The Voter Participation indicator presents voter turnout in Champaign County as a percentage, calculated using two different methods.
In the first method, the voter turnout percentage is calculated using the number of ballots cast compared to the total population in the county that is eligible to vote. In the second method, the voter turnout percentage is calculated using the number of ballots cast compared to the number of registered voters in the county.
Since both methods are in use by other agencies, and since there are real differences in the figures that both methods return, we have provided the voter participation rate for Champaign County using each method.
Voter participation is a solid illustration of a community’s engagement in the political process at the federal and state levels. One can infer a high level of political engagement from high voter participation rates.
The voter participation rate calculated using the total eligible population is consistently lower than the voter participation rate calculated using the number of registered voters, since the number of registered voters is smaller than the total eligible population.
There are consistent trends in both sets of data: the voter participation rate, no matter how it is calculated, shows large spikes in presidential election years (e.g., 2008, 2012, 2016, 2020) and smaller spikes in intermediary even years (e.g., 2010, 2014, 2018, 2022). The lowest levels of voter participation can be seen in odd years (e.g., 2015, 2017, 2019, 2021, 2023).
This data primarily comes from the election results resources on the Champaign County Clerk website. Election results resources from Champaign County include the number of ballots cast and the number of registered voters. The results are published frequently, following each election.
Data on the total eligible population for Champaign County was sourced from the U.S. Census Bureau, using American Community Survey (ACS) 1-Year Estimates for each year starting in 2005, when the American Community Survey was created. The estimates are released annually by the Census Bureau.
Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because this data is not available for Champaign County, the eligible voting population for 2020 is not included in this Indicator.
For interested data users, the 2020 ACS 1-Year Experimental data release includes datasets on Population by Sex and Population Under 18 Years by Age.
Sources: Champaign County Clerk Historical Election Data; U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using data.census.gov; (10 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using data.census.gov; (5 October 2023).; Champaign County Clerk Historical Election Data; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using data.census.gov; (7 October 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using data.census.gov; (8 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using data.census.gov; (8 June 2021).; Champaign County Clerk Election History; U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (13 May 2019).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (13 May 2019).; U.S. Census Bureau; American Community Survey, American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (6 March 2017).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (15 March 2016).; U.S. Census Bureau; American Community Survey, U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (15 March 2016).; U.S. Census Bureau; American Community Survey 2012 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (15 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (15 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (15 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (15 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (15 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (15 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (15 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (15 March 2016).
This web map displays data from the voter registration database as the percent of registered voters by census tract in King County, Washington. The data for this web map is compiled from King County Elections voter registration data for the years 2013-2019. The total number of registered voters is based on the geo-location of the voter's registered address at the time of the general election for each year. The eligible voting population, age 18 and over, is based on the estimated population increase from the US Census Bureau and the Washington Office of Financial Management and was calculated as a projected 6 percent population increase for the years 2010-2013, 7 percent population increase for the years 2010-2014, 9 percent population increase for the years 2010-2015, 11 percent population increase for the years 2010-2016 & 2017, 14 percent population increase for the years 2010-2018 and 17 percent population increase for the years 2010-2019. The total population 18 and over in 2010 was 1,517,747 in King County, Washington. The percentage of registered voters represents the number of people who are registered to vote as compared to the eligible voting population, age 18 and over. The voter registration data by census tract was grouped into six percentage range estimates: 50% or below, 51-60%, 61-70%, 71-80%, 81-90% and 91% or above with an overall 84 percent registration rate. In the map the lighter colors represent a relatively low percentage range of voter registration and the darker colors represent a relatively high percentage range of voter registration. PDF maps of these data can be viewed at King County Elections downloadable voter registration maps. The 2019 General Election Voter Turnout layer is voter turnout data by historical precinct boundaries for the corresponding year. The data is grouped into six percentage ranges: 0-30%, 31-40%, 41-50% 51-60%, 61-70%, and 71-100%. The lighter colors represent lower turnout and the darker colors represent higher turnout. The King County Demographics Layer is census data for language, income, poverty, race and ethnicity at the census tract level and is based on the 2010-2014 American Community Survey 5 year Average provided by the United States Census Bureau. Since the data is based on a survey, they are considered to be estimates and should be used with that understanding. The demographic data sets were developed and are maintained by King County Staff to support the King County Equity and Social Justice program. Other data for this map is located in the King County GIS Spatial Data Catalog, where data is managed by the King County GIS Center, a multi-department enterprise GIS in King County, Washington. King County has nearly 1.3 million registered voters and is the largest jurisdiction in the United States to conduct all elections by mail. In the map you can view the percent of registered voters by census tract, compare registration within political districts, compare registration and demographic data, verify your voter registration or register to vote through a link to the VoteWA, Washington State Online Voter Registration web page.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘2020 US General Election Turnout Rates’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/imoore/2020-us-general-election-turnout-rates on 28 January 2022.
