Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Ghana Educational Attainment: At Least Master's or Equivalent: Population 25+ Years: % Cumulative: Male data was reported at 1.653 % in 2022. This records an increase from the previous number of 1.561 % for 2017. Ghana Educational Attainment: At Least Master's or Equivalent: Population 25+ Years: % Cumulative: Male data is updated yearly, averaging 1.379 % from Dec 2010 (Median) to 2022, with 5 observations. The data reached an all-time high of 1.653 % in 2022 and a record low of 0.822 % in 2010. Ghana Educational Attainment: At Least Master's or Equivalent: Population 25+ Years: % Cumulative: Male data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Ghana – Table GH.World Bank.WDI: Social: Education Statistics. The percentage of population ages 25 and over that attained or completed Master's or equivalent.;UNESCO Institute for Statistics (UIS). UIS.Stat Bulk Data Download Service. Accessed April 5, 2025. https://apiportal.uis.unesco.org/bdds.;;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Ghana GH: Educational Attainment, At Least Completed Upper Secondary: Population 25+ Years: Total: % Cumulative data was reported at 20.564 % in 2010. This records an increase from the previous number of 3.700 % for 1970. Ghana GH: Educational Attainment, At Least Completed Upper Secondary: Population 25+ Years: Total: % Cumulative data is updated yearly, averaging 12.132 % from Dec 1970 (Median) to 2010, with 2 observations. The data reached an all-time high of 20.564 % in 2010 and a record low of 3.700 % in 1970. Ghana GH: Educational Attainment, At Least Completed Upper Secondary: Population 25+ Years: Total: % Cumulative data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Ghana – Table GH.World Bank: Education Statistics. The percentage of population ages 25 and over that attained or completed upper secondary education.; ; UNESCO Institute for Statistics; ;
Survey based Harmonized Indicators (SHIP) files are harmonized data files from household surveys that are conducted by countries in Africa. To ensure the quality and transparency of the data, it is critical to document the procedures of compiling consumption aggregation and other indicators so that the results can be duplicated with ease. This process enables consistency and continuity that make temporal and cross-country comparisons consistent and more reliable.
Four harmonized data files are prepared for each survey to generate a set of harmonized variables that have the same variable names. Invariably, in each survey, questions are asked in a slightly different way, which poses challenges on consistent definition of harmonized variables. The harmonized household survey data present the best available variables with harmonized definitions, but not identical variables. The four harmonized data files are
a) Individual level file (Labor force indicators in a separate file): This file has information on basic characteristics of individuals such as age and sex, literacy, education, health, anthropometry and child survival. b) Labor force file: This file has information on labor force including employment/unemployment, earnings, sectors of employment, etc. c) Household level file: This file has information on household expenditure, household head characteristics (age and sex, level of education, employment), housing amenities, assets, and access to infrastructure and services. d) Household Expenditure file: This file has consumption/expenditure aggregates by consumption groups according to Purpose (COICOP) of Household Consumption of the UN.
National
The survey covered all de jure household members (usual residents).
Sample survey data [ssd]
Sampling Frame and Units As in all probability sample surveys, it is important that each sampling unit in the surveyed population has a known, non-zero probability of selection. To achieve this, there has to be an appropriate list, or sampling frame of the primary sampling units (PSUs).The universe defined for the GLSS 5 is the population living within private households in Ghana. The institutional population (such as schools, hospitals etc), which represents a very small percentage in the 2000 Population and Housing Census (PHC), is excluded from the frame for the GLSS 5.
The Ghana Statistical Service (GSS) maintains a complete list of census EAs, together with their respective population and number of households as well as maps, with well defined boundaries, of the EAs. . This information was used as the sampling frame for the GLSS 5. Specifically, the EAs were defined as the primary sampling units (PSUs), while the households within each EA constituted the secondary sampling units (SSUs).
