99, item b3 (Other Institution) 39 - Over 23 years old 42 - Transfer 43 - Change of course 44 - Technological specialization diploma holders 51 - Change of institution/course 53 - Short cycle diploma holders 57 - Change of institution/course (International)).

    - Application order: Numeric variable indicating the order of application. (between 0 - first choice; and 9 last choice).

    - Course: Categorical variable indicating the chosen course. (33 - Biofuel Production Technologies 171 - Animation and Multimedia Design 8014 - Social Service (evening attendance) 9003 - Agronomy 9070 - Communication Design 9085 - Veterinary Nursing 9119 - Informatics Engineering 9130 - Equinculture 9147 - Management 9238 - Social Service 9254 - Tourism 9500 - Nursing 9556 - Oral Hygiene 9670 - Advertising and Marketing Management 9773 - Journalism and Communication 9853 - Basic Education 9991 - Management (evening attendance)).

    - evening attendance: Binary variable indicating whether the individual attends classes during the daytime or evening. (1 for daytime, 0 for evening).

    - Previous qualification: Numeric variable indicating the level of the previous qualification. (1 - Secondary education 2 - Higher education - bachelor's degree 3 - Higher education - degree 4 - Higher education - master's 5 - Higher education - doctorate 6 - Frequency of higher education 9 - 12th year of schooling - not completed 10 - 11th year of schooling - not completed 12 - Other - 11th year of schooling 14 - 10th year of schooling 15 - 10th year of schooling - not completed 19 - Basic education 3rd cycle (9th/10th/11th year) or equiv. 38 - Basic education 2nd cycle (6th/7th/8th year) or equiv. 39 - Technological specialization course 40 - Higher education - degree (1st cycle) 42 - Professional higher technical course 43 - Higher education - master (2nd cycle)).

    - Nationality: Categorical variable indicating the nationality of the individual. (1 - Portuguese; 2 - German; 6 - Spanish; 11 - Italian; 13 - Dutch; 14 - English; 17 - Lithuanian; 21 - Angolan; 22 - Cape Verdean; 24 - Guinean; 25 - Mozambican; 26 - Santomean; 32 - Turkish; 41 - Brazilian; 62 - Romanian; 100 - Moldova (Republic of); 101 - Mexican; 103 - Ukrainian; 105 - Russian; 108 - Cuban; 109 - Colombian).

    - Mother's qualification: Numeric variable indicating the level of the mother's qualification.
    (1 - Secondary Education - 12th Year of Schooling or Eq. 2 - Higher Education - Bachelor's Degree 3 - Higher Education - Degree 4 - Higher Education - Master's 5 - Higher Education - Doctorate 6 - Frequency of Higher Education 9 - 12th Year of Schooling - Not Completed 10 - 11th Year of Schooling - Not Completed 11 - 7th Year (...

  2. A

    ‘Postsecondary Completion Rates’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Feb 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘Postsecondary Completion Rates’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-postsecondary-completion-rates-cf72/0b6d8195/?iid=007-354&v=presentation
    Explore at:
    Dataset updated
    Feb 13, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Postsecondary Completion Rates’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yamqwe/postsecondary-completion-ratese on 13 February 2022.

    --- Dataset description provided by original source is as follows ---

    About this dataset

    The National Center for Education Statistics (NCES) is the primary federal entity for collecting and analyzing data related to education in the U.S. and other nations. NCES is located within the U.S. Department of Education and the Institute of Education Sciences. NCES fulfills a Congressional mandate to collect, collate, analyze, and report complete statistics on the condition of American education; conduct and publish reports; and review and report on education activities internationally.

    • Table 326.10. Graduation rate from first institution attended for first-time, full-time bachelor's degree-seeking students at 4-year postsecondary institutions, by race/ethnicity, time to completion, sex, control of institution, and acceptance rate: Selected cohort entry years, 1996 through 2008
    • Table 326.20. Graduation rate from first institution attended within 150 percent of normal time for first-time, full-time degree/certificate-seeking students at 2-year postsecondary institutions, by race/ethnicity, sex, and control of institution: Selected cohort entry years, 2000 through 2011
    • Table 326.30. Retention of first-time degree-seeking undergraduates at degree-granting postsecondary institutions, by attendance status, level and control of institution, and percentage of applications accepted: Selected years, 2006 to 2014
    • Table 326.40. Percentage distribution of first-time postsecondary students starting at -2 and 4-year institutions during the 2003-04 academic year, by highest degree attained, enrollment status, and selected characteristics: Spring 2009

    Source: https://nces.ed.gov/programs/digest/current_tables.asp

    This dataset was created by National Center for Education Statistics and contains around 100 samples along with Unnamed: 27, Unnamed: 11, technical information and other features such as: - Unnamed: 21 - Unnamed: 5 - and more.

    How to use this dataset

    • Analyze Unnamed: 4 in relation to Unnamed: 34
    • Study the influence of Unnamed: 6 on Unnamed: 29
    • More datasets

    Acknowledgements

    If you use this dataset in your research, please credit National Center for Education Statistics

    Start A New Notebook!

    --- Original source retains full ownership of the source dataset ---

  3. d

    Performance Metrics - City Colleges of Chicago - Graduation Rates

    • catalog.data.gov
    • data.cityofchicago.org
    • +3more
    Updated Jan 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofchicago.org (2024). Performance Metrics - City Colleges of Chicago - Graduation Rates [Dataset]. https://catalog.data.gov/dataset/performance-metrics-city-colleges-of-chicago-graduation-rates
    Explore at:
    Dataset updated
    Jan 19, 2024
    Dataset provided by
    data.cityofchicago.org
    Area covered
    Chicago
    Description

    The U.S. Department of Education’s graduation rate, which is reported through the Integrated Postsecondary Education Data System (IPEDS), is a nationally recognized and commonly used metric in higher education. Graduation rate is calculated as the percentage of first‐time, full‐time, degree/certificate seeking students that complete a CCC program within 150% of the estimated time it takes to complete the program.

  4. T

    South Africa Unemployment Rate

    • tradingeconomics.com
    • ar.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated May 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). South Africa Unemployment Rate [Dataset]. https://tradingeconomics.com/south-africa/unemployment-rate
    Explore at:
    excel, xml, json, csvAvailable download formats
    Dataset updated
    May 13, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Sep 30, 2000 - Mar 31, 2025
    Area covered
    South Africa
    Description

    Unemployment Rate in South Africa increased to 32.90 percent in the first quarter of 2025 from 31.90 percent in the fourth quarter of 2024. This dataset provides - South Africa Unemployment Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  5. Data from: Analysis of the Quantitative Impact of Social Networks General...

    • figshare.com
    • produccioncientifica.ucm.es
    doc
    Updated Oct 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David Parra; Santiago Martínez Arias; Sergio Mena Muñoz (2022). Analysis of the Quantitative Impact of Social Networks General Data.doc [Dataset]. http://doi.org/10.6084/m9.figshare.21329421.v1
    Explore at:
    docAvailable download formats
    Dataset updated
    Oct 14, 2022
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    David Parra; Santiago Martínez Arias; Sergio Mena Muñoz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    General data recollected for the studio " Analysis of the Quantitative Impact of Social Networks on Web Traffic of Cybermedia in the 27 Countries of the European Union". Four research questions are posed: what percentage of the total web traffic generated by cybermedia in the European Union comes from social networks? Is said percentage higher or lower than that provided through direct traffic and through the use of search engines via SEO positioning? Which social networks have a greater impact? And is there any degree of relationship between the specific weight of social networks in the web traffic of a cybermedia and circumstances such as the average duration of the user's visit, the number of page views or the bounce rate understood in its formal aspect of not performing any kind of interaction on the visited page beyond reading its content? To answer these questions, we have first proceeded to a selection of the cybermedia with the highest web traffic of the 27 countries that are currently part of the European Union after the United Kingdom left on December 31, 2020. In each nation we have selected five media using a combination of the global web traffic metrics provided by the tools Alexa (https://www.alexa.com/), which ceased to be operational on May 1, 2022, and SimilarWeb (https:// www.similarweb.com/). We have not used local metrics by country since the results obtained with these first two tools were sufficiently significant and our objective is not to establish a ranking of cybermedia by nation but to examine the relevance of social networks in their web traffic. In all cases, cybermedia whose property corresponds to a journalistic company have been selected, ruling out those belonging to telecommunications portals or service providers; in some cases they correspond to classic information companies (both newspapers and televisions) while in others they refer to digital natives, without this circumstance affecting the nature of the research proposed.
    Below we have proceeded to examine the web traffic data of said cybermedia. The period corresponding to the months of October, November and December 2021 and January, February and March 2022 has been selected. We believe that this six-month stretch allows possible one-time variations to be overcome for a month, reinforcing the precision of the data obtained. To secure this data, we have used the SimilarWeb tool, currently the most precise tool that exists when examining the web traffic of a portal, although it is limited to that coming from desktops and laptops, without taking into account those that come from mobile devices, currently impossible to determine with existing measurement tools on the market. It includes:

    Web traffic general data: average visit duration, pages per visit and bounce rate Web traffic origin by country Percentage of traffic generated from social media over total web traffic Distribution of web traffic generated from social networks Comparison of web traffic generated from social netwoks with direct and search procedures

  6. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Marouan daghmoumi (2023). Dropout and Success: Student Data Analysis [Dataset]. https://www.kaggle.com/datasets/marouandaghmoumi/dropout-and-success-student-data-analysis
Organization logo

Dropout and Success: Student Data Analysis

Exploring the Impact of Dropout Rates on Student Success

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Dec 31, 2023
Dataset provided by
Kagglehttp://kaggle.com/
Authors
Marouan daghmoumi
License

Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically

Description

Summary

dataset created from a higher education institution (acquired from several disjoint databases) related to students enrolled in different undergraduate degrees, such as agronomy, design, education, nursing, journalism, management, social service, and technologies. The dataset includes information known at the time of student enrollment (academic path, demographics, and social-economic factors) and the students' academic performance at the end of the first and second semesters. The data is used to build classification models to predict students' dropout and academic sucess. The problem is formulated as a three category classification task, in which there is a strong imbalance towards one of the classes.

Introduction

This dataset delves into the correlation between dropout rates and student success in various educational settings. It includes comprehensive information on student demographics, academic performance, and factors contributing to dropout incidents. The dataset aims to provide valuable insights for educators, policymakers, and researchers to enhance strategies for fostering student retention and academic achievement.

https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F17474923%2Fc00e9ef81fed562fd0f70e620fef80f7%2Fcollege-dropouts1.jpg?generation=1704037747011701&alt=media" alt="">

Dataset

The dataset includes information known at the time of student enrollment – academic path, demographics, and social-economic factors.

- Marital status: Categorical variable indicating the marital status of the individual. (1 – single 2 – married 3 – widower 4 – divorced 5 – facto union 6 – legally separated)

- Application mode: Categorical variable indicating the mode of application. (1 - 1st phase - general contingent 2 - Ordinance No. 612/93 5 - 1st phase - special contingent (Azores Island) 7 - Holders of other higher courses 10 - Ordinance No. 854-B/99 15 - International student (bachelor) 16 - 1st phase - special contingent (Madeira Island) 17 - 2nd phase - general contingent 18 - 3rd phase - general contingent 26 - Ordinance No. 533-A/99, item b2) (Different Plan) 27 - Ordinance No. 533-A/99, item b3 (Other Institution) 39 - Over 23 years old 42 - Transfer 43 - Change of course 44 - Technological specialization diploma holders 51 - Change of institution/course 53 - Short cycle diploma holders 57 - Change of institution/course (International)).

- Application order: Numeric variable indicating the order of application. (between 0 - first choice; and 9 last choice).

- Course: Categorical variable indicating the chosen course. (33 - Biofuel Production Technologies 171 - Animation and Multimedia Design 8014 - Social Service (evening attendance) 9003 - Agronomy 9070 - Communication Design 9085 - Veterinary Nursing 9119 - Informatics Engineering 9130 - Equinculture 9147 - Management 9238 - Social Service 9254 - Tourism 9500 - Nursing 9556 - Oral Hygiene 9670 - Advertising and Marketing Management 9773 - Journalism and Communication 9853 - Basic Education 9991 - Management (evening attendance)).

- evening attendance: Binary variable indicating whether the individual attends classes during the daytime or evening. (1 for daytime, 0 for evening).

- Previous qualification: Numeric variable indicating the level of the previous qualification. (1 - Secondary education 2 - Higher education - bachelor's degree 3 - Higher education - degree 4 - Higher education - master's 5 - Higher education - doctorate 6 - Frequency of higher education 9 - 12th year of schooling - not completed 10 - 11th year of schooling - not completed 12 - Other - 11th year of schooling 14 - 10th year of schooling 15 - 10th year of schooling - not completed 19 - Basic education 3rd cycle (9th/10th/11th year) or equiv. 38 - Basic education 2nd cycle (6th/7th/8th year) or equiv. 39 - Technological specialization course 40 - Higher education - degree (1st cycle) 42 - Professional higher technical course 43 - Higher education - master (2nd cycle)).

- Nationality: Categorical variable indicating the nationality of the individual. (1 - Portuguese; 2 - German; 6 - Spanish; 11 - Italian; 13 - Dutch; 14 - English; 17 - Lithuanian; 21 - Angolan; 22 - Cape Verdean; 24 - Guinean; 25 - Mozambican; 26 - Santomean; 32 - Turkish; 41 - Brazilian; 62 - Romanian; 100 - Moldova (Republic of); 101 - Mexican; 103 - Ukrainian; 105 - Russian; 108 - Cuban; 109 - Colombian).

- Mother's qualification: Numeric variable indicating the level of the mother's qualification.
(1 - Secondary Education - 12th Year of Schooling or Eq. 2 - Higher Education - Bachelor's Degree 3 - Higher Education - Degree 4 - Higher Education - Master's 5 - Higher Education - Doctorate 6 - Frequency of Higher Education 9 - 12th Year of Schooling - Not Completed 10 - 11th Year of Schooling - Not Completed 11 - 7th Year (...

Search
Clear search
Close search
Google apps
Main menu