--- Dataset description provided by original source is as follows ---
Voter turnout is the percentage of eligible voters who cast a ballot in an election. Eligibility varies by country, and the voting-eligible population should not be confused with the total adult population. Age and citizenship status are often among the criteria used to determine eligibility, but some countries further restrict eligibility based on sex, race, or religion.
The historical trends in voter turnout in the United States presidential elections have been determined by the gradual expansion of voting rights from the initial restriction to white male property owners aged 21 or older in the early years of the country's independence, to all citizens aged 18 or older in the mid-20th century. Voter turnout in United States presidential elections has historically been higher than the turnout for midterm elections.
https://upload.wikimedia.org/wikipedia/commons/a/a7/U.S._Vote_for_President_as_Population_Share.png" alt="f">
Turnout rates by demographic breakdown from the Census Bureau's Current Population Survey, November Voting and Registration Supplement (or CPS for short). This table are corrected for vote overreporting bias. For uncorrected weights see the source link.
Original source: https://data.world/government/vep-turnout
--- Original source retains full ownership of the source dataset ---
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Electoral registrations for parliamentary and local government elections as recorded in electoral registers for England, Wales, Scotland and Northern Ireland.
AP VoteCast is a survey of the American electorate conducted by NORC at the University of Chicago for Fox News, NPR, PBS NewsHour, Univision News, USA Today Network, The Wall Street Journal and The Associated Press.
AP VoteCast combines interviews with a random sample of registered voters drawn from state voter files with self-identified registered voters selected using nonprobability approaches. In general elections, it also includes interviews with self-identified registered voters conducted using NORC’s probability-based AmeriSpeak® panel, which is designed to be representative of the U.S. population.
Interviews are conducted in English and Spanish. Respondents may receive a small monetary incentive for completing the survey. Participants selected as part of the random sample can be contacted by phone and mail and can take the survey by phone or online. Participants selected as part of the nonprobability sample complete the survey online.
In the 2020 general election, the survey of 133,103 interviews with registered voters was conducted between Oct. 26 and Nov. 3, concluding as polls closed on Election Day. AP VoteCast delivered data about the presidential election in all 50 states as well as all Senate and governors’ races in 2020.
This is survey data and must be properly weighted during analysis: DO NOT REPORT THIS DATA AS RAW OR AGGREGATE NUMBERS!!
Instead, use statistical software such as R or SPSS to weight the data.
National Survey
The national AP VoteCast survey of voters and nonvoters in 2020 is based on the results of the 50 state-based surveys and a nationally representative survey of 4,141 registered voters conducted between Nov. 1 and Nov. 3 on the probability-based AmeriSpeak panel. It included 41,776 probability interviews completed online and via telephone, and 87,186 nonprobability interviews completed online. The margin of sampling error is plus or minus 0.4 percentage points for voters and 0.9 percentage points for nonvoters.
State Surveys
In 20 states in 2020, AP VoteCast is based on roughly 1,000 probability-based interviews conducted online and by phone, and roughly 3,000 nonprobability interviews conducted online. In these states, the margin of sampling error is about plus or minus 2.3 percentage points for voters and 5.5 percentage points for nonvoters.
In an additional 20 states, AP VoteCast is based on roughly 500 probability-based interviews conducted online and by phone, and roughly 2,000 nonprobability interviews conducted online. In these states, the margin of sampling error is about plus or minus 2.9 percentage points for voters and 6.9 percentage points for nonvoters.
In the remaining 10 states, AP VoteCast is based on about 1,000 nonprobability interviews conducted online. In these states, the margin of sampling error is about plus or minus 4.5 percentage points for voters and 11.0 percentage points for nonvoters.