Stratification In order to take advantage of possible gains in precision and reliability of the survey estimates from stratification, the EAs were first stratified into the ten administrative regions. Within each region, the EAs were further sub-divided according to their rural and urban areas of location. The EAs were also classified according to ecological zones and inclusion of Accra (GAMA) so that the survey results could be presented according to the three ecological zones, namely 1) Coastal, 2) Forest, and 3) Northern Savannah, and for Accra.
Sample size and allocation The number and allocation of sample EAs for the GLSS 5 depend on the type of estimates to be obtained from the survey and the corresponding precision required. It was decided to select a total sample of around 8000 households nationwide.
To ensure adequate numbers of complete interviews that will allow for reliable estimates at the various domains of interest, the GLSS 5 sample was designed to ensure that at least 400 households were selected from each region.
A two-stage stratified random sampling design was adopted. Initially, a total sample of 550 EAs was considered at the first stage of sampling, followed by a fixed take of 15 households per EA. The distribution of the selected EAs into the ten regions or strata was based on proportionate allocation using the population.
For example, the number of selected EAs allocated to the Western Region was obtained as: 1924577/18912079*550 = 56
Under this sampling scheme, it was observed that the 400 households minimum requirement per region could be achieved in all the regions but not the Upper West Region. The proportionate allocation formula assigned only 17 EAs out of the 550 EAs nationwide and selecting 15 households per EA would have yielded only 255 households for the region. In order to surmount this problem, two options were considered: retaining the 17 EAs in the Upper West Region and increasing the number of selected households per EA from 15 to about 25, or increasing the number of selected EAs in the region from 17 to 27 and retaining the second stage sample of 15 households per EA.
The second option was adopted in view of the fact that it was more likely to provide smaller sampling errors for the separate domains of analysis. Based on this, the number of EAs in Upper East and the Upper West were adjusted from 27 and 17 to 40 and 34 respectively, bringing the total number of EAs to 580 and the number of households to 8,700.
A complete household listing exercise was carried out between May and June 2005 in all the selected EAs to provide the sampling frame for the second stage selection of households. At the second stage of sampling, a fixed number of 15 households per EA was selected in all the regions. In addition, five households per EA were selected as replacement samples.The overall sample size therefore came to 8,700 households nationwide.
Face-to-face [f2f]
The 2022 Ghana Demographic and Health Survey (2022 GDHS) is the seventh in the series of DHS surveys conducted by the Ghana Statistical Service (GSS) in collaboration with the Ministry of Health/Ghana Health Service (MoH/GHS) and other stakeholders, with funding from the United States Agency for International Development (USAID) and other partners.
The primary objective of the 2022 GDHS is to provide up-to-date estimates of basic demographic and health indicators. Specifically, the GDHS collected information on: - Fertility levels and preferences, contraceptive use, antenatal and delivery care, maternal and child health, childhood mortality, childhood immunisation, breastfeeding and young child feeding practices, women’s dietary diversity, violence against women, gender, nutritional status of adults and children, awareness regarding HIV/AIDS and other sexually transmitted infections, tobacco use, and other indicators relevant for the Sustainable Development Goals - Haemoglobin levels of women and children - Prevalence of malaria parasitaemia (rapid diagnostic testing and thick slides for malaria parasitaemia in the field and microscopy in the lab) among children age 6–59 months - Use of treated mosquito nets - Use of antimalarial drugs for treatment of fever among children under age 5
The information collected through the 2022 GDHS is intended to assist policymakers and programme managers in designing and evaluating programmes and strategies for improving the health of the country’s population.
National coverage
The survey covered all de jure household members (usual residents), all women aged 15-49, men aged 15-59, and all children aged 0-4 resident in the household.
Sample survey data [ssd]
To achieve the objectives of the 2022 GDHS, a stratified representative sample of 18,450 households was selected in 618 clusters, which resulted in 15,014 interviewed women age 15–49 and 7,044 interviewed men age 15–59 (in one of every two households selected).
