National Obesity Percentages by State. Explanation of Field Attributes:Obesity - The percent of the state population that is considered obese from the 2015 CDC BRFSS Survey.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Obesity rates for each Census Tract in Allegheny County were produced for the study “Developing small-area predictions for smoking and obesity prevalence in the United States." The data is not explicitly based on population surveys or data collection conducted in Allegheny County, but rather estimated using statistical modeling techniques. In this technique, researchers applied the obesity rate of a demographically similar census tract to one in Allegheny County to compute an obesity rate.
Support for Health Equity datasets and tools provided by Amazon Web Services (AWS) through their Health Equity Initiative.
Obesity percentages for Lake County, Illinois. Explanation of field attributes: Pct_Obese – The percent of people in the zip code who are considered obese, defined as having a BMI greater than or equal to 30. ObsOrOvrwt –The percent of people in the zip code who are considered overweight (defined as having a BMI greater than or equal to 25 but less than 30) or obese (defined as having a BMI greater than or equal to 30).
West Virginia, Mississippi, and Arkansas are the U.S. states with the highest percentage of their population who are obese. The states with the lowest percentage of their population who are obese include Colorado, Hawaii, and Massachusetts. Obesity in the United States Obesity is a growing problem in many countries around the world, but the United States has the highest rate of obesity among all OECD countries. The prevalence of obesity in the United States has risen steadily over the previous two decades, with no signs of declining. Obesity in the U.S. is more common among women than men, and overweight and obesity rates are higher among African Americans than any other race or ethnicity. Causes and health impacts Obesity is most commonly the result of a combination of poor diet, overeating, physical inactivity, and a genetic susceptibility. Obesity is associated with various negative health impacts, including an increased risk of cardiovascular diseases, certain types of cancer, and diabetes type 2. As of 2022, around 8.4 percent of the U.S. population had been diagnosed with diabetes. Diabetes is currently the eighth leading cause of death in the United States.
The spreadsheet contains regional level obesity trend data from the the HSE, BMI data from Understanding Society, and adjusted prevalence of underweight, healthy weight, overweight, and obesity by local authority from the Active People Survey.
Understanding Society data shows the percentage of the population aged 10 and over by their Body Mass Index Classification, covering underweight, normal weight, overweight, and three classes of obesity.
Questions on self-reported height and weight were added to the Sport England Active People Survey (APS) in January 2012 to provide data for monitoring excess weight (overweight including obesity, BMI ≥25kg/m2) in adults (age 16 and over) at local authority level for the Public Health Outcomes Framework (PHOF).
Health Survey for England (HSE) results at a national level are available on the NHS Information Centre website.
Other NHS indicators on obesity are available for Strategic Health Authorities (SHA).
Relevant links: http://discover.ukdataservice.ac.uk/series/?sn=2000053
SUMMARYThis analysis, designed and executed by Ribble Rivers Trust, identifies areas across England with the greatest levels of physical illnesses that are linked with obesity and inactivity. Please read the below information to gain a full understanding of what the data shows and how it should be interpreted.ANALYSIS METHODOLOGYThe analysis was carried out using Quality and Outcomes Framework (QOF) data, derived from NHS Digital, relating to:- Asthma (in persons of all ages)- Cancer (in persons of all ages)- Chronic kidney disease (in adults aged 18+)- Coronary heart disease (in persons of all ages)- Diabetes mellitus (in persons aged 17+)- Hypertension (in persons of all ages)- Stroke and transient ischaemic attack (in persons of all ages)This information was recorded at the GP practice level. However, GP catchment areas are not mutually exclusive: they overlap, with some areas covered by 30+ GP practices. Therefore, to increase the clarity and usability of the data, the GP-level statistics were converted into statistics based on Middle Layer Super Output Area (MSOA) census boundaries.For each of the above illnesses, the percentage of each MSOA’s population with that illness was estimated. This was achieved by calculating a weighted average based on:- The percentage of the MSOA area that was covered by each GP practice’s catchment area- Of the GPs that covered part of that MSOA: the percentage of patients registered with each GP that have that illnessThe