Although there is no statistically agreed upon approach for calculating margins of error for nonprobability samples, these margins of error were estimated using a measure of uncertainty that incorporates the variability associated with the poll estimates, as well as the variability associated with the survey weights as a result of calibration. After calibration, the nonprobability sample yields approximately unbiased estimates.
As with all surveys, AP VoteCast is subject to multiple sources of error, including from sampling, question wording and order, and nonresponse.
Sampling Details
Probability-based Registered Voter Sample
In each of the 40 states in which AP VoteCast included a probability-based sample, NORC obtained a sample of registered voters from Catalist LLC’s registered voter database. This database includes demographic information, as well as addresses and phone numbers for registered voters, allowing potential respondents to be contacted via mail and telephone. The sample is stratified by state, partisanship, and a modeled likelihood to respond to the postcard based on factors such as age, race, gender, voting history, and census block group education. In addition, NORC attempted to match sampled records to a registered voter database maintained by L2, which provided additional phone numbers and demographic information.
Prior to dialing, all probability sample records were mailed a postcard inviting them to complete the survey either online using a unique PIN or via telephone by calling a toll-free number. Postcards were addressed by name to the sampled registered voter if that individual was under age 35; postcards were addressed to “registered voter” in all other cases. Telephone interviews were conducted with the adult that answered the phone following confirmation of registered voter status in the state.
Nonprobability Sample
Nonprobability participants include panelists from Dynata or Lucid, including members of its third-party panels. In addition, some registered voters were selected from the voter file, matched to email addresses by V12, and recruited via an email invitation to the survey. Digital fingerprint software and panel-level ID validation is used to prevent respondents from completing the AP VoteCast survey multiple times.
AmeriSpeak Sample
During the initial recruitment phase of the AmeriSpeak panel, randomly selected U.S. households were sampled with a known, non-zero probability of selection from the NORC National Sample Frame and then contacted by mail, email, telephone and field interviewers (face-to-face). The panel provides sample coverage of approximately 97% of the U.S. household population. Those excluded from the sample include people with P.O. Box-only addresses, some addresses not listed in the U.S. Postal Service Delivery Sequence File and some newly constructed dwellings. Registered voter status was confirmed in field for all sampled panelists.
Weighting Details
AP VoteCast employs a four-step weighting approach that combines the probability sample with the nonprobability sample and refines estimates at a subregional level within each state. In a general election, the 50 state surveys and the AmeriSpeak survey are weighted separately and then combined into a survey representative of voters in all 50 states.
State Surveys
First, weights are constructed separately for the probability sample (when available) and the nonprobability sample for each state survey. These weights are adjusted to population totals to correct for demographic imbalances in age, gender, education and race/ethnicity of the responding sample compared to the population of registered voters in each state. In 2020, the adjustment targets are derived from a combination of data from the U.S. Census Bureau’s November 2018 Current Population Survey Voting and Registration Supplement, Catalist’s voter file and the Census Bureau’s 2018 American Community Survey. Prior to adjusting to population totals, the probability-based registered voter list sample weights are adjusted for differential non-response related to factors such as availability of phone numbers, age, race and partisanship.
Second, all respondents receive a calibration weight. The calibration weight is designed to ensure the nonprobability sample is similar to the probability sample in regard to variables that are predictive of vote choice, such as partisanship or direction of the country, which cannot be fully captured through the prior demographic adjustments. The calibration benchmarks are based on regional level estimates from regression models that incorporate all probability and nonprobability cases nationwide.
Third, all respondents in each state are weighted to improve estimates for substate geographic regions. This weight combines the weighted probability (if available) and nonprobability samples, and then uses a small area model to improve the estimate within subregions of a state.
Fourth, the survey results are weighted to the actual vote count following the completion of the election. This weighting is done in 10–30 subregions within each state.