The sampling frame used for the 2022 GDHS is the updated frame prepared by the GSS based on the 2021 Population and Housing Census.1 The sampling procedure used in the 2022 GDHS was stratified two-stage cluster sampling, designed to yield representative results at the national level, for urban and rural areas, and for each of the country’s 16 regions for most DHS indicators. In the first stage, 618 target clusters were selected from the sampling frame using a probability proportional to size strategy for urban and rural areas in each region. Then the number of targeted clusters were selected with equal probability systematic random sampling of the clusters selected in the first phase for urban and rural areas. In the second stage, after selection of the clusters, a household listing and map updating operation was carried out in all of the selected clusters to develop a list of households for each cluster. This list served as a sampling frame for selection of the household sample. The GSS organized a 5-day training course on listing procedures for listers and mappers with support from ICF. The listers and mappers were organized into 25 teams consisting of one lister and one mapper per team. The teams spent 2 months completing the listing operation. In addition to listing the households, the listers collected the geographical coordinates of each household using GPS dongles provided by ICF and in accordance with the instructions in the DHS listing manual. The household listing was carried out using tablet computers, with software provided by The DHS Program. A fixed number of 30 households in each cluster were randomly selected from the list for interviews.
For further details on sample design, see APPENDIX A of the final report.
Face-to-face computer-assisted interviews [capi]
Four questionnaires were used in the 2022 GDHS: the Household Questionnaire, the Woman’s Questionnaire, the Man’s Questionnaire, and the Biomarker Questionnaire. The questionnaires, based on The DHS Program’s model questionnaires, were adapted to reflect the population and health issues relevant to Ghana. In addition, a self-administered Fieldworker Questionnaire collected information about the survey’s fieldworkers.
The GSS organized a questionnaire design workshop with support from ICF and obtained input from government and development partners expected to use the resulting data. The DHS Program optional modules on domestic violence, malaria, and social and behavior change communication were incorporated into the Woman’s Questionnaire. ICF provided technical assistance in adapting the modules to the questionnaires.
DHS staff installed all central office programmes, data structure checks, secondary editing, and field check tables from 17–20 October 2022. Central office training was implemented using the practice data to test the central office system and field check tables. Seven GSS staff members (four male and three female) were trained on the functionality of the central office menu, including accepting clusters from the field, data editing procedures, and producing reports to monitor fieldwork.
From 27 February to 17 March, DHS staff visited the Ghana Statistical Service office in Accra to work with the GSS central office staff on finishing the secondary editing and to clean and finalize all data received from the 618 clusters.
A total of 18,540 households were selected for the GDHS sample, of which 18,065 were found to be occupied. Of the occupied households, 17,933 were successfully interviewed, yielding a response rate of 99%. In the interviewed households, 15,317 women age 15–49 were identified as eligible for individual interviews. Interviews were completed with 15,014 women, yielding a response rate of 98%. In the subsample of households selected for the male survey, 7,263 men age 15–59 were identified as eligible for individual interviews and 7,044 were successfully interviewed.
The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors and (2) sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2022 Ghana Demographic and Health Survey (2022 GDHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2022 GDHS is only one of many samples that could have been selected from the same population, using the same design and identical size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results. A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2022 GDHS sample was the result of a multistage stratified design, and, consequently, it was necessary to use more complex formulas. The computer software used to calculate sampling errors for the GDHS 2022 is an SAS program. This program used the Taylor linearization method to estimate variances for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
A more detailed description of estimates of sampling errors are presented in APPENDIX B of the survey report.
Data Quality Tables
The population and housing census (PHC) is the unique source of reliable and comprehensive data about the size of population and also on major socio-economic & socio-demographic characteristics of the country. It provides data on geographic and administrative distribution of population and household in addition to the demographic and socio-economic characteristics of all the people in the country. Generally, it provides for comparing and projecting demographic data, social and economic characteristics, as well as household and housing conditions at all levels of the country’s administrative units and dimensions: national, regional, districts and localities. The data from the census is classified, tabulated and disseminated so that researchers, administrators, policy makers and development partners can use the information in formulating and implementing various multi-sectorial development programs at the national and community levels. Data on all key variables namely area, household, population, economic activity, literacy and education, fertility and child survival, housing conditions and sanitation are collected and available in the census data. The 2021 PHC in Ghana had an overarching goal of generating updated demographic, social and economic data, housing characteristics and dwelling conditions to support national development planning activities.
