This public dataset was created by the Centers for Medicare & Medicaid Services. The data summarize counts of enrollees who are dually-eligible for both Medicare and Medicaid program, including those in Medicare Savings Programs. “Duals” represent 20 percent of all Medicare beneficiaries, yet they account for 34 percent of all spending by the program, according to the Commonwealth Fund . As a representation of this high-needs, high-cost population, these data offer a view of regions ripe for more intensive care coordination that can address complex social and clinical needs. In addition to the high cost savings opportunity to deliver upstream clinical interventions, this population represents the county-by-county volume of patients who are eligible for both state level (Medicaid) and federal level (Medicare) reimbursements and potential funding streams to address unmet social needs across various programs, waivers, and other projects. The dataset includes eligibility type and enrollment by quarter, at both the state and county level. These data represent monthly snapshots submitted by states to the CMS, which are inherently lower than ever-enrolled counts (which include persons enrolled at any time during a calendar year.) For more information on dually eligible beneficiaries
You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.sdoh_cms_dual_eligible_enrollment.
In what counties in Michigan has the number of dual-eligible individuals increased the most from 2015 to 2018? Find the counties in Michigan which have experienced the largest increase of dual enrollment households
duals_Jan_2015 AS (
SELECT Public_Total AS duals_2015, County_Name, FIPS
FROM bigquery-public-data.sdoh_cms_dual_eligible_enrollment.dual_eligible_enrollment_by_county_and_program
WHERE State_Abbr = "MI" AND Date = '2015-12-01'
),
duals_increase AS ( SELECT d18.FIPS, d18.County_Name, d15.duals_2015, d18.duals_2018, (d18.duals_2018 - d15.duals_2015) AS total_duals_diff FROM duals_Jan_2018 d18 JOIN duals_Jan_2015 d15 ON d18.FIPS = d15.FIPS )
SELECT * FROM duals_increase WHERE total_duals_diff IS NOT NULL ORDER BY total_duals_diff DESC
This map shows where people have Medicaid or means-tested healthcare coverage in the US (ages under 65). This is shown by State, County, and Census Tract, and uses the most current ACS 5-year estimates.
This data set includes annual counts and percentages of Medicaid enrollees who are eligible for benefits based on disability, overall; by reason for qualification of disability benefits; and by four subpopulation topics: age group, dual eligibility status, race and ethnicity, and managed care participation. These results were generated using Transformed Medicaid Statistical Information System (T-MSIS) Analytic Files (TAF) Release 1 data and the Race/Ethnicity Imputation Companion File. This data set includes Medicaid enrollees in all 50 states, the District of Columbia, Puerto Rico, and the U.S. Virgin Islands who were enrolled for at least one day in the calendar year, except where otherwise noted. Enrollees in Guam, American Samoa, and the Northern Mariana Islands are not included. The Children’s Health Insurance Program (CHIP) does not confer eligibility based on disability, so Medicaid expansion CHIP (M-CHIP) and separate CHIP (S-CHIP) enrollees are not included. Results shown for the race and ethnicity subpopulation topic exclude enrollees in the U.S. Virgin Islands. Results shown for the dual eligibility, race and ethnicity, and managed care participation subpopulation topics are restricted to working-age adults (ages 19 to 64) with comprehensive Medicaid benefits. Some rows in the data set have a value of "DS," which indicates that data were suppressed according to the Centers for Medicare & Medicaid Services’ Cell Suppression Policy for values between 1 and 10. This data set is based on the brief: "Medicaid enrollees who qualify for benefits based on disability in 2020." Enrollees are assigned to a disability category based on their latest reported eligibility group code and age in the calendar year. Enrollees are assigned to an age group subpopulation using age as of December 31st of the calendar year. Enrollees are assigned to a dual eligibility status subpopulation based on the dual eligibility code that applies to the majority of their enrolled-months during the year (Dual Eligibility Code). Enrollees are assigned to a race and ethnicity subpopulation using the state-reported race and ethnicity information in TAF when it is available and of good quality; if it is missing or unreliable, race and ethnicity is indirectly estimated using an enhanced version of Bayesian Improved Surname Geocoding (BISG) (Race and ethnicity of the national Medicaid and CHIP population in 2020). Enrollees are assigned to a managed care participation subpopulation based on the managed care plan type code that applies to the majority of their enrolled-months during the year (Enrollment in CMC Plans). Please refer to the full brief for additional context about the methodology and detailed findings. Future updates to this data set will include more recent data years as the TAF data become available.
This data set includes annual counts and percentages of Medicaid and Children’s Health Insurance Program (CHIP) enrollees by race and ethnicity overall and by three subpopulation topics: scope of Medicaid and CHIP benefits, age group, and eligibility category. These results were generated using Transformed Medicaid Statistical Information System (T-MSIS) Analytic Files (TAF) Release 1 data and the Race/Ethnicity Imputation Companion File. This data set includes Medicaid and CHIP enrollees in all 50 states, the District of Columbia, and Puerto Rico who were enrolled for at least one day in the calendar year. Enrollees in Guam, American Samoa, the Northern Mariana Islands, and the U.S. Virgin Islands are not included. Results shown for the age group and eligibility category subpopulation topics only include enrollees with comprehensive Medicaid and CHIP benefits in the year. Some rows in the data set have a value of "DS," which indicates that data were suppressed according to the Centers for Medicare & Medicaid Services’ Cell Suppression Policy for values between 1 and 10. This data set is based on information shown in the brief: "Race and ethnicity of the national Medicaid and CHIP population in 2020." Enrollees are assigned to six race and ethnicity categories using the state-reported race and ethnicity information in TAF when it is available and of good quality; if it is missing or unreliable, race and ethnicity is indirectly estimated using an enhanced version of Bayesian Improved Surname Geocoding (BISG). Enrollees are assigned to a child (ages 0-18) or adult (ages 19 and older) subpopulation using age as of December 31st of the calendar year. Enrollees are assigned to the comprehensive benefits or limited benefits subpopulation according to the criteria in the "Identifying Beneficiaries with Full-Scope, Comprehensive, and Limited Benefits in the TAF" DQ Atlas brief. Enrollees are assigned to an eligibility category subpopulation using their latest reported eligibility group code, CHIP code, and age in the calendar year. Please refer to the full brief for additional context about the methodology and detailed findings. Future updates to this data set will include more recent data years as the TAF data become available.
This data set includes annual counts and percentages of Medicaid and Children’s Health Insurance Program (CHIP) enrollees by primary language spoken (English, Spanish, and all other languages). Results are shown overall; by state; and by five subpopulation topics: race and ethnicity, age group, scope of Medicaid and CHIP benefits, urban or rural residence, and eligibility category. These results were generated using Transformed Medicaid Statistical Information System (T-MSIS) Analytic Files (TAF) Release 1 data and the Race/Ethnicity Imputation Companion File. This data set includes Medicaid and CHIP enrollees in all 50 states, the District of Columbia, Puerto Rico, and the U.S. Virgin Islands who were enrolled for at least one day in the calendar year, except where otherwise noted. Enrollees in Guam, American Samoa, the Northern Mariana Islands, and select states with data quality issues with the primary language variable in TAF are not included. Results shown for the race and ethnicity subpopulation topic exclude enrollees in the U.S. Virgin Islands. Results shown overall (where subpopulation topic is "Total enrollees") exclude enrollees younger than age 5 and enrollees in the U.S. Virgin Islands. Results for states with TAF data quality issues in the year have a value of "Unusable data." Some rows in the data set have a value of "DS," which indicates that data were suppressed according to the Centers for Medicare & Medicaid Services’ Cell Suppression Policy for values between 1 and 10. This data set is based on the brief: "Primary language spoken by the Medicaid and CHIP population in 2020." Enrollees are assigned to a primary language category based on their reported ISO language code in TAF (English/missing, Spanish, and all other language codes) (Primary Language). Enrollees are assigned to a race and ethnicity subpopulation using the state-reported race and ethnicity information in TAF when it is available and of good quality; if it is missing or unreliable, race and ethnicity is indirectly estimated using an enhanced version of Bayesian Improved Surname Geocoding (BISG) (Race and ethnicity of the national Medicaid and CHIP population in 2020). Enrollees are assigned to an age group subpopulation using age as of December 31st of the calendar year. Enrollees are assigned to the comprehensive benefits or limited benefits subpopulation according to the criteria in the "Identifying Beneficiaries with Full-Scope, Comprehensive, and Limited Benefits in the TAF" DQ Atlas brief. Enrollees are assigned to an urban or rural subpopulation based on the 2010 Rural-Urban Commuting Area (RUCA) code associated with their home or mailing address ZIP code in TAF (Rural Medicaid and CHIP enrollees in 2020). Enrollees are assigned to an eligibility category subpopulation using their latest reported eligibility group code, CHIP code, and age in the calendar year. Please refer to the full brief for additional context about the methodology and detailed findings. Future updates to this data set will include more recent data years as the TAF data become available.
This data set includes annual counts and percentages of Medicaid and Children’s Health Insurance Program (CHIP) enrollees by urban or rural residence. Results are shown overall; by state; and by four subpopulation topics: scope of Medicaid and CHIP benefits, race and ethnicity, disability-related eligibility category, and managed care participation. These results were generated using Transformed Medicaid Statistical Information System (T-MSIS) Analytic Files (TAF) Release 1 data and the Race/Ethnicity Imputation Companion File. This data set includes Medicaid and CHIP enrollees in all 50 states, the District of Columbia, Puerto Rico, and the U.S. Virgin Islands who were enrolled for at least one day in the calendar year, except where otherwise noted. Enrollees in Guam, American Samoa, and the Northern Mariana Islands are not included. Results shown overall (where subpopulation topic is "Total enrollees") and for the race and ethnicity subpopulation topic exclude enrollees in the U.S. Virgin Islands. Results shown for the race and ethnicity, disability category, and managed care participation subpopulation topics only include Medicaid and CHIP enrollees with comprehensive benefits. Results shown for the disability category subpopulation topic only include working-age adults (ages 19 to 64). Results for states with TAF data quality issues in the year have a value of "Unusable data." Some rows in the data set have a value of "DS," which indicates that data were suppressed according to the Centers for Medicare & Medicaid Services’ Cell Suppression Policy for values between 1 and 10. This data set is based on the brief: "Rural Medicaid and CHIP enrollees in 2020." Enrollees are assigned to an urban or rural category based on the 2010 Rural-Urban Commuting Area (RUCA) code associated with their home or mailing address ZIP code in TAF. Enrollees are assigned to the comprehensive benefits or limited benefits subpopulation according to the criteria in the "Identifying Beneficiaries with Full-Scope, Comprehensive, and Limited Benefits in the TAF" DQ Atlas brief. Enrollees are assigned to a race and ethnicity subpopulation using the state-reported race and ethnicity information in TAF when it is available and of good quality; if it is missing or unreliable, race and ethnicity is indirectly estimated using an enhanced version of Bayesian Improved Surname Geocoding (BISG) (Race and ethnicity of the national Medicaid and CHIP population in 2020). Enrollees are assigned to a disability category subpopulation using their latest reported eligibility group code and age in the year (Medicaid enrollees who qualify for benefits based on disability in 2020). Enrollees are assigned to a managed care participation subpopulation based on the managed care plan type code that applies to the majority of their enrolled-months during the year (Enrollment in CMC Plans). Please refer to the full brief for additional context about the methodology and detailed findings. Future updates to this data set will include more recent data years as the TAF data become available.
This data set includes annual counts and percentages of Medicaid and Children’s Health Insurance Program (CHIP) enrollees who received mental health (MH) or substance use disorder (SUD) services, overall and by six subpopulation topics: age group, sex or gender identity, race and ethnicity, urban or rural residence, eligibility category, and primary language. These results were generated using Transformed Medicaid Statistical Information System (T-MSIS) Analytic Files (TAF) Release 1 data and the Race/Ethnicity Imputation Companion File. This data set includes Medicaid and CHIP enrollees in all 50 states, the District of Columbia, Puerto Rico, and the U.S. Virgin Islands, ages 12 to 64 at the end of the calendar year, who were not dually eligible for Medicare and were continuously enrolled with comprehensive benefits for 12 months, with no more than one gap in enrollment exceeding 45 days. Enrollees who received services for both an MH condition and SUD in the year are counted toward both condition categories. Enrollees in Guam, American Samoa, the Northern Mariana Islands, and select states with TAF data quality issues are not included. Results shown for the race and ethnicity subpopulation topic exclude enrollees in the U.S. Virgin Islands. Results shown for the primary language subpopulation topic exclude select states with data quality issues with the primary language variable in TAF. Some rows in the data set have a value of "DS," which indicates that data were suppressed according to the Centers for Medicare & Medicaid Services’ Cell Suppression Policy for values between 1 and 10. This data set is based on the brief: "Medicaid and CHIP enrollees who received mental health or SUD services in 2020." Enrollees are assigned to an age group subpopulation using age as of December 31st of the calendar year. Enrollees are assigned to a sex or gender identity subpopulation using their latest reported sex in the calendar year. Enrollees are assigned to a race and ethnicity subpopulation using the state-reported race and ethnicity information in TAF when it is available and of good quality; if it is missing or unreliable, race and ethnicity is indirectly estimated using an enhanced version of Bayesian Improved Surname Geocoding (BISG) (Race and ethnicity of the national Medicaid and CHIP population in 2020). Enrollees are assigned to an urban or rural subpopulation based on the 2010 Rural-Urban Commuting Area (RUCA) code associated with their home or mailing address ZIP code in TAF (Rural Medicaid and CHIP enrollees in 2020). Enrollees are assigned to an eligibility category subpopulation using their latest reported eligibility group code, CHIP code, and age in the calendar year. Enrollees are assigned to a primary language subpopulation based on their reported ISO language code in TAF (English/missing, Spanish, and all other language codes) (Primary Language). Please refer to the full brief for additional context about the methodology and detailed findings. Future updates to this data set will include more recent data years as the TAF data become available.
This data set includes annual counts and percentages of Medicaid and Children’s Health Insurance Program (CHIP) enrollees who received a well-child visit paid for by Medicaid or CHIP, overall and by five subpopulation topics: age group, race and ethnicity, urban or rural residence, program type, and primary language. These results were generated using Transformed Medicaid Statistical Information System (T-MSIS) Analytic Files (TAF) Release 1 data and the Race/Ethnicity Imputation Companion File. This data set includes Medicaid and CHIP enrollees in all 50 states, the District of Columbia, Puerto Rico, and the U.S. Virgin Islands, except where otherwise noted. Enrollees in Guam, American Samoa, and the Northern Mariana Islands are not included. Results include enrollees with comprehensive Medicaid or CHIP benefits for all 12 months of the year and who were younger than age 19 at the end of the calendar year. Results shown for the race and ethnicity subpopulation topic exclude enrollees in the U.S. Virgin Islands. Results shown for the primary language subpopulation topic exclude select states with data quality issues with the primary language variable in TAF. Some rows in the data set have a value of "DS," which indicates that data were suppressed according to the Centers for Medicare & Medicaid Services’ Cell Suppression Policy for values between 1 and 10. This data set is based on the brief: "Medicaid and CHIP enrollees who received a well-child visit in 2020." Enrollees are identified as receiving a well-child visit in the year according to the Line 6 criteria in the Form CMS-416 reporting instructions. Enrollees are assigned to an age group subpopulation using age as of December 31st of the calendar year. Enrollees are assigned to a race and ethnicity subpopulation using the state-reported race and ethnicity information in TAF when it is available and of good quality; if it is missing or unreliable, race and ethnicity is indirectly estimated using an enhanced version of Bayesian Improved Surname Geocoding (BISG) (Race and ethnicity of the national Medicaid and CHIP population in 2020). Enrollees are assigned to an urban or rural subpopulation based on the 2010 Rural-Urban Commuting Area (RUCA) code associated with their home or mailing address ZIP code in TAF (Rural Medicaid and CHIP enrollees in 2020). Enrollees are assigned to a program type subpopulation based on the CHIP code and eligibility group code that applies to the majority of their enrolled-months during the year (Medicaid-Only Enrollment; M-CHIP and S-CHIP Enrollment). Enrollees are assigned to a primary language subpopulation based on their reported ISO language code in TAF (English/missing, Spanish, and all other language codes) (Primary Language). Please refer to the full brief for additional context about the methodology and detailed findings. Future updates to this data set will include more recent data years as the TAF data become available.
This data set includes monthly counts and percentages of Medicaid and CHIP beneficiaries, by state, who received at least one service for each of the following conditions: acute bronchitis, acute respiratory distress, bronchitis not other specified (NOS), COVID-19 (based on the presence of diagnosis code U07.1), influenza, lower or acute respiratory infection, pneumonia, respiratory infection NOS, and suspected COVID-19 (based on the presence of diagnosis code B97.29). These metrics are based on data in the T-MSIS Analytic Files (TAF). Some states have serious data quality issues for one or more months, making the data unusable for calculating COVID-related conditions measures. To assess data quality, analysts adapted measures featured in the DQ Atlas. Data for a state and month are considered unusable if at least one of the following topics meets the DQ Atlas threshold for unusable: Total Medicaid and CHIP Enrollment, Claims Volume - IP, Claims Volume - OT, Claims Volume - IP, Diagnosis Code - IP, Diagnosis Code - OT, Procedure Codes - OT Professional. Please refer to the DQ Atlas at http://medicaid.gov/dq-atlas for more information about data quality assessment methods. Cells with a value of “DQ” indicate that data were suppressed due to unusable data. Some cells have a value of “DS”. This indicates that data were suppressed for confidentiality reasons because the group included fewer than 11 beneficiaries.
The hospital readmission rate PUF presents nation-wide information about inpatient hospital stays that occurred within 30 days of a previous inpatient hospital stay (readmissions) for Medicare fee-for-service beneficiaries. The readmission rate equals the number of inpatient hospital stays classified as readmissions divided by the number of index stays for a given month. Index stays include all inpatient hospital stays except those where the primary diagnosis was cancer treatment or rehabilitation. Readmissions include stays where a beneficiary was admitted as an inpatient within 30 days of the discharge date following a previous index stay, except cases where a stay is considered always planned or potentially planned. Planned readmissions include admissions for organ transplant surgery, maintenance chemotherapy/immunotherapy, and rehabilitation.
This dataset has several limitations. Readmissions rates are unadjusted for age, health status or other factors. In addition, this dataset reports data for some months where claims are not yet final. Data published for the most recent six months is preliminary and subject to change. Final data will be published as they become available, although the difference between preliminary and final readmission rates for a given month is likely to be less than 0.1 percentage point.
Data Source: The primary data source for these data is the CMS Chronic Condition Data Warehouse (CCW), a database with 100% of Medicare enrollment and fee-for-service claims data. For complete information regarding data in the CCW, visit http://ccwdata.org/index.php. Study Population: Medicare fee-for-service beneficiaries with inpatient hospital stays.
This is a dataset hosted by the Centers for Medicare & Medicaid Services (CMS). The organization has an open data platform found here and they update their information according the amount of data that is brought in. Explore CMS's Data using Kaggle and all of the data sources available through the CMS organization page!
This dataset is maintained using Socrata's API and Kaggle's API. Socrata has assisted countless organizations with hosting their open data and has been an integral part of the process of bringing more data to the public.
Cover photo by Justyn Warner on Unsplash
Unsplash Images are distributed under a unique Unsplash License.
This dataset is distributed under NA
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The included document uses GIS to investigate and compare Medicare and Medicaid provider infrastructure in Massachusetts. Provider addresses were geocoded and then compared to the geospatial locations of each insurance programs' eligible patient populations (percent of population of each census tract over 65 for Medicare and percent population for each census tract below the Federal Poverty Line for Medicaid). Massachusetts (MA) was picked for the comparison because Medicaid provider data, unlike Medicare provider data, is only available on cms.gov's website going back to 2011 and 2010, before the ACA was implemented in most states. However, MA had enacted "An Act Providing Access to Affordable, Quality, Accountable Health Care" in 2006, which had similar provisions to the subsequent ACA. The included maps used direct comparisons, buffers, and kernel density. Provider addresses obtained from: CMS' MAX Provider Characteristics and Provider of Services Current Files.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ImportanceThe Affordable Care Act (ACA) has expanded access to health insurance for millions of Americans, but the impact of Medicaid expansion on healthcare delivery and utilization remains uncertain.ObjectiveTo determine the early impact of the Medicaid expansion component of ACA on hospital and ED utilization in California, a state that implemented the Medicaid expansion component of ACA and Florida, a state that did not.DesignAnalyze all ED encounters and hospitalizations in California and Florida from 2009 to 2014 and evaluate trends by payer and diagnostic category. Data were collected from State Inpatient Databases, State Emergency Department Databases and the California Office of Statewide Health Planning and Development.SettingHospital and ED encounters.ParticipantsPopulation-based study of California and Florida state residents.ExposureImplementation of Medicaid expansion component of ACA in California in 2014.Main outcomes or measuresChanges in ED visits and hospitalizations by payer, percentage of patients hospitalized after an ED encounter, top diagnostic categories for ED and hospital encounters.ResultsIn California, Medicaid ED visits increased 33% after Medicaid expansion implementation and self-pay visits decreased by 25% compared with a 5.7% increase in the rate of Medicaid patient ED visits and a 5.1% decrease in rate of self-pay patient visits in Florida. In addition, California experienced a 15.4% increase in Medicaid inpatient stays and a 25% decrease in self pay stays. Trends in the percentage of patients admitted to the hospital from the ED were notable; a 5.4% decrease in hospital admissions originating from the ED in California, and a 2.1% decrease in Florida from 2013 to 2014.Conclusions and relevanceWe observed a significant shift in payer for ED visits and hospitalizations after Medicaid expansion in California without a significant change in top diagnoses or overall rate of these ED visits and hospitalizations. There appears to be a shift in reimbursement burden from patients and hospitals to the government without a dramatic shift in patterns of ED or hospital utilization.
Metrics from individual Marketplaces during the current reporting period. The report includes data for the states using HealthCare.gov. Sources: HealthCare.gov application and policy data through October 6, 2024, HealthCare.gov inbound account transfer data through November 7, 2024, and T-MSIS Analytic Files (TAF) through July 2024 (TAF version 7.1). The table includes states that use HealthCare.gov. Notes: This table includes Marketplace consumers who submitted a HealthCare.gov application from March 6, 2023 - October 6, 2024 or who had an inbound account transfer from April 3, 2023 - November 7, 2024, who can be linked to an enrollment record in TAF that shows a last day of Medicaid or CHIP enrollment from March 31, 2023 - July 31, 2024. Beneficiaries with a leaving event may have continuous coverage through another coverage source, including Medicaid or CHIP coverage in another state. However, a beneficiary that lost Medicaid or CHIP coverage and regained coverage in the same state must have a gap of at least 31 days or a full calendar month. This table includes Medicaid or CHIP beneficiaries with full benefits in the month they left Medicaid or CHIP coverage. ‘Account Transfer Consumers Whose Medicaid or CHIP Coverage was Terminated’ are consumers 1) whose full benefit Medicaid or CHIP coverage was terminated and 2) were sent by a state Medicaid or CHIP agency via secure electronic file to the HealthCare.gov Marketplace in a process referred to as an inbound account transfer either 2 months before or 4 months after they left Medicaid or CHIP. 'Marketplace Consumers Not on Account Transfer Whose Medicaid or CHIP Coverage was Terminated' are consumers 1) who applied at the HealthCare.gov Marketplace and 2) were not sent by a state Medicaid or CHIP agency via an inbound account transfer either 2 months before or 4 months after they left Medicaid or CHIP. Marketplace consumers counts are based on the month Medicaid or CHIP coverage was terminated for a beneficiary. Counts include all recent Marketplace activity. HealthCare.gov data are organized by week. Reporting months start on the first Monday of the month and end on the first Sunday of the next month when the last day of the reporting month is not a Sunday. HealthCare.gov data are through Sunday, October 6. Data are preliminary and will be restated over time to reflect consumers most recent HealthCare.gov status. Data may change as states resubmit T-MSIS data or data quality issues are identified. See the data and methodology documentation for a full description of the data sources, measure definitions, and general data limitations. Data notes: The percentages for the 'Marketplace Consumers Not on Account Transfer whose Medicaid or CHIP Coverage was Terminated' data record group are marked as not available (NA) because the full population of consumers without an account transfer was not available for this report. Virginia operated a Federally Facilitated Exchange (FFE) on the HealthCare.gov platform during 2023. In 2024, the state started operating a State Based Marketplace (SBM) platform. This table only includes data about 2023 applications and policies obtained through the HealthCare.gov Marketplace. Due to limited Marketplace activity on the HealthCare.gov platform in November 2023, data from November 2023 onward are excluded. The cumulative count and percentage for Virginia and the HealthCare.gov total reflect Virginia data from April 2023 through October 2023. APTC: Advance Premium Tax Credit; CHIP: Children's Health Insurance Program; QHP: Qualified Health Plan; NA: Not Available
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundIn the absence of clinical trial data, large post-marketing observational studies are essential to evaluate the safety and effectiveness of medications during pregnancy. We identified a cohort of pregnancies ending in live birth within the 2000–2007 Medicaid Analytic eXtract (MAX). Herein, we provide a blueprint to guide investigators who wish to create similar cohorts from healthcare utilization data and we describe the limitations in detail.MethodsAmong females ages 12–55, we identified pregnancies using delivery-related codes from healthcare utilization claims. We linked women with pregnancies to their offspring by state, Medicaid Case Number (family identifier) and delivery/birth dates. Then we removed inaccurate linkages and duplicate records and implemented cohort eligibility criteria (i.e., continuous and appropriate enrollment type, no private insurance, no restricted benefits) for claim information completeness.ResultsFrom 13,460,273 deliveries and 22,408,810 child observations, 6,107,572 pregnancies ending in live birth were available after linkage, cleaning, and removal of duplicate records. The percentage of linked deliveries varied greatly by state, from 0 to 96%. The cohort size was reduced to 1,248,875 pregnancies after requiring maternal eligibility criteria throughout pregnancy and to 1,173,280 pregnancies after further applying infant eligibility criteria. Ninety-one percent of women were dispensed at least one medication during pregnancy.ConclusionsMother-infant linkage is feasible and yields a large pregnancy cohort, although the size decreases with increasing eligibility requirements. MAX is a useful resource for studying medications in pregnancy and a spectrum of maternal and infant outcomes within the indigent population of women and their infants enrolled in Medicaid. It may also be used to study maternal characteristics, the impact of Medicaid policy, and healthcare utilization during pregnancy. However, careful attention to the limitations of these data is necessary to reduce biases.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This data shows healthcare utilization for asthma by Allegheny County residents 18 years of age and younger. It counts asthma-related visits to the Emergency Department (ED), hospitalizations, urgent care visits, and asthma controller medication dispensing events.
The asthma data was compiled as part of the Allegheny County Health Department’s Asthma Task Force, which was established in 2018. The Task Force was formed to identify strategies to decrease asthma inpatient and emergency utilization among children (ages 0-18), with special focus on children receiving services funded by Medicaid. Data is being used to improve the understanding of asthma in Allegheny County, and inform the recommended actions of the task force. Data will also be used to evaluate progress toward the goal of reducing asthma-related hospitalization and ED visits.
Regarding this data, asthma is defined using the International Classification of Diseases, Tenth Revision (IDC-10) classification system code J45.xxx. The ICD-10 system is used to classify diagnoses, symptoms, and procedures in the U.S. healthcare system.
Children seeking care for an asthma-related claim in 2017 are represented in the data. Data is compiled by the Health Department from medical claims submitted to three health plans (UPMC, Gateway Health, and Highmark). Claims may also come from people enrolled in Medicaid plans managed by these insurers. The Health Department estimates that 74% of the County’s population aged 0-18 is represented in the data.
Users should be cautious of using administrative claims data as a measure of disease prevalence and interpreting trends over time. Missing from the data are the uninsured, members in participating plans enrolled for less than 90 continuous days in 2017, children with an asthma-related condition that did not file a claim in 2017, and children participating in plans managed by insurers that did not share data with the Health Department.
Data users should also be aware that diagnoses may also be subject to misclassification, and that children with an asthmatic condition may not be diagnosed. It is also possible that some children may be counted more than once in the data if they are enrolled in a plan by more than one participating insurer and file a claim on each policy in the same calendar year.
Support for Health Equity datasets and tools provided by Amazon Web Services (AWS) through their Health Equity Initiative.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Key Table Information.Table Title.Medicaid/Means-Tested Public Coverage by Sex by Age.Table ID.ACSDT1Y2024.C27007.Survey/Program.American Community Survey.Year.2024.Dataset.ACS 1-Year Estimates Detailed Tables.Source.U.S. Census Bureau, 2024 American Community Survey, 1-Year Estimates.Dataset Universe.The dataset universe of the American Community Survey (ACS) is the U.S. resident population and housing. For more information about ACS residence rules, see the ACS Design and Methodology Report. Note that each table describes the specific universe of interest for that set of estimates..Methodology.Unit(s) of Observation.American Community Survey (ACS) data are collected from individuals living in housing units and group quarters, and about housing units whether occupied or vacant. For more information about ACS sampling and data collection, see the ACS Design and Methodology Report..Geography Coverage.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year.Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Sampling.The ACS consists of two separate samples: housing unit addresses and group quarters facilities. Independent housing unit address samples are selected for each county or county-equivalent in the U.S. and Puerto Rico, with sampling rates depending on a measure of size for the area. For more information on sampling in the ACS, see the Accuracy of the Data document..Confidentiality.The Census Bureau has modified or suppressed some estimates in ACS data products to protect respondents' confidentiality. Title 13 United States Code, Section 9, prohibits the Census Bureau from publishing results in which an individual's data can be identified. For more information on confidentiality protection in the ACS, see the Accuracy of the Data document..Technical Documentation/Methodology.Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables.Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Weights.ACS estimates are obtained from a raking ratio estimation procedure that results in the assignment of two sets of weights: a weight to each sample person record and a weight to each sample housing unit record. Estimates of person characteristics are based on the person weight. Estimates of family, household, and housing unit characteristics are based on the housing unit weight. For any given geographic area, a characteristic total is estimated by summing the weights assigned to the persons, households, families or housing units possessing the characteristic in the geographic area. For more information on weighting and estimation in the ACS, see the Accuracy of the Data document.Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and ...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The number of deliveries before linkage and the percentage of deliveries that linked to an infant, and the number of child MSIS_ID and date of birth combinations before linkage and the percentage of combinations that linked to a delivery listed by inpatient and outpatient linkage and by state; Medicaid Analytic eXtract, 2000–2007.
This indicator provides information about medically underserved areas and/or populations (MUA/Ps), as determined by the federal Health Resources and Services Administration (HRSA). Each designated area includes multiple census tracts.State Primary Care Offices submit applications to HRSA to designate specific areas within counties as MUA/Ps. The MUA/P designation is made using the Index of Medical Underservice (IMU) score, which includes four components: provider per 1,000 population, percent of population under poverty, percent of population ages 65 years and older, and infant mortality rate. The IMU scores ranges from 0-100. Lower scores indicate higher needs. An IMU score of 62 or below qualifies for designation as an MUA/P. Note: if an area is not designated as an MUA/P, it does not mean it is not underserved, only that an application has not been filed for the area and that official designation has not been given.The MUAs within Los Angeles County consist of groups of urban census tracts (namely service areas). MUPs have a shortage of primary care health services for a specific population within a geographic area. These populations may face economic, cultural, or language barriers to health care, such as: people experiencing homelessness, people who are low-income, people who are eligible for Medicaid, Native Americans, or migrant farm workers. All the MUPs that have been designated within Los Angeles County are among low-income populations of selected census tract groups. Due to the nature of the designation process, a census tract may be designated as both an MUA and an MUP and as multiple MUAs. MUA/P designations help establish health maintenance organizations or community health centers in high-need areas.For more information about the Community Health Profiles Data Initiative, please see the initiative homepage.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Objectives: To investigate the association of state-level Medicaid expansion and non-elderly mortality rates from 1999 to 2018 in Northeastern urban settings.Methods: This quasi-experimental study utilized a synthetic control method to assess the association of Medicaid expansion on non-elderly urban mortality rates [1999–2018]. Counties encompassing the largest cities in the Northeastern Megalopolis (Washington D.C., Baltimore, Philadelphia, New York City, and Boston) were selected as treatment units (n = 5 cities, 3,543,302 individuals in 2018). Cities in states without Medicaid expansion were utilized as control units (n = 17 cities, 12,713,768 individuals in 2018).Results: Across all cities, there was a significant reduction in the neoplasm (Population-Adjusted Average Treatment Effect = −1.37 [95% CI −2.73, −0.42]) and all-cause (Population-Adjusted Average Treatment Effect = −2.57 [95%CI −8.46, −0.58]) mortality rate. Washington D.C. encountered the largest reductions in mortality (Average Treatment Effect on All-Cause Medical Mortality = −5.40 monthly deaths per 100,000 individuals [95% CI −12.50, −3.34], −18.84% [95% CI −43.64%, −11.67%] reduction, p = < 0.001; Average Treatment Effect on Neoplasm Mortality = −1.95 monthly deaths per 100,000 individuals [95% CI −3.04, −0.98], −21.88% [95% CI −34.10%, −10.99%] reduction, p = 0.002). Reductions in all-cause medical mortality and neoplasm mortality rates were similarly observed in other cities.Conclusion: Significant reductions in urban mortality rates were associated with Medicaid expansion. Our study suggests that Medicaid expansion saved lives in the observed urban settings.
Metrics from individual Marketplaces during the current reporting period. The report includes data for the states using HealthCare.gov. As of August 2024, CMS is no longer releasing the “HealthCare.gov” metrics. Historical data between July 2023-July 2024 will remain available. The “HealthCare.gov Transitions” metrics, which are the CAA, 2023 required metrics, will continue to be released. Sources: HealthCare.gov application and policy data through May 5, 2024, and T-MSIS Analytic Files (TAF) through March 2024 (TAF version 7.1 with T-MSIS enrollment through the end of March 2024). Data include consumers in HealthCare.gov states where the first unwinding renewal cohort is due on or after the end of reporting month (state identification based on HealthCare.gov policy and application data). State data start being reported in the month when the state's first unwinding renewal cohort is due. April data include Arizona, Arkansas, Florida, Indiana, Iowa, Kansas, Nebraska, New Hampshire, Ohio, Oklahoma, South Dakota, Utah, West Virginia, and Wyoming. May data include the previous states and the following new states: Alaska, Delaware, Georgia, Hawaii, Montana, North Dakota, South Carolina, Texas, and Virginia. June data include the previous states and the following new states: Alabama, Illinois, Louisiana, Michigan, Missouri, Mississippi, North Carolina, Tennessee, and Wisconsin. July data include the previous states and Oregon. All HealthCare.gov states are included in this version of the report. Notes: This table includes Marketplace consumers who: 1) submitted a HealthCare.gov application on or after the start of each state’s first reporting month; and 2) who can be linked to an enrollment record in TAF that shows Medicaid or CHIP enrollment between March 2023 and the latest reporting month. Cumulative counts show the number of unique consumers from the included population who had a Marketplace application submitted or a HealthCare.gov Marketplace policy on or after the start of each state’s first reporting month through the latest reporting month. Net counts show the difference between the cumulative counts through a given reporting month and previous reporting months. The data used to produce the metrics are organized by week. Reporting months start on the first Monday of the month and end on the first Sunday of the next month when the last day of the reporting month is not a Sunday. For example, the April 2023 reporting period extends from Monday, April 3 through Sunday, April 30. Data are preliminary and will be restated over time to reflect consumers most recent HealthCare.gov status. Data may change as states resubmit T-MSIS data or data quality issues are identified. Data do not represent Marketplace consumers who had a confirmed Medicaid/CHIP loss. Future reporting will look at coverage transitions for people who lost Medicaid/CHIP. See the data and methodology documentation for a full description of the data sources, measure definitions, and general data limitations. Data notes: Virginia operated a Federally Facilitated Exchange (FFE) on the HealthCare.gov platform during 2023. In 2024, the state started operating a State Based Marketplace (SBM) platform. This table only includes data on 2023 applications and policies obtained through the HealthCare.gov Marketplace. Due to limited Marketplace activity on the HealthCare.gov platform in December 2023, data from December 2023 onward are excluded. The cumulative count and percentage for Virginia and the HealthCare.gov total reflect Virginia data from April 2023 through November 2023. The report may include negative 'net counts,' which reflect that there were cumulatively fewer counts from one month to the next. Wyoming has negative ‘net counts’ for most of its metrics in March 2024, including 'Marketplace Consumers with Previous M
This public dataset was created by the Centers for Medicare & Medicaid Services. The data summarize counts of enrollees who are dually-eligible for both Medicare and Medicaid program, including those in Medicare Savings Programs. “Duals” represent 20 percent of all Medicare beneficiaries, yet they account for 34 percent of all spending by the program, according to the Commonwealth Fund . As a representation of this high-needs, high-cost population, these data offer a view of regions ripe for more intensive care coordination that can address complex social and clinical needs. In addition to the high cost savings opportunity to deliver upstream clinical interventions, this population represents the county-by-county volume of patients who are eligible for both state level (Medicaid) and federal level (Medicare) reimbursements and potential funding streams to address unmet social needs across various programs, waivers, and other projects. The dataset includes eligibility type and enrollment by quarter, at both the state and county level. These data represent monthly snapshots submitted by states to the CMS, which are inherently lower than ever-enrolled counts (which include persons enrolled at any time during a calendar year.) For more information on dually eligible beneficiaries
You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.sdoh_cms_dual_eligible_enrollment.
In what counties in Michigan has the number of dual-eligible individuals increased the most from 2015 to 2018? Find the counties in Michigan which have experienced the largest increase of dual enrollment households
duals_Jan_2015 AS (
SELECT Public_Total AS duals_2015, County_Name, FIPS
FROM bigquery-public-data.sdoh_cms_dual_eligible_enrollment.dual_eligible_enrollment_by_county_and_program
WHERE State_Abbr = "MI" AND Date = '2015-12-01'
),
duals_increase AS ( SELECT d18.FIPS, d18.County_Name, d15.duals_2015, d18.duals_2018, (d18.duals_2018 - d15.duals_2015) AS total_duals_diff FROM duals_Jan_2018 d18 JOIN duals_Jan_2015 d15 ON d18.FIPS = d15.FIPS )
SELECT * FROM duals_increase WHERE total_duals_diff IS NOT NULL ORDER BY total_duals_diff DESC