estimated percentage of each MSOA’s population with each illness was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of people in each MSOA with each illness, within the relevant age range.For each illness, each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have that illnessB) the NUMBER of people within that MSOA who are estimated to have that illnessAn average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA predicted to have that illness, compared to other MSOAs. In other words, those are areas where a large number of people are predicted to suffer from an illness, and where those people make up a large percentage of the population, indicating there is a real issue with that illness within the population and the investment of resources to address that issue could have the greatest benefits.The scores for each of the 7 illnesses were added together then converted to a relative score between 1 – 0 (1 = worst, 0 = best), to give an overall score for each MSOA: a score close to 1 would indicate that an area has high predicted levels of all obesity/inactivity-related illnesses, and these are areas where the local population could benefit the most from interventions to address those illnesses. A score close to 0 would indicate very low predicted levels of obesity/inactivity-related illnesses and therefore interventions might not be required.LIMITATIONS1. GPs do not have catchments that are mutually exclusive from each other: they overlap, with some geographic areas being covered by 30+ practices. This dataset should be viewed in combination with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset to identify where there are areas that are covered by multiple GP practices but at least one of those GP practices did not provide data. Results of the analysis in these areas should be interpreted with caution, particularly if the levels of obesity/inactivity-related illnesses appear to be significantly lower than the immediate surrounding areas.2. GP data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. Note also that some GPs (997 out of 7670) did not submit data in either year. This dataset should be viewed in conjunction with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset, to determine areas where data from 2019/20 was used, where one or more GPs did not submit data in either year, or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution. Note also that there are some rural areas (with little or no population) that do not officially fall into any GP catchment area (although this will not affect the results of this analysis if there are no people living in those areas).3. Although all of the obesity/inactivity-related illnesses listed can be caused or exacerbated by inactivity and obesity, it was not possible to distinguish from the data the cause of the illnesses in patients: obesity and inactivity are highly unlikely to be the cause of all cases of each illness. By combining the data with data relating to levels of obesity and inactivity in adults and children (see the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset), we can identify where obesity/inactivity could be a contributing factor, and where interventions to reduce obesity and increase activity could be most beneficial for the health of the local population.4. It was not feasible to incorporate ultra-fine-scale geographic distribution of populations that are registered with each GP practice or who live within each MSOA. Populations might be concentrated in certain areas of a GP practice’s catchment area or MSOA and relatively sparse in other areas. Therefore, the dataset should be used to identify general areas where there are high levels of obesity/inactivity-related illnesses, rather than interpreting the boundaries between areas as ‘hard’ boundaries that mark definite divisions between areas with differing levels of these illnesses. TO BE VIEWED IN COMBINATION WITH:This dataset should be viewed alongside the following datasets, which highlight areas of missing data and potential outliers in the data:- Health and wellbeing statistics (GP-level, England): Missing data and potential outliersDOWNLOADING THIS DATATo access this data on your desktop GIS, download the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset.DATA SOURCESThis dataset was produced using:Quality and Outcomes Framework data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.GP Catchment Outlines. Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. Data was cleaned by Ribble Rivers Trust before use.COPYRIGHT NOTICEThe reproduction of this data must be accompanied by the following statement:© Ribble Rivers Trust 2021. Analysis carried out using data that is: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.
State of Illinois Obesity Percentages by County. Explanation of field attributes: Obesity - The percent of each Illinois county’s population that is considered obese from the 2015 CDC BRFSS Survey.