National Coverage , Region , District
All persons who spent census night (midnight of 27th June 2021) in Ghana
Census/enumeration data [cen]
This 10% sample data for the 2021 PHC is representative at the district/subdistrict level and also by the urban rural classification.
Computer Assisted Personal Interview [capi]
GSS developed two categories of instruments for the 2021 PHC: the listing form and the enumeration instruments. The listing form was only one, while the enumeration instruments comprised six questionnaires, designated as PHC 1A, PHC 1B, PHC 1C, PHC 1D, PHC 1E and PHC 1F. The PHC 1A was the most comprehensive with the others being its subsets.
Listing Form: The listing form was developed to collect data on type of structures, level of completion, whether occupied or vacant and use(s) of the structures. It was also used to collect information about the availability, number and types of toilet facilities in the structures. It was also used to capture the number of households in a structure, number of persons in households and the sex of the persons residing in the households if occupied. Finally, the listing form was used to capture data on non-household populations such as the population in institutions, floating population and sex of the non-household populations.
PHC 1A: The PHC 1A questionnaire was used to collect data from all households in the country. Primarily, it was used to capture household members and visitors who spent the Census Night in the dwelling of the household, and their relationship with the head of the household. It was also used to collect data on homeless households. Members of the households who were absent were enumerated at the place where they had spent the Census Night. The questionnaire was also used to collect the following household information: emigration; socio-demographic characteristics (sex, age, place of birth and enumeration, survival status of parents, literacy and education; economic activities; difficulty in performing activities; ownership and usage of information, technology and communication facilities; fertility; mortality; housing characteristics and conditions and sanitation.
PHC 1B: The PHC 1B questionnaire was used to collect data from persons in stable institutions comprising boarding houses, hostels and prisons who were present on Census Night. Other information that was captured with this instrument are socio-demographic characteristics, literacy and education, economic activities, difficulty in performing activities; ownership and usage of information, technology and communication facilities; fertility; mortality; housing characteristics and conditions and sanitation.
PHC 1C: The PHC 1C questionnaire was used to collect data from persons in “unstable” institutions such as hospitals and prayer camps who were present at these places on Census Night. The instrument was used to capture only the socio-demographic characteristics of individuals.
PHC 1D: The PHC 1D questionnaire was used to collect data from the floating population. This constitutes persons who were found at airports, seaports, lorry stations and similar locations waiting for or embarking on long-distance travel, as well as outdoor sleepers on Census Night. The instrument captured the socio-demographic information of individuals.
PHC 1E: All persons who spent the Census Night at hotels, motels and guest houses were enumerated using the PHC 1E. The content of the questionnaire was similar to that of the PHC 1D.
PHC 1F: The PHC 1F questionnaire was administered to diplomats in the country.
The Census data editing was implemented at three levels: 1. data editing by enumerators and supervisors during data collection 2. data editing was done at the regional level by the regional data quality monitors during data collection 3. Final data editing was done at the national level using the batch edits in CSPro and STATA Data editing and cleaning was mainly digital.
100 percent
A post Enumeration Survey (PES) was conducted to assess the extent of coverage and content error.
Financial inclusion is critical in reducing poverty and achieving inclusive economic growth. When people can participate in the financial system, they are better able to start and expand businesses, invest in their children’s education, and absorb financial shocks. Yet prior to 2011, little was known about the extent of financial inclusion and the degree to which such groups as the poor, women, and rural residents were excluded from formal financial systems.
By collecting detailed indicators about how adults around the world manage their day-to-day finances, the Global Findex allows policy makers, researchers, businesses, and development practitioners to track how the use of financial services has changed over time. The database can also be used to identify gaps in access to the formal financial system and design policies to expand financial inclusion.
National coverage.
Individuals
The target population is the civilian, non-institutionalized population 15 years and above.