National Survey
In a general election, the national survey is weighted to combine the 50 state surveys with the nationwide AmeriSpeak survey. Each of the state surveys is weighted as described. The AmeriSpeak survey receives a nonresponse-adjusted weight that is then adjusted to national totals for registered voters that in 2020 were derived from the U.S. Census Bureau’s November 2018 Current Population Survey Voting and Registration Supplement, the Catalist voter file and the Census Bureau’s 2018 American Community Survey. The state surveys are further adjusted to represent their appropriate proportion of the registered voter population for the country and combined with the AmeriSpeak survey. After all votes are counted, the national data file is adjusted to match the national popular vote for president.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This table contains data on the percent of adults (18 years or older) who are registered voters and the percent of adults who voted in general elections, for California, its regions, counties, cities/towns, and census tracts. Data is from the Statewide Database, University of California Berkeley Law, and the California Secretary of State, Elections Division. The table is part of a series of indicators in the Healthy Communities Data and Indicators Project of the Office of Health Equity. Political participation can be associated with the health of a community through two possible mechanisms: through the implementation of social policies or as an indirect measure of social capital. Disparities in political participation across socioeconomic groups can influence political outcomes and the resulting policies could have an impact on the opportunities available to the poor to live a healthy life. Lower representation of poorer voters could result in reductions of social programs aimed toward supporting disadvantaged groups. Although there is no direct evidentiary connection between voter registration or participation and health, there is evidence that populations with higher levels of political participation also have greater social capital. Social capital is defined as resources accessed by individuals or groups through social networks that provide a mutual benefit. Several studies have shown a positive association between social capital and lower mortality rates, and higher self- assessed health ratings. There is also evidence of a cycle where lower levels of political participation are associated with poor self-reported health, and poor self-reported health hinders political participation. More information about the data table and a data dictionary can be found in the About/Attachments section.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
This dataset describes the number of communes, polling stations, the total population registered to vote and went to the polls, and the percentage of people who went to the polls for the fifth mandate commune council in 2022.
https://www.icpsr.umich.edu/web/ICPSR/studies/34/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/34/terms
This study contains selected demographic, social, economic, public policy, and political comparative data for Switzerland, Canada, France, and Mexico for the decades of 1900-1960. Each dataset presents comparable data at the province or district level for each decade in the period. Various derived measures, such as percentages, ratios, and indices, constitute the bulk of these datasets. Data for Switzerland contain information for all cantons for each decennial year from 1900 to 1960. Variables describe population characteristics, such as the age of men and women, county and commune of origin, ratio of foreigners to Swiss, percentage of the population from other countries such as Germany, Austria and Lichtenstein, Italy, and France, the percentage of the population that were Protestants, Catholics, and Jews, births, deaths, infant mortality rates, persons per household, population density, the percentage of urban and agricultural population, marital status, marriages, divorces, professions, factory workers, and primary, secondary, and university students. Economic variables provide information on the number of corporations, factory workers, economic status, cultivated land, taxation and tax revenues, canton revenues and expenditures, federal subsidies, bankruptcies, bank account deposits, and taxable assets. Additional variables provide political information, such as national referenda returns, party votes cast in National Council elections, and seats in the cantonal legislature held by political groups such as the Peasants, Socialists, Democrats, Catholics, Radicals, and others. Data for Canada provide information for all provinces for the decades 1900-1960 on population characteristics, such as national origin, the net internal migration per 1,000 of native population, population density per square mile, the percentage of owner-occupied dwellings, the percentage of urban population, the percentage of change in population from preceding censuses, the percentage of illiterate population aged 5 years and older, and the median years of schooling. Economic variables provide information on per capita personal income, total provincial revenue and expenditure per capita, the percentage of the labor force employed in manufacturing and in agriculture, the average number of employees per manufacturing establishment, assessed value of real property per capita, the average number of acres per farm, highway and rural road mileage, transportation and communication, the number of telephones per 100 population, and the number of motor vehicles registered per 1,000 population. Additional