https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
This report presents information on obesity, physical activity and diet drawn together from a variety of sources for England. More information can be found in the source publications which contain a wider range of data and analysis. Each section provides an overview of key findings, as well as providing links to relevant documents and sources. Some of the data have been published previously by NHS Digital. A data visualisation tool (link provided within the key facts) allows users to select obesity related hospital admissions data for any Local Authority (as contained in the data tables), along with time series data from 2013/14. Regional and national comparisons are also provided. The report includes information on: Obesity related hospital admissions, including obesity related bariatric surgery. Obesity prevalence. Physical activity levels. Walking and cycling rates. Prescriptions items for the treatment of obesity. Perception of weight and weight management. Food and drink purchases and expenditure. Fruit and vegetable consumption. Key facts cover the latest year of data available: Hospital admissions: 2018/19 Adult obesity: 2018 Childhood obesity: 2018/19 Adult physical activity: 12 months to November 2019 Children and young people's physical activity: 2018/19 academic year
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Mali ML: Prevalence of Overweight: Weight for Height: % of Children Under 5 data was reported at 1.900 % in 2015. This records an increase from the previous number of 1.000 % for 2010. Mali ML: Prevalence of Overweight: Weight for Height: % of Children Under 5 data is updated yearly, averaging 2.100 % from Dec 1987 (Median) to 2015, with 6 observations. The data reached an all-time high of 4.700 % in 2006 and a record low of 0.500 % in 1987. Mali ML: Prevalence of Overweight: Weight for Height: % of Children Under 5 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Mali – Table ML.World Bank: Health Statistics. Prevalence of overweight children is the percentage of children under age 5 whose weight for height is more than two standard deviations above the median for the international reference population of the corresponding age as established by the WHO's new child growth standards released in 2006.; ; UNICEF, WHO, World Bank: Joint child malnutrition estimates (JME). Aggregation is based on UNICEF, WHO, and the World Bank harmonized dataset (adjusted, comparable data) and methodology.; Linear mixed-effect model estimates; Estimates of overweight children are also from national survey data. Once considered only a high-income economy problem, overweight children have become a growing concern in developing countries. Research shows an association between childhood obesity and a high prevalence of diabetes, respiratory disease, high blood pressure, and psychosocial and orthopedic disorders (de Onis and Blössner 2003). Childhood obesity is associated with a higher chance of obesity, premature death, and disability in adulthood. In addition to increased future risks, obese children experience breathing difficulties and increased risk of fractures, hypertension, early markers of cardiovascular disease, insulin resistance, and psychological effects. Children in low- and middle-income countries are more vulnerable to inadequate nutrition before birth and in infancy and early childhood. Many of these children are exposed to high-fat, high-sugar, high-salt, calorie-dense, micronutrient-poor foods, which tend be lower in cost than more nutritious foods. These dietary patterns, in conjunction with low levels of physical activity, result in sharp increases in childhood obesity, while under-nutrition continues
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This is a development key figure, see questions and answers on kolada.se for more information. Two different surveys with comparable results are included in the statistics. Uppsala, Sörmland, Västmanland, Värmland and Örebro (the so-called. The CDUST region) has Life & Health (LV) as a data source, with sample of inhabitants 18-84 years, which refers to year T. The rest of the country that has the source of the Public Health Authority (HLV), and with sample of inhabitants 16-84 years, refers to the years T-3 to T. BMI is calculated according to: weight (in kg) divided by length (m²) squared. Extreme values are excluded from the calculation so that a person must be between 101 and 249 cm and weigh between 30 and 200 kg to be included. Number calculated to have a BMI 30 or higher as above divided by the number that answered the question. For municipalities, additional selections are used which occur irregularly, therefore the proportions are weighted according to the number of responses per year. Data is available according to gender breakdown.
The prevalence of obesity in the United States has risen gradually over the past decade. As of 2023, around 33 percent of the population aged 18 years and older was obese. Obesity is a growing problem in many parts of the world, but is particularly troubling in the United States. Obesity in the United States The states with the highest prevalence of obesity are West Virginia, Mississippi, and Arkansas. As of 2023, a shocking 41 percent of the population in West Virginia were obese. The percentage of adults aged 65 years and older who are obese has grown in recent years, compounding health issues that develop with age. Health impacts of obesity Obesity is linked to several negative health impacts including cardiovascular disease, diabetes, and certain types of cancer. Unsurprisingly, the prevalence of diagnosed diabetes has increased in the United States over the years. As of 2022, around 8.4 percent of the population had been diagnosed with diabetes. Some of the most common types of cancers caused by obesity include breast cancer in postmenopausal women, colon and rectum cancer, and corpus and uterus cancer.