Observation data/ratings [obs]
The indicators in the 2017 Global Findex database are drawn from survey data covering almost 150,000 people in 144 economies-representing more than 97 percent of the world’s population (see table A.1 of the Global Findex Database 2017 Report for a list of the economies included). The survey was carried out over the 2017 calendar year by Gallup, Inc., as part of its Gallup World Poll, which since 2005 has annually conducted surveys of approximately 1,000 people in each of more than 160 economies and in over 150 languages, using randomly selected, nationally representative samples. The target population is the entire civilian, noninstitutionalized population age 15 and above. Interview procedure Surveys are conducted face to face in economies where telephone coverage represents less than 80 percent of the population or where this is the customary methodology. In most economies the fieldwork is completed in two to four weeks.
In economies where face-to-face surveys are conducted, the first stage of sampling is the identification of primary sampling units. These units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. To increase the probability of contact and completion, attempts are made at different times of the day and, where possible, on different days. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used.
Respondents are randomly selected within the selected households. Each eligible household member is listed and the handheld survey device randomly selects the household member to be interviewed. For paper surveys, the Kish grid method is used to select the respondent. In economies where cultural restrictions dictate gender matching, respondents are randomly selected from among all eligible adults of the interviewer’s gender.
In economies where telephone interviewing is employed, random digit dialing or a nationally representative list of phone numbers is used. In most economies where cell phone penetration is high, a dual sampling frame is used. Random selection of respondents is achieved by using either the latest birthday or household enumeration method. At least three attempts are made to reach a person in each household, spread over different days and times of day.
The sample size was 1000.
Computer Assisted Personal Interview [capi]
The questionnaire was designed by the World Bank, in conjunction with a Technical Advisory Board composed of leading academics, practitioners, and policy makers in the field of financial inclusion. The Bill and Melinda Gates Foundation and Gallup Inc. also provided valuable input. The questionnaire was piloted in multiple countries, using focus groups, cognitive interviews, and field testing. The questionnaire is available in more than 140 languages upon request.
Questions on cash on delivery, saving using an informal savings club or person outside the family, domestic remittances, and agricultural payments are only asked in developing economies and few other selected countries. The question on mobile money accounts was only asked in economies that were part of the Mobile Money for the Unbanked (MMU) database of the GSMA at the time the interviews were being held.
Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in Demirgüç-Kunt, Asli, Leora Klapper, Dorothe Singer, Saniya Ansar, and Jake Hess. 2018. The Global Findex Database 2017: Measuring Financial Inclusion and the Fintech Revolution. Washington, DC: World Bank
The primary objective of the 2014 GDHS was to generate recent reliable information on fertility, family planning, infant and child mortality, maternal and child health, and nutrition. In addition, the survey collected specialised data on malaria treatment, prevention, and prevalence among children age 6-59 months; blood pressure among adults; anaemia among women and children; and HIV prevalence among adults. This information is essential for making informed policy decisions and for planning, monitoring, and evaluating programmes related to health in general, and reproductive health in particular, at both the national and regional levels. Analysis of data collected in the 2014 GDHS provides updated estimates of basic demographic and health indicators covered in the earlier rounds of the 1988, 1993, 1998, 2003, and 2008 surveys.
The GDHS will assist policymakers and programme managers in evaluating and designing programmes and strategies for improving the health of Ghana’s population. The 2014 GDHS also provides comparable data for long-term trend analysis in Ghana, since the surveys were implemented by the same organisation, using similar data collection procedures. Furthermore, the survey adds to the international database on demographic and health–related information for research purposes.
National
Sample survey data [ssd]
The sampling frame used for the 2014 GDHS is an updated frame from the 2010 Ghana Population and Housing Census provided by the Ghana Statistical Service (GSS 2013b). The sampling frame excluded nomadic and institutional populations such as persons in hotels, barracks, and prisons.
The 2014 GDHS followed a two-stage sample design and was intended to allow estimates of key indicators at the national level as well as for urban and rural areas and each of Ghana's 10 administrative regions. The first stage involved selecting sample points (clusters) consisting of enumeration areas (EAs) delineated for the 2010 PHC. A total of 427 clusters were selected, 216 in urban areas and 211 in rural areas.
The second stage involved the systematic sampling of households. A household listing operation was undertaken in all the selected EAs in January-March 2014, and households to be included in the survey were randomly selected from the list. About 30 households were selected from each cluster to constitute the total sample size of 12,831 households. Because of the approximately equal sample sizes in each region, the sample is not self-weighting at the national level, and weighting factors have been added to the data file so that the results will be proportional at the national level.
All women age 15-49 who were either permanent residents of the selected households or visitors who stayed in the household the night before the survey were eligible to be interviewed and have their blood pressure measured.
In half of the households, all men age 15-59 who were either permanent residents of the selected households or visitors who stayed in the households the night before the survey were eligible to be interviewed. In addition, in the subsample of households selected for the male survey: • blood pressure measurements were performed among eligible men who consented to being tested; • children age 6-59 months were tested for anaemia and malaria with the parent's or guardian's consent; • eligible women who consented were tested for anaemia; • blood samples were collected for laboratory testing of HIV from eligible women and men who consented; and • height and weight information was collected from eligible women, men, and children age 0- 59 months.
For further details on sample selection, see Appendix A of the final report.
Face-to-face [f2f]
Three questionnaires were used for the 2014 GDHS: the Household Questionnaire, the Woman’s Questionnaire, and the Man’s Questionnaire. These questionnaires, which were based on standard Demographic and Health Survey (DHS) questionnaires, were adapted to reflect the population and health issues relevant to Ghana. Comments on the questionnaires were solicited from various stakeholders representing government ministries and agencies, nongovernmental organisations, and international donors. The definitive questionnaires were first prepared in English; they were then translated into the major local languages, namely Akan, Ga, and Ewe.
The Household Questionnaire was used to list all the members of and visitors to the selected households. Basic demographic information was collected on the characteristics of each person listed, including his or her age, sex, marital status, education, and relationship to the head of the household. For children under age 18, parents’ survival status was determined. The data on age and sex of household members obtained in the Household Questionnaire were used to identify women and men who were eligible for individual interviews. The Household Questionnaire also included questions on child education as well as the characteristics of the household’s dwelling unit, such as source of water, type of toilet facilities, materials used for the floor of the dwelling unit, and ownership of various durable goods.
The Woman’s Questionnaire was used to collect information from all eligible women age 15-49.
In half of the selected households, the Man’s Questionnaire was administered to all men age 15-59. The Man’s Questionnaire collected much of the same information found in the Woman’s Questionnaire but was shorter because it did not contain a detailed reproductive history or questions on maternal and child health.
The data processing operation included 100 percent verification (also called second data entry) and secondary editing, which involved resolution of computer-identified inconsistencies. The data processing activities at the central office were led by one key GSS officer who took part in the main fieldwork training. Data processing was accomplished using CSPro software. Data entry and editing were initiated in September 2014 and completed in February 2015.
A total of 12,831 households were selected for the sample, of which 12,010 were occupied. Of the occupied households, 11,835 were successfully interviewed, yielding a response rate of 99 percent, the same as the 2008 GDHS household response rate (GSS, GHS, and ICF Macro 2009).
In the interviewed households, 9,656 eligible women were identified for individual interviews; interviews were completed with 9,396 women, yielding a response rate of 97 percent. In the subsample of households selected for the male survey, 4,609 eligible men were identified and 4,388 were successfully interviewed, yielding a response rate of 95 percent. The lower response rate for men was likely due to their more frequent and longer absences from the household.
