Facebook
TwitterAttribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
This dataset explores the impact of social media usage on suicide rates, presenting an analysis based on social media platform data and WHO suicide rate statistics. It is an insightful resource for researchers, data scientists, and analysts looking to understand the correlation between increased social media activity and suicide rates across different regions and demographics.
The dataset includes the following key sources:
WHO Suicide Rate Data (SDGSUICIDE): Retrieved from WHO data export, which tracks global suicide rates. Social Media Usage Data: Information from major social media platforms, sourced from Kaggle, supplemented with data from:
We would like to acknowledge:
World Health Organization (WHO): For providing global suicide rate data, accessible under their data policy (WHO Data Policy). Kaggle Dataset Contributors: For social media usage data that played a crucial role in the analysis.
This dataset is useful for studying the potential social factors contributing to suicide rates, especially the role of social media. Analysts can explore correlations using time-series analysis, regression models, or other statistical tools to derive meaningful insights. Please ensure compliance with the Creative Commons Attribution Non-Commercial Share Alike 4.0 International License (CC BY-NC-SA 4.0).
Impact-of-social-media-on-suicide-rates-results-1.1.0.zip (90.9 kB) Contains processed results and supplementary data.
If you use this dataset in your work, please cite:
Martin Winkler. (2021). Impact of social media on suicide rates: produced results (1.1.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.4701587 https://zenodo.org/records/4701587
This dataset is released under the Creative Commons Attribution Non-Commercial Share Alike 4.0 International (CC BY-NC-SA 4.0) license. You are free to share and adapt the material, provided proper attribution is given, it's not used for commercial purposes, and any derivatives are distributed under the same license.
Year: The year of the recorded data. Sex: Demographic indicator (e.g., male, female). Suicide Rate % Change Since 2010: Percentage change in suicide rates compared to the year 2010. Twitter User Count % Change Since 2010: Percentage change in Twitter user counts compared to the year 2010. Facebook User Count % Change Since 2010: Percentage change in Facebook user counts compared to the year 2010.
The dataset includes categorized data ranges, allowing for analysis of trends within specified intervals. For example, ranges for suicide rates, Twitter user counts, and Facebook user counts are represented in bins for better granularity.
The dataset summarizes counts for various intervals, enabling researchers to identify trends and patterns over time, highlighting periods of significant change or stability in both suicide rates and social media usage.
This dataset can be used for:
Statistical analysis to understand correlations between social media usage and mental health outcomes. Academic research focused on public health, psychology, or sociology. Policy-making discussions aimed at addressing mental health concerns linked to social media.
The dataset contains sensitive information regarding suicide rates. Users should handle this data with care and sensitivity, considering ethical implications when presenting findings.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Number of suicides, suicide rates and median registration delays, by local authority in England and Wales.
Facebook
TwitterBy Rajanand Ilangovan [source]
This dataset contains data on suicides in India by state, year, profession and gender. Through this dataset, we can gain an understanding of the factors that influence suicide rates across different states, professions and genders. By examining this data we can better understand how to reduce these tragedies in India which are of great concern to citizens, families and the government alike. The columns include the State in India where the suicides occurred; Year in which the suicides occurred; Type_code of the profession of the person who committed suicide; Gender of the person who committed suicide; Age_group of such person; and Total number of suicides for a given State-Year-Typecode-Type-Gender-Agegroup combination. With this insightful data set at our disposal, we can gather valuable insights into why certain types people are more likely to take their own lives than others and look for solutions which would have meaningful implications for society at large
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset contains information about the number of suicides in India by state, year, type of profession, gender, and age group. It is an important resource for understanding the trends and patterns in suicides in India. This guide will explain how to use this dataset to gain insights into suicide rates across India.
Exploring the Data
The first step to exploring this data is to examine its structure. There are 8 columns that contain information about each suicide: State (the Indian state where the suicide occurred), Year (the year of occurrence), Type_code (the code for the type of profession or activity engaged in at time of death), Gender (male or female), Age_group (groups based on age-range), Total (total number of suicides for given state/year/type_code/type/gender/age group). In addition, there are other useful descriptive stats such as aggregate totals by year and aggregate totals by state as well as null values indicating missing data points that should be accounted for during analysis.
Analyzing Trends
Once you have a good understanding of the data structure, you can begin analyzing it for patterns and trends. You can look at overall trends across all states or focus on individual states to see if certain decades witness higher suicide rates than others due to specific socioeconomic factors within those states. Similarly, you may identify distinct patterns when examining activity related causes across genders or age groups both generally and within individual states – e.g., self-immolation witnessed significantly more amongst females than males within a given decade etc.. Alternatively you could find out what types occupations had higher incidences during certain years thus ruling out otherwise unlikely ways people chose ‘suicide’!
Finally it may also be useful window shop; use this data set as research material before further framing hypotheses related too changes over time i historical events that directly caused shifts in societal norms like wars / pandemics etc.. And then corroborate results against timelines ascertained through secondary sources such newspapers / anecdotal reports or primary sources like census records summaries published by official agencies etc.. As a index towards which other activities were attempted within scope!
Overall these analyses can help policy makers understand better how best resources can be allocated while developing interventions aimed at reducing suicidal tendencies amongst different demographic segments including males & females , adolescents & elderly people respectively!
- Analyzing trends in suicides across different states in India over time to identify regional disparities and support the implementation of targeted policies and interventions.
- Mapping out the suicide hotspots across age groups, genders, and profession types to better target prevention efforts in those areas.
- Examining differences by profession type among populations with higher suicide rates in order to suggest preventative measures or resources tailored specifically for such populations
If you use this dataset in your research, please credit the original authors. Data Source
See the dataset description for more information.
File: Suicides_in_India.csv | Column name | Description ...
Facebook
TwitterAttribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
Explore global statistics on a subject that claims 800,000 lives each year.
Context
Suicide is a major cause of death in the world, claiming around 800,000 lives each year. It is ranked as the 14th leading cause of death worldwide as of 2017 and on average men are twice as likely to fall victim to it. It also one of the leading causes of death on young people and older people are at a higher risk as well. Source
Notes
This dataset contains data from 200+ countries on the topic of suicide and mental health infrastructure. It was created by extracting the latest data from WHO and combining it into a single dataset. Variables available range from Country, Sex, Mental health infrastructure and personnel and finally Suicide Rate (amount of suicides per 100k people). Note that the suicide rate is age-standardized, as to not bias comparisons between countries with different age compositions.
- Explore Suicide rates and their associated trends, as well as the effects of infrastructure and personnel on the suicide rates.
- Forecast suicide rates
If you use this dataset in your research, please credit the authors.
Citation
@misc{Global Health Observatory data repository, title={Mental Health}, url={https://apps.who.int/gho/data/node.main.MENTALHEALTH?lang=en}, journal={WHO} }
License
CC BY NC SA IGO 3.0
Splash banner
Splash icon
Icon by photo3idea_studio available on Flaticon.
More Datasets
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
India IN: Suicide Mortality Rate: Male data was reported at 17.800 NA in 2016. This records a decrease from the previous number of 18.000 NA for 2015. India IN: Suicide Mortality Rate: Male data is updated yearly, averaging 18.000 NA from Dec 2000 (Median) to 2016, with 5 observations. The data reached an all-time high of 18.600 NA in 2000 and a record low of 17.700 NA in 2010. India IN: Suicide Mortality Rate: Male data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s India – Table IN.World Bank.WDI: Health Statistics. Suicide mortality rate is the number of suicide deaths in a year per 100,000 population. Crude suicide rate (not age-adjusted).; ; World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).; Weighted average;
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Time series data for the statistic Suicide mortality rate, male (per 100,000 male population) and country Costa Rica. Indicator Definition:Suicide mortality rate is the number of suicide deaths in a year per 100,000 population. Crude suicide rate (not age-adjusted).The indicator "Suicide mortality rate, male (per 100,000 male population)" stands at 13.45 as of 12/31/2021, the highest value at least since 12/31/2001, the period currently displayed. Regarding the One-Year-Change of the series, the current value constitutes an increase of 36.13 percent compared to the value the year prior.The 1 year change in percent is 36.13.The 3 year change in percent is 11.07.The 5 year change in percent is 16.96.The 10 year change in percent is 23.74.The Serie's long term average value is 10.83. It's latest available value, on 12/31/2021, is 24.15 percent higher, compared to it's long term average value.The Serie's change in percent from it's minimum value, on 12/31/2001, to it's latest available value, on 12/31/2021, is +61.46%.The Serie's change in percent from it's maximum value, on 12/31/2021, to it's latest available value, on 12/31/2021, is 0.0%.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Data from Heuer (1979) on suicide rates in West Germany classified by age, sex, and method of suicide.
A data frame with 306 observations and 6 variables.
| Column | Description |
|---|---|
| Freq | frequency of suicides. |
| sex | factor indicating sex (male, female). |
| method | factor indicating method used. (poison, cookgas, toxicgas, hang, drown) |
| age | age (rounded). |
| age.group | factor. Age classified into 5 groups. |
| method2 | factor indicating method used (same as method but some levels are merged). |
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This project provides comprehensive information on the total number of suicides in Mexico from 1990 to 2024, categorized by sex and state. It includes the main dataset along with a Python script and supporting files that enable users to analyze suicide rates and trends across the country.The dataset follows the official government methodology, using year of registration and state of residence of the deceased as key variables. It includes:Total male and female populationsSuicide counts for males and femalesSuicide rates for each sexData SourcesSuicide Data: Extracted from the INEGI database of registered deathshttps://www.inegi.org.mx/programas/edr/#microdatosPopulation Data: Derived from Mexican government population projections for 2020–2070https://datos.gob.mx/dataset/proyecciones-de-poblacion/resource/de522924-f4d8-4523-a6fd-6b2efe73f3afIncluded Filesscript.py – Python script to generate choropleth maps of suicide rates by state for a selected yearrequirements.txt – Required Python packages to run the scriptmexico.json – GeoJSON file containing administrative boundaries of Mexico by stateSample Chart (2024) – Example visualization featuring suicide rates for 2024This project can be used by researchers, public health professionals, policymakers, journalists, and students interested in understanding suicide trends in Mexico. It allows users to explore long-term and state-level patterns, compare differences between males and females, generate spatial visualizations, and incorporate the data into broader statistical, geographic, or public health analyses.
Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This dataset shows the Canadian Armed Forces (CAF) rate for suicide per 100,000 for Regular Force males. As the number of events was less than 20 in most years, rates were not calculated annually as these would not have been statistically reliable. Regular Force female rates were not calculated because female suicides were uncommon. This dataset is taken from the yearly Report on Suicide Mortality in the Canadian Armed Forces released on the Canada.ca platform at the homepage link provided down below.
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Forecast: Male Suicide Rates in Germany 2022 - 2026 Discover more data with ReportLinker!
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Forecast: Male Suicide Rates in Japan 2022 - 2026 Discover more data with ReportLinker!
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Time series data for the statistic Suicide mortality rate, male (per 100,000 male population) and country Sierra Leone. Indicator Definition:Suicide mortality rate is the number of suicide deaths in a year per 100,000 population. Crude suicide rate (not age-adjusted).The indicator "Suicide mortality rate, male (per 100,000 male population)" stands at 7.80 as of 12/31/2021. Regarding the One-Year-Change of the series, the current value constitutes an increase of 15.90 percent compared to the value the year prior.The 1 year change in percent is 15.90.The 3 year change in percent is -0.3831.The 5 year change in percent is 5.26.The 10 year change in percent is 5.12.The Serie's long term average value is 7.30. It's latest available value, on 12/31/2021, is 6.89 percent higher, compared to it's long term average value.The Serie's change in percent from it's minimum value, on 12/31/2001, to it's latest available value, on 12/31/2021, is +21.68%.The Serie's change in percent from it's maximum value, on 12/31/2018, to it's latest available value, on 12/31/2021, is -0.383%.
Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Suicide is a tragedy and an important public health concern. Suicide prevention is a top priority for the Canadian Armed Forces (CAF). Monitoring and analyzing suicide events of CAF members provides valuable information to guide and refine ongoing suicide prevention efforts. The dataset shows the comparison of CAF regular force male member’s suicide rates by deployment history to Canadian rates using standardized mortality ratios from 1995 to 2019.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Indonesia ID: Suicide Mortality Rate: Male data was reported at 4.800 NA in 2016. This stayed constant from the previous number of 4.800 NA for 2015. Indonesia ID: Suicide Mortality Rate: Male data is updated yearly, averaging 5.100 NA from Dec 2000 (Median) to 2016, with 5 observations. The data reached an all-time high of 5.300 NA in 2005 and a record low of 4.800 NA in 2016. Indonesia ID: Suicide Mortality Rate: Male data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Indonesia – Table ID.World Bank.WDI: Health Statistics. Suicide mortality rate is the number of suicide deaths in a year per 100,000 population. Crude suicide rate (not age-adjusted).; ; World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).; Weighted average;
Facebook
TwitterThis table contains 126720 series, with data for years 2000 - 2000 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Age group (12 items: Total; 15 years and over;20 to 34 years;20 to 24 years;15 to 19 years ...), Sex (3 items: Both sexes; Females; Males ...), Suicidal thoughts and attempts (5 items: Total; suicidal thoughts and attempts; Suicide; considered in past 12 months; Suicide; attempted in past 12 months; Suicide; never contemplated ...), Characteristics (8 items: Number of persons; Low 95% confidence interval; number of persons; Coefficient of variation for number of persons; High 95% confidence interval; number of persons ...).
Facebook
TwitterOver *** thousand deaths due to suicides were recorded in India in 2022. Furthermore, majority of suicides were reported in the state of Tamil Nadu, followed by Rajasthan. The number of suicides that year had increased from the previous year. Some of the causes for suicides in the country were due to professional problems, abuse, violence, family problems, financial loss, sense of isolation and mental disorders. Depressive disorders and suicide As of 2015, over ****** million people worldwide suffered from some kind of depressive disorder. Furthermore, over ** percent of the total population in India suffer from different forms of mental disorders as of 2017. There exists a positive correlation between the number of suicide mortality rates and people with select mental disorders as opposed to those without. Risk factors for mental disorders Every ******* person in India suffers from some form of mental disorder. Today, depressive disorders are regarded as the leading contributor not only to disease burden and morbidity worldwide, but even suicide if not addressed. In 2022, the leading cause for suicide deaths in India was due to family problems. The second leading cause was due to illness. Some of the risk factors, relative to developing mental disorders including depressive and anxiety disorders, include bullying victimization, poverty, unemployment, childhood sexual abuse and intimate partner violence.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Finland FI: Suicide Mortality Rate: Male data was reported at 23.900 NA in 2016. This records an increase from the previous number of 21.800 NA for 2015. Finland FI: Suicide Mortality Rate: Male data is updated yearly, averaging 28.400 NA from Dec 2000 (Median) to 2016, with 5 observations. The data reached an all-time high of 36.800 NA in 2000 and a record low of 21.800 NA in 2015. Finland FI: Suicide Mortality Rate: Male data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Finland – Table FI.World Bank.WDI: Health Statistics. Suicide mortality rate is the number of suicide deaths in a year per 100,000 population. Crude suicide rate (not age-adjusted).; ; World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).; Weighted average;
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Nigeria NG: Suicide Mortality Rate: Male data was reported at 9.900 NA in 2016. This records an increase from the previous number of 9.700 NA for 2015. Nigeria NG: Suicide Mortality Rate: Male data is updated yearly, averaging 9.300 NA from Dec 2000 (Median) to 2016, with 5 observations. The data reached an all-time high of 9.900 NA in 2016 and a record low of 9.000 NA in 2010. Nigeria NG: Suicide Mortality Rate: Male data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Nigeria – Table NG.World Bank.WDI: Health Statistics. Suicide mortality rate is the number of suicide deaths in a year per 100,000 population. Crude suicide rate (not age-adjusted).; ; World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).; Weighted average;
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Forecast: Male Suicide Rates in Brazil 2022 - 2026 Discover more data with ReportLinker!
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset contains annual suicide rates from 2000 to 2019 for various countries and regions around the world. The data was collected from the World Health Organization (WHO) Mortality Database, which provides information on deaths and mortality rates from various causes, including suicide. The dataset includes information on the country, location, year, sex, and suicide rates (with upper and lower bounds) for each year.
Variables:
ParentLocation: The name of the parent location, such as a region or subregion. Location: The name of the location, such as a country or territory. Period: The year the suicide rate was recorded. Sex: The gender of the individual (male or female). FactValueNumeric: The age-standardized suicide rate (per 100,000 population) for the given sex, age, and year. FactValueNumericLow: The lower bound of the confidence interval for the suicide rate. FactValueNumericHigh: The upper bound of the confidence interval for the suicide rate.
Potential uses:
This dataset can be used to explore patterns and trends in suicide rates over time and across different regions of the world. Researchers and policymakers can use this data to identify risk factors and develop interventions to prevent suicides. The dataset can also be used to investigate the impact of economic, social, and cultural factors on suicide rates.
Caveats:
It is important to note that suicide is a sensitive and complex issue, and the data in this dataset may be subject to reporting biases, cultural differences in suicide rates, and other limitations. Additionally, the dataset does not include information on the causes or circumstances surrounding the suicides. Therefore, any analyses based on this dataset should be interpreted with caution and with an understanding of the limitations of the data.
Facebook
TwitterAttribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
This dataset explores the impact of social media usage on suicide rates, presenting an analysis based on social media platform data and WHO suicide rate statistics. It is an insightful resource for researchers, data scientists, and analysts looking to understand the correlation between increased social media activity and suicide rates across different regions and demographics.
The dataset includes the following key sources:
WHO Suicide Rate Data (SDGSUICIDE): Retrieved from WHO data export, which tracks global suicide rates. Social Media Usage Data: Information from major social media platforms, sourced from Kaggle, supplemented with data from:
We would like to acknowledge:
World Health Organization (WHO): For providing global suicide rate data, accessible under their data policy (WHO Data Policy). Kaggle Dataset Contributors: For social media usage data that played a crucial role in the analysis.
This dataset is useful for studying the potential social factors contributing to suicide rates, especially the role of social media. Analysts can explore correlations using time-series analysis, regression models, or other statistical tools to derive meaningful insights. Please ensure compliance with the Creative Commons Attribution Non-Commercial Share Alike 4.0 International License (CC BY-NC-SA 4.0).
Impact-of-social-media-on-suicide-rates-results-1.1.0.zip (90.9 kB) Contains processed results and supplementary data.
If you use this dataset in your work, please cite:
Martin Winkler. (2021). Impact of social media on suicide rates: produced results (1.1.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.4701587 https://zenodo.org/records/4701587
This dataset is released under the Creative Commons Attribution Non-Commercial Share Alike 4.0 International (CC BY-NC-SA 4.0) license. You are free to share and adapt the material, provided proper attribution is given, it's not used for commercial purposes, and any derivatives are distributed under the same license.
Year: The year of the recorded data. Sex: Demographic indicator (e.g., male, female). Suicide Rate % Change Since 2010: Percentage change in suicide rates compared to the year 2010. Twitter User Count % Change Since 2010: Percentage change in Twitter user counts compared to the year 2010. Facebook User Count % Change Since 2010: Percentage change in Facebook user counts compared to the year 2010.
The dataset includes categorized data ranges, allowing for analysis of trends within specified intervals. For example, ranges for suicide rates, Twitter user counts, and Facebook user counts are represented in bins for better granularity.
The dataset summarizes counts for various intervals, enabling researchers to identify trends and patterns over time, highlighting periods of significant change or stability in both suicide rates and social media usage.
This dataset can be used for:
Statistical analysis to understand correlations between social media usage and mental health outcomes. Academic research focused on public health, psychology, or sociology. Policy-making discussions aimed at addressing mental health concerns linked to social media.
The dataset contains sensitive information regarding suicide rates. Users should handle this data with care and sensitivity, considering ethical implications when presenting findings.