SUMMARYThis analysis, designed and executed by Ribble Rivers Trust, identifies areas across England with the greatest levels of diabetes mellitus in persons (aged 17+). Please read the below information to gain a full understanding of what the data shows and how it should be interpreted.ANALYSIS METHODOLOGYThe analysis was carried out using Quality and Outcomes Framework (QOF) data, derived from NHS Digital, relating to diabetes mellitus in persons (aged 17+).This information was recorded at the GP practice level. However, GP catchment areas are not mutually exclusive: they overlap, with some areas covered by 30+ GP practices. Therefore, to increase the clarity and usability of the data, the GP-level statistics were converted into statistics based on Middle Layer Super Output Area (MSOA) census boundaries.The percentage of each MSOA’s population (aged 17+) with diabetes mellitus was estimated. This was achieved by calculating a weighted average based on:The percentage of the MSOA area that was covered by each GP practice’s catchment areaOf the GPs that covered part of that MSOA: the percentage of registered patients that have that illness The estimated percentage of each MSOA’s population with diabetes mellitus was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of people in each MSOA with depression, within the relevant age range.Each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have diabetes mellitusB) the NUMBER of people within that MSOA who are estimated to have diabetes mellitusAn average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA that are estimated to have diabetes mellitus, compared to other MSOAs. In other words, those are areas where it’s estimated a large number of people suffer from diabetes mellitus, and where those people make up a large percentage of the population, indicating there is a real issue with diabetes mellitus within the population and the investment of resources to address that issue could have the greatest benefits.LIMITATIONS1. GP data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. Note also that some GPs (997 out of 7670) did not submit data in either year. This dataset should be viewed in conjunction with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset, to determine areas where data from 2019/20 was used, where one or more GPs did not submit data in either year, or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution. Note also that there are some rural areas (with little or no population) that do not officially fall into any GP catchment area (although this will not affect the results of this analysis if there are no people living in those areas).2. Although all of the obesity/inactivity-related illnesses listed can be caused or exacerbated by inactivity and obesity, it was not possible to distinguish from the data the cause of the illnesses in patients: obesity and inactivity are highly unlikely to be the cause of all cases of each illness. By combining the data with data relating to levels of obesity and inactivity in adults and children (see the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset), we can identify where obesity/inactivity could be a contributing factor, and where interventions to reduce obesity and increase activity could be most beneficial for the health of the local population.3. It was not feasible to incorporate ultra-fine-scale geographic distribution of populations that are registered with each GP practice or who live within each MSOA. Populations might be concentrated in certain areas of a GP practice’s catchment area or MSOA and relatively sparse in other areas. Therefore, the dataset should be used to identify general areas where there are high levels of diabetes mellitus, rather than interpreting the boundaries between areas as ‘hard’ boundaries that mark definite divisions between areas with differing levels of diabetes mellitus.TO BE VIEWED IN COMBINATION WITH:This dataset should be viewed alongside the following datasets, which highlight areas of missing data and potential outliers in the data:Health and wellbeing statistics (GP-level, England): Missing data and potential outliersLevels of obesity, inactivity and associated illnesses (England): Missing dataDOWNLOADING THIS DATATo access this data on your desktop GIS, download the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset.DATA SOURCESThis dataset was produced using:Quality and Outcomes Framework data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.GP Catchment Outlines. Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. Data was cleaned by Ribble Rivers Trust before use.COPYRIGHT NOTICEThe reproduction of this data must be accompanied by the following statement:© Ribble Rivers Trust 2021. Analysis carried out using data that is: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.
In 2023, it was estimated that around 37 percent of adults with an annual income of less than 15,000 U.S. dollars were obese, compared to 29 percent of those with an annual income of 75,000 dollars or more. This statistic shows the percentage of U.S. adults who were obese in 2023, by income.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This set of files contains public data used to validate the grocery data. All references to the original sources are provided below.CHILD OBESITYPeriodically, the English National Health Service (NHS) publishes statistics about various aspects of the health and habits of people living in England, including obesity. The NHS National Child Measurement (NCMP) measures the height and weight of children in Reception class (aged 4 to 5) and year 6 (aged 10 to 11), to assess overweight and obesity levels in children within primary schools. The program is carried out every year in England and statistics are produced at the level of Local Authority (that corresponds to Boroughs in London). We report the data for the school year 2015-2016 (file: child_obesity_london_borough_2015-2016.csv). For the school year 2013-2014, statistics in London are also available at ward-level (file: child_obesity_london_ward_2013-2014.csv)The files are comma-separated and contain the following fields: area_id: the id of the boroughnumber_reception_measured: number of children in reception year measurednumber_y6_measured: number of children in reception year measuredprevalence_overweight_reception: the prevalence (percentage) of overweight children in reception year prevalence_overweight_y6: the prevalence (percentage) of overweight children in year 6prevalence_obese_reception: the prevalence (percentage) of obese children in reception yearprevalence_obese_y6: the prevalence (percentage) of obese children in year 6ADULT OBESITYThe Active People Survey (APS) was a survey used to measure the number of adults taking part in sport across England and included two questions about the height and weight of participants. We report the results of the APS for the year 2012. Prevalence of underweight, healthy weight, overweight, and obese people at borough level are provided in the file london_obesity_borough_2012.csv.The file is comma-separated and contains the following fields: area_id: the id of the boroughnumber_measured: number of people who participated in the surveyprevalence_healthy_weight: the prevalence (percentage) of healthy-weight peopleprevalence_overweight: the prevalence (percentage) of overweight peopleprevalence_obese: the prevalence (percentage) of obese peopleBARIATRIC HOSPITALIZATIONThe NHS records and publishes an annual compendium report about the number of hospital admissions attributable to obesity or bariatric surgery (i.e., weight loss surgery used as a treatment for people who are very obese), and the number of prescription items provided in primary care for the treatment of obesity. The NHS provides both raw counts at the Local Authority level and numbers normalized by population living in those areas. In the file obesity_hospitalization_borough_2016.csv, we report the statistics for the year 2015 (measurements made between Jan 2015 and March 2016).The file is comma-separated and contains the following fields:area_id: the id of the boroughtotal_hospitalizations: total number of obesity-related hospitalizationstotal_bariatric: total number of hospitalizations for bariatric surgeryprevalence_hospitalizations: prevalence (percentage) of obesity-related hospitalizations prevalence_bariatric: prevalence (percentage) of bariatric surgery hospitalizations DIABETESThrough the Quality and Outcomes Framework, NHS Digital publishes annually the number of people aged 17+ on a register for diabetes at each GP practice in England. NHS also publishes the number of people living in a census area who are registered to any of the GP in England. Based on these two sources, an estimate is produced about the prevalence of diabetes in each area. The data (file diabetes_estimates_osward_2016.csv) was collected in 2016 at LSOA-level and published at ward-level.The file is comma-separated and contains the following fields:area_id: the id of the wardgp_patients: total number of GP patients gp_patients_diabetes: total number of GP patients with a diabetes diagnosisestimated_diabetes_prevalence: prevalence (percentage) of diabetesAREA MAPPINGMapping of Greater London postcodes into larger geographical aggregations. The file is comma-separated and contains the following fields:pcd: postcodelat: latitudelong: longitudeoa11: output arealsoa11: lower super output areamsoa11: medium super output areaosward: wardoslaua: borough
SUMMARYThis analysis, designed and executed by Ribble Rivers Trust, identifies areas across England with the greatest levels of cancer (in persons of all ages). Please read the below information to gain a full understanding of what the data shows and how it should be interpreted.ANALYSIS METHODOLOGYThe analysis was carried out using Quality and Outcomes Framework (QOF) data, derived from NHS Digital, relating to cancer (in persons of all ages).This information was recorded at the GP practice level. However, GP catchment areas are not mutually exclusive: they overlap, with some areas covered by 30+ GP practices. Therefore, to increase the clarity and usability of the data, the GP-level statistics were converted into statistics based on Middle Layer Super Output Area (MSOA) census boundaries.The percentage of each MSOA’s population (all ages) with cancer was estimated. This was achieved by calculating a weighted average based on:The percentage of the MSOA area that was covered by each GP practice’s catchment areaOf the GPs that covered part of that MSOA: the percentage of registered patients that have that illness The estimated percentage of each MSOA’s population with cancer was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of people in each MSOA with cancer, within the relevant age range.Each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have cancerB) the NUMBER of people within that MSOA who are estimated to have cancerAn average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA that are estimated to have cancer, compared to other MSOAs. In other words, those are areas where it’s estimated a large number of people suffer from cancer, and where those people make up a large percentage of the population, indicating there is a real issue with cancer within the population and the investment of resources to address that issue could have the greatest benefits.LIMITATIONS1. GP data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. Note also that some GPs (997 out of 7670) did not submit data in either year. This dataset should be viewed in conjunction with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset, to determine areas where data from 2019/20 was used, where one or more GPs did not submit data in either year, or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution. Note also that there are some rural areas (with little or no population) that do not officially fall into any GP catchment area (although this will not affect the results of this analysis if there are no people living in those areas).2. Although all of the obesity/inactivity-related illnesses listed can be caused or exacerbated by inactivity and obesity, it was not possible to distinguish from the data the cause of the illnesses in patients: obesity and inactivity are highly unlikely to be the cause of all cases of each illness. By combining the data with data relating to levels of obesity and inactivity in adults and children (see the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset), we can identify where obesity/inactivity could be a contributing factor, and where interventions to reduce obesity and increase activity could be most beneficial for the health of the local population.3. It was not feasible to incorporate ultra-fine-scale geographic distribution of populations that are registered with each GP practice or who live within each MSOA. Populations might be concentrated in certain areas of a GP practice’s catchment area or MSOA and relatively sparse in other areas. Therefore, the dataset should be used to identify general areas where there are high levels of cancer, rather than interpreting the boundaries between areas as ‘hard’ boundaries that mark definite divisions between areas with differing levels of cancer.TO BE VIEWED IN COMBINATION WITH:This dataset should be viewed alongside the following datasets, which highlight areas of missing data and potential outliers in the data:Health and wellbeing statistics (GP-level, England): Missing data and potential outliersLevels of obesity, inactivity and associated illnesses (England): Missing dataDOWNLOADING THIS DATATo access this data on your desktop GIS, download the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset.DATA SOURCESThis dataset was produced using:Quality and Outcomes Framework data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.GP Catchment Outlines. Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. Data was cleaned by Ribble Rivers Trust before use.MSOA boundaries: © Office for National Statistics licensed under the Open Government Licence v3.0. Contains OS data © Crown copyright and database right 2021.Population data: Mid-2019 (June 30) Population Estimates for Middle Layer Super Output Areas in England and Wales. © Office for National Statistics licensed under the Open Government Licence v3.0. © Crown Copyright 2020.COPYRIGHT NOTICEThe reproduction of this data must be accompanied by the following statement:© Ribble Rivers Trust 2021. Analysis carried out using data that is: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital; © Office for National Statistics licensed under the Open Government Licence v3.0. Contains OS data © Crown copyright and database right 2021. © Crown Copyright 2020.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.
The share of the population with overweight in Canada was forecast to continuously increase between 2024 and 2029 by in total 1.6 percentage points. After the fifteenth consecutive increasing year, the overweight population share is estimated to reach 74.45 percent and therefore a new peak in 2029. Notably, the share of the population with overweight of was continuously increasing over the past years.Overweight is defined as a body mass index (BMI) of more than 25.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the share of the population with overweight in countries like Mexico and United States.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
India IN: Prevalence of Overweight: Weight for Height: % of Children Under 5, Modeled Estimate data was reported at 2.800 % in 2022. This records an increase from the previous number of 2.700 % for 2021. India IN: Prevalence of Overweight: Weight for Height: % of Children Under 5, Modeled Estimate data is updated yearly, averaging 2.300 % from Dec 2000 (Median) to 2022, with 23 observations. The data reached an all-time high of 2.800 % in 2022 and a record low of 2.200 % in 2015. India IN: Prevalence of Overweight: Weight for Height: % of Children Under 5, Modeled Estimate data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s India – Table IN.World Bank.WDI: Social: Health Statistics. Prevalence of overweight children is the percentage of children under age 5 whose weight for height is more than two standard deviations above the median for the international reference population of the corresponding age as established by the WHO's 2006 Child Growth Standards.;UNICEF, WHO, World Bank: Joint child Malnutrition Estimates (JME).;Weighted average;Once considered only a high-income economy problem, overweight children have become a growing concern in developing countries. Research shows an association between childhood obesity and a high prevalence of diabetes, respiratory disease, high blood pressure, and psychosocial and orthopedic disorders (de Onis and Blössner 2003). Childhood obesity is associated with a higher chance of obesity, premature death, and disability in adulthood. In addition to increased future risks, obese children experience breathing difficulties and increased risk of fractures, hypertension, early markers of cardiovascular disease, insulin resistance, and psychological effects. Children in low- and middle-income countries are more vulnerable to inadequate nutrition before birth and in infancy and early childhood. Many of these children are exposed to high-fat, high-sugar, high-salt, calorie-dense, micronutrient-poor foods, which tend be lower in cost than more nutritious foods. These dietary patterns, in conjunction with low levels of physical activity, result in sharp increases in childhood obesity, while under-nutrition continues. Estimates are modeled estimates produced by the JME. Primary data sources of the anthropometric measurements are national surveys. These surveys are administered sporadically, resulting in sparse data for many countries. Furthermore, the trend of the indicators over time is usually not a straight line and varies by country. Tracking the current level and progress of indicators helps determine if countries are on track to meet certain thresholds, such as those indicated in the SDGs. Thus the JME developed statistical models and produced the modeled estimates.
SUMMARYThis analysis, designed and executed by Ribble Rivers Trust, identifies areas across England with the greatest levels of hypertension (in persons of all ages). Please read the below information to gain a full understanding of what the data shows and how it should be interpreted.ANALYSIS METHODOLOGYThe analysis was carried out using Quality and Outcomes Framework (QOF) data, derived from NHS Digital, relating to hypertension (in persons of all ages).This information was recorded at the GP practice level. However, GP catchment areas are not mutually exclusive: they overlap, with some areas covered by 30+ GP practices. Therefore, to increase the clarity and usability of the data, the GP-level statistics were converted into statistics based on Middle Layer Super Output Area (MSOA) census boundaries.The percentage of each MSOA’s population (all ages) with hypertension was estimated. This was achieved by calculating a weighted average based on:The percentage of the MSOA area that was covered by each GP practice’s catchment areaOf the GPs that covered part of that MSOA: the percentage of registered patients that have that illness The estimated percentage of each MSOA’s population with hypertension was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of people in each MSOA with hypertension , within the relevant age range.Each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have hypertension B) the NUMBER of people within that MSOA who are estimated to have hypertension An average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA that are estimated to have hypertension , compared to other MSOAs. In other words, those are areas where it’s estimated a large number of people suffer from hypertension, and where those people make up a large percentage of the population, indicating there is a real issue with hypertension within the population and the investment of resources to address that issue could have the greatest benefits.LIMITATIONS1. GP data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. Note also that some GPs (997 out of 7670) did not submit data in either year. This dataset should be viewed in conjunction with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset, to determine areas where data from 2019/20 was used, where one or more GPs did not submit data in either year, or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution. Note also that there are some rural areas (with little or no population) that do not officially fall into any GP catchment area (although this will not affect the results of this analysis if there are no people living in those areas).2. Although all of the obesity/inactivity-related illnesses listed can be caused or exacerbated by inactivity and obesity, it was not possible to distinguish from the data the cause of the illnesses in patients: obesity and inactivity are highly unlikely to be the cause of all cases of each illness. By combining the data with data relating to levels of obesity and inactivity in adults and children (see the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset), we can identify where obesity/inactivity could be a contributing factor, and where interventions to reduce obesity and increase activity could be most beneficial for the health of the local population.3. It was not feasible to incorporate ultra-fine-scale geographic distribution of populations that are registered with each GP practice or who live within each MSOA. Populations might be concentrated in certain areas of a GP practice’s catchment area or MSOA and relatively sparse in other areas. Therefore, the dataset should be used to identify general areas where there are high levels of hypertension, rather than interpreting the boundaries between areas as ‘hard’ boundaries that mark definite divisions between areas with differing levels of hypertension .TO BE VIEWED IN COMBINATION WITH:This dataset should be viewed alongside the following datasets, which highlight areas of missing data and potential outliers in the data:Health and wellbeing statistics (GP-level, England): Missing data and potential outliersLevels of obesity, inactivity and associated illnesses (England): Missing dataDOWNLOADING THIS DATATo access this data on your desktop GIS, download the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset.DATA SOURCESThis dataset was produced using:Quality and Outcomes Framework data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.GP Catchment Outlines. Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. Data was cleaned by Ribble Rivers Trust before use.COPYRIGHT NOTICEThe reproduction of this data must be accompanied by the following statement:© Ribble Rivers Trust 2021. Analysis carried out using data that is: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The indicator measures the share of obese people based on their body mass index (BMI). BMI is defined as the weight in kilos divided by the square of the height in meters. People aged 18 years or over are considered obese with a BMI equal or greater than 30. Other categories are: underweight (BMI less than 18.5), normal weight (BMI between 18.5 and less than 25), and pre-obese (BMI between 25 and less than 30). The category overweight (BMI equal or greater than 25) combines the two categories pre-obese and obese.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Singapore SG: Prevalence of Overweight: Weight for Height: % of Children Under 5, Modeled Estimate data was reported at 3.800 % in 2022. This records an increase from the previous number of 3.700 % for 2021. Singapore SG: Prevalence of Overweight: Weight for Height: % of Children Under 5, Modeled Estimate data is updated yearly, averaging 2.900 % from Dec 2000 (Median) to 2022, with 23 observations. The data reached an all-time high of 3.800 % in 2022 and a record low of 2.500 % in 2003. Singapore SG: Prevalence of Overweight: Weight for Height: % of Children Under 5, Modeled Estimate data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Singapore – Table SG.World Bank.WDI: Social: Health Statistics. Prevalence of overweight children is the percentage of children under age 5 whose weight for height is more than two standard deviations above the median for the international reference population of the corresponding age as established by the WHO's 2006 Child Growth Standards.;UNICEF, WHO, World Bank: Joint child Malnutrition Estimates (JME).;Weighted average;Once considered only a high-income economy problem, overweight children have become a growing concern in developing countries. Research shows an association between childhood obesity and a high prevalence of diabetes, respiratory disease, high blood pressure, and psychosocial and orthopedic disorders (de Onis and Blössner 2003). Childhood obesity is associated with a higher chance of obesity, premature death, and disability in adulthood. In addition to increased future risks, obese children experience breathing difficulties and increased risk of fractures, hypertension, early markers of cardiovascular disease, insulin resistance, and psychological effects. Children in low- and middle-income countries are more vulnerable to inadequate nutrition before birth and in infancy and early childhood. Many of these children are exposed to high-fat, high-sugar, high-salt, calorie-dense, micronutrient-poor foods, which tend be lower in cost than more nutritious foods. These dietary patterns, in conjunction with low levels of physical activity, result in sharp increases in childhood obesity, while under-nutrition continues. Estimates are modeled estimates produced by the JME. Primary data sources of the anthropometric measurements are national surveys. These surveys are administered sporadically, resulting in sparse data for many countries. Furthermore, the trend of the indicators over time is usually not a straight line and varies by country. Tracking the current level and progress of indicators helps determine if countries are on track to meet certain thresholds, such as those indicated in the SDGs. Thus the JME developed statistical models and produced the modeled estimates.
National Obesity Percentages by State. Explanation of Field Attributes:Obesity - The percent of the state population that is considered obese from the 2015 CDC BRFSS Survey.