The estimates from a sample survey are affected by two types of errors: non-sampling errors and sampling errors. Non-sampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2014 Ghana DHS (GDHS) to minimize this type of error, non-sampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2014 GDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2014 GDHS sample is the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulae. Sampling errors are computed in either ISSA or SAS, using programs developed by ICF International. These programs use the Taylor linearization method of variance estimation for survey estimates that are means, proportions or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
The Taylor linearization method treats any percentage or average as a ratio estimate, r = y x , where y represents the total sample value for variable y, and x represents the
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Ghana GH: Educational Attainment: At Least Completed Post-Secondary: Population 25+ Years: Total: % Cumulative data was reported at 11.341 % in 2010. This records an increase from the previous number of 0.400 % for 1970. Ghana GH: Educational Attainment: At Least Completed Post-Secondary: Population 25+ Years: Total: % Cumulative data is updated yearly, averaging 5.870 % from Dec 1970 (Median) to 2010, with 2 observations. The data reached an all-time high of 11.341 % in 2010 and a record low of 0.400 % in 1970. Ghana GH: Educational Attainment: At Least Completed Post-Secondary: Population 25+ Years: Total: % Cumulative data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Ghana – Table GH.World Bank: Education Statistics. The percentage of population ages 25 and over that attained or completed post-secondary non-tertiary education.; ; UNESCO Institute for Statistics; ;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Ghana GH: Educational Attainment: At Least Competed Short-Cycle Tertiary: Population 25+ Years: Female: % Cumulative data was reported at 1.718 % in 2010. Ghana GH: Educational Attainment: At Least Competed Short-Cycle Tertiary: Population 25+ Years: Female: % Cumulative data is updated yearly, averaging 1.718 % from Dec 2010 (Median) to 2010, with 1 observations. Ghana GH: Educational Attainment: At Least Competed Short-Cycle Tertiary: Population 25+ Years: Female: % Cumulative data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Ghana – Table GH.World Bank: Education Statistics. The percentage of population ages 25 and over that attained or completed short-cycle tertiary education.; ; UNESCO Institute for Statistics; ;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Ghana GH: Share of Youth Not in Education, Employment or Training: Total: % of Youth Population data was reported at 25.506 % in 2015. This records an increase from the previous number of 11.083 % for 2013. Ghana GH: Share of Youth Not in Education, Employment or Training: Total: % of Youth Population data is updated yearly, averaging 23.610 % from Dec 2006 (Median) to 2015, with 3 observations. The data reached an all-time high of 25.506 % in 2015 and a record low of 11.083 % in 2013. Ghana GH: Share of Youth Not in Education, Employment or Training: Total: % of Youth Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Ghana – Table GH.World Bank: Employment and Unemployment. Share of youth not in education, employment or training (NEET) is the proportion of young people who are not in education, employment, or training to the population of the corresponding age group: youth (ages 15 to 24); persons ages 15 to 29; or both age groups.; ; International Labour Organization, ILOSTAT database. Data retrieved in September 2018.; Weighted average;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Ghana GH: Labour Force With Basic Education: Female: % of Female Working-age Population data was reported at 75.308 % in 2015. This records a decrease from the previous number of 78.607 % for 2013. Ghana GH: Labour Force With Basic Education: Female: % of Female Working-age Population data is updated yearly, averaging 75.308 % from Dec 2006 (Median) to 2015, with 3 observations. The data reached an all-time high of 78.607 % in 2013 and a record low of 69.886 % in 2006. Ghana GH: Labour Force With Basic Education: Female: % of Female Working-age Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Ghana – Table GH.World Bank: Labour Force. The percentage of the working age population with a basic level of education who are in the labor force. Basic education comprises primary education or lower secondary education according to the International Standard Classification of Education 2011 (ISCED 2011).; ; International Labour Organization, ILOSTAT database. Data retrieved in September 2018.; Weighted average;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Ghana GH: Labour Force With Intermediate Education: Male: % of Male Working-age Population data was reported at 69.450 % in 2015. This records an increase from the previous number of 69.390 % for 2013. Ghana GH: Labour Force With Intermediate Education: Male: % of Male Working-age Population data is updated yearly, averaging 69.390 % from Dec 2006 (Median) to 2015, with 3 observations. The data reached an all-time high of 69.450 % in 2015 and a record low of 67.410 % in 2006. Ghana GH: Labour Force With Intermediate Education: Male: % of Male Working-age Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Ghana – Table GH.World Bank: Labour Force. The percentage of the working age population with an intermediate level of education who are in the labor force. Intermediate education comprises upper secondary or post-secondary non tertiary education according to the International Standard Classification of Education 2011 (ISCED 2011).; ; International Labour Organization, ILOSTAT database. Data retrieved in November 2017.; Weighted Average;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Ghana GH: Labour Force With Basic Education: Male: % of Male Working-age Population data was reported at 70.128 % in 2015. This records a decrease from the previous number of 75.772 % for 2013. Ghana GH: Labour Force With Basic Education: Male: % of Male Working-age Population data is updated yearly, averaging 70.128 % from Dec 2006 (Median) to 2015, with 3 observations. The data reached an all-time high of 75.772 % in 2013 and a record low of 67.376 % in 2006. Ghana GH: Labour Force With Basic Education: Male: % of Male Working-age Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Ghana – Table GH.World Bank.WDI: Labour Force. The percentage of the working age population with a basic level of education who are in the labor force. Basic education comprises primary education or lower secondary education according to the International Standard Classification of Education 2011 (ISCED 2011).; ; International Labour Organization, ILOSTAT database. Data retrieved in September 2018.; Weighted average;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
GH: Labour Force With Intermediate Education: % of Total Working-age Population data was reported at 64.176 % in 2015. This records an increase from the previous number of 62.650 % for 2013. GH: Labour Force With Intermediate Education: % of Total Working-age Population data is updated yearly, averaging 62.650 % from Dec 2006 (Median) to 2015, with 3 observations. The data reached an all-time high of 64.176 % in 2015 and a record low of 58.936 % in 2006. GH: Labour Force With Intermediate Education: % of Total Working-age Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Ghana – Table GH.World Bank: Labour Force. The percentage of the working age population with an intermediate level of education who are in the labor force. Intermediate education comprises upper secondary or post-secondary non tertiary education according to the International Standard Classification of Education 2011 (ISCED 2011).; ; International Labour Organization, ILOSTAT database. Data retrieved in September 2018.; Weighted average;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Ghana Multidimensional Poverty Headcount Ratio: World Bank: % of total population data was reported at 32.800 % in 2016. This records a decrease from the previous number of 33.200 % for 2012. Ghana Multidimensional Poverty Headcount Ratio: World Bank: % of total population data is updated yearly, averaging 33.000 % from Dec 2012 (Median) to 2016, with 2 observations. The data reached an all-time high of 33.200 % in 2012 and a record low of 32.800 % in 2016. Ghana Multidimensional Poverty Headcount Ratio: World Bank: % of total population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Ghana – Table GH.World Bank.WDI: Social: Poverty and Inequality. The multidimensional poverty headcount ratio (World Bank) is the percentage of a population living in poverty according to the World Bank's Multidimensional Poverty Measure. The Multidimensional Poverty Measure includes three dimensions – monetary poverty, education, and basic infrastructure services – to capture a more complete picture of poverty.;World Bank, Poverty and Inequality Platform. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are mostly from the Luxembourg Income Study database. For more information and methodology, please see http://pip.worldbank.org.;;The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than 2000 household surveys across 169 countries. See the Poverty and Inequality Platform (PIP) for details (www.pip.worldbank.org).
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Ghana Educational Attainment: At Least Master's or Equivalent: Population 25+ Years: % Cumulative: Male data was reported at 1.653 % in 2022. This records an increase from the previous number of 1.561 % for 2017. Ghana Educational Attainment: At Least Master's or Equivalent: Population 25+ Years: % Cumulative: Male data is updated yearly, averaging 1.379 % from Dec 2010 (Median) to 2022, with 5 observations. The data reached an all-time high of 1.653 % in 2022 and a record low of 0.822 % in 2010. Ghana Educational Attainment: At Least Master's or Equivalent: Population 25+ Years: % Cumulative: Male data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Ghana – Table GH.World Bank.WDI: Social: Education Statistics. The percentage of population ages 25 and over that attained or completed Master's or equivalent.;UNESCO Institute for Statistics (UIS). UIS.Stat Bulk Data Download Service. Accessed April 5, 2025. https://apiportal.uis.unesco.org/bdds.;;