variables on elections and votes are supplied as well. Data for France provide information for all departements for all legislative elections since 1936, the two presidential elections of 1965 and 1969, and several referenda held in the period since 1958. Social and economic data are provided for the years 1946, 1954, and 1962, while various policy data are presented for the period 1959-1962. Variables provide information on population characteristics, such as the percentages of population by age group, foreign-born, bachelors aged 20 to 59, divorced men aged 25 and older, elementary school students in private schools, elementary school students per million population from 1966 to 1967, the number of persons in household in 1962, infant mortality rates per million births, and the number of priests per 10,000 population in 1946. Economic variables focus on the Gross National Product (GNP), the revenue per capita per household, personal income per capita, income tax, the percentage of active population in industry, construction and public works, transportation, hotels, public administration, and other jobs, the percentage of skilled and unskilled industrial workers, the number of doctors per 10,000 population, the number of agricultural cooperatives in 1946, the average hectares per farm, the percentage of farms cultivated by the owner, tenants, and sharecroppers, the number of workhorses, cows, and oxen per 100 hectares of farmland in 1946, and the percentages of automobiles per 1,000 population, radios per 100 homes, and cinema seats per 1,000 population. Data are also provided on the percentage of Communists (PCF), Socialists, Radical Socialists, Conservatives, Gaullists, Moderates, Poujadists, Independents, Turnouts, and other political groups and p
https://www.icpsr.umich.edu/web/ICPSR/studies/38/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38/terms
This study contains selected electoral and demographic national data for nine nations in the 1950s and 1960s. The data were prepared for the Data Confrontation Seminar on the Use of Ecological Data in Comparative Cross-National Research held under the auspices of the Inter-university Consortium for Political and Social Research on April 1-18, 1969. One of the primary concerns of this international seminar was the need for cooperation in the development of data resources in order to facilitate exchange of data among individual scholars and research groups. Election returns for two or more national and/or local elections are provided for each of the nine nations, as well as ecological materials for at least two time points in the general period of the 1950s and 1960s. While each dataset was received at a single level of aggregation, the data have been further aggregated to at least a second level of aggregation. In most cases, the data can be supplied at the commune or municipality level and at the province or district level as well. Part 1 (Germany, Regierungsbezirke), Part 2 (Germany, Kreise), Part 3 (Germany, Lander), and Part 4 (Germany, Wahlkreise) contain data for all kreise, laender (states), administrative districts, and electoral districts for national elections in the period 1957-1969, and for state elections in the period 1946-1969, and ecological data from 1951 and 1961. Part 5 (France, Canton), and Part 6 (France, Departemente) contain data for the cantons and departements of two regions of France (West and Central) for the national elections of 1956, 1962, and 1967, and ecological data for the years 1954 and 1962. Data are provided for election returns for selected parties: Communist, Socialist, Radical, Federation de Gauche, and the Fifth Republic. Included are raw votes and percentage of total votes for each party. Ecological data provide information on total population, proportion of total population in rural areas, agriculture, industry, labor force, and middle class in 1954, as well as urbanization, crime rates, vital statistics, migration, housing, and the index of "comforts." Part 7 (Japan, Kanagawa Prefecture), Part 8 (Japan, House of Representatives Time Series), Part 9 (Japan, House of (Councilors (Time Series)), and Part 10 (Japan, Prefecture) contain data for the 46 prefectures for 15 national elections between 1949 and 1968, including data for all communities in the prefecture of Kanagawa for 13 national elections, returns for 8 House of Representatives' elections, 7 House of Councilors' elections, descriptive data from 4 national censuses, and ecological data for 1950, 1955, 1960, and 1965. Data are provided for total number of electorate, voters, valid votes, and votes cast by such groups as the Jiyu, Minshu, Kokkyo, Minji, Shakai, Kyosan, and Mushozoku for the Communist, Socialist, Conservative, Komei, and Independent parties for all the 46 prefectures. Population characteristics include age, sex, employment, marriage and divorce rates, total number of live births, deaths, households, suicides, Shintoists, Buddhists, and Christians, and labor union members, news media subscriptions, savings rate, and population density. Part 11 (India, Administrative Districts) and Part 12 (India, State) contain data for all administrative districts and all states and union territories for the national and state elections in 1952, 1957, 1962, 1965, and 1967, the 1958 legislative election, and ecological data from the national censuses of 1951 and 1961. Data are provided for total number of votes cast for the Congress, Communist, Jan Sangh, Kisan Mazdoor Praja, Socialist, Republican, Regional, and other parties, contesting candidates, electorate, valid votes, and the percentage of valid votes cast. Also included are votes cast for the Rightist, Christian Democratic, Center, Socialist, and Communist parties in the 1958 legislative election. Ecological data include total population, urban population, sex distribution, occupation, economically active population, education, literate population, and number of Buddhists, Christians, Hindus, Jainis, Moslems, Sikhs, and other religious groups. Part 13 (Norway, Province), and Part 14 (Norway, Commune) consist of the returns for four national elections in 1949, 1953, 1957, and 1961, and descriptive data from two national censuses. Data are provided for the total number
Socio-economic and election political aggregate data for the Federal Republic (1949-1969) at the level of the constituencies. Topics: Area in square kilometers; residential population; male, German, religious residential population; residential population according to school degrees; employed, organized according to areas of business; proportion of self-employed; proportion of civil servants, workers and employees; places of work; employed women; eligible voters and voters in the Federal Parliament elections 1949-1969; valid and invalid first votes or second votes; proportion of first and second votes for individual parties in Federal Parliament elections; proportion of foreigners in residential population; age structure of residential population. Sozioökonomische und wahlpolitische Aggregatdaten für die Bundesrepublik (1949-1969) auf der Ebene der Wahlkreise. Themen: Fläche in qkm; Wohnbevölkerung; männliche, deutsche, religiöse Wohnbevölkerung; Wohnbevölkerung nach Schulabschlüssen; Erwerbstätige, aufgegliedert nach Branchen; Selbständigenanteil; Beamten-, Arbeiter- und Angestelltenanteil; Arbeitsstätten; beschäftigte Frauen; Wahlberechtigte und Wähler bei den Bundestagswahlen 1949-1969; gültige und ungültige Erststimmen bzw. Zweitstimmen; Erst- und Zweitstimmenanteil der einzelnen Parteien bei den Bundestagswahlen; Ausländeranteil an der Wohnbevölkerung; Altersstruktur der Wohnbevölkerung. Census Totalerhebung AggregationAggregation
The percentage of persons over the age of 18 registered to vote out of all persons 18 years and over. Source: Baltimore City Board of Elections Years Available: 2010, 2012, 2014, 2016, 2018
Election Data Attribute Field Definitions | Wisconsin Cities, Towns, & Villages Data Attributes Ward Data Overview:July 2020 municipal wards were collected by LTSB through the WISE-Decade system. Current statutes require each county clerk, or board of election commissioners, no later than January 15 and July 15 of each year, to transmit to the LTSB, in an electronic format (approved by LTSB), a report confirming the boundaries of each municipality, ward and supervisory district within the county as of the preceding “snapshot” date of January 1 or July 1 respectively. Population totals for 2011 wards are carried over to the 2018 dataset for existing wards. New wards created since 2011 due to annexations, detachments, and incorporation are allocated population from Census 2010 collection blocks. LTSB has topologically integrated the data, but there may still be errors.Election Data Overview:The 1990-2000 Wisconsin election data that is included in this file was collected by LTSB from the *Wisconsin Elections Commission (WEC) after each general election. A disaggregation process was performed on this election data based on the municipal ward layer that was available at the time of the election. Disaggregation of Election Data:Election data is first disaggregated from reporting units to wards, and then to census blocks. Next, the election data is aggregated back up to wards, municipalities, and counties. The disaggregation of election data to census blocks is done based on total population. Detailed Methodology:Data is disaggregated first from reporting unit (i.e. multiple wards) to the ward level proportionate to the population of that ward. The data then is distributed down to the block level, again based on total population. When data is disaggregated to block or ward, we restrain vote totals not to exceed population 18 numbers, unless absolutely required.This methodology results in the following: Election data totals reported to the WEC at the state, county, municipal and reporting unit level should match the disaggregated election data total at the same levels. Election data totals reported to the WEC at ward level may not match the ward totals in the disaggregated election data file. Some wards may have more election data allocated than voter age population. This will occur if a change to the geography results in more voters than the 2010 historical population limits.Other things of note…We use a static, official ward layer (in this case created in 2020) to disaggregate election data to blocks. Using this ward layer creates some challenges. New wards are created every year due to annexations and incorporations. When these new wards are reported with election data, an issue arises wherein election data is being reported for wards that do not exist in our official ward layer. For example, if Cityville has four wards in the official ward layer, the election data may be reported for five wards, including a new ward from an annexation. There are two different scenarios and courses of action to these issues: When a single new ward is present in the election data but there is no ward geometry present in the official ward layer, the votes attributed to this new ward are distributed to all the other wards in the municipality based on population percentage. Distributing based on population percentage means that the proportion of the population of the municipality will receive that same proportion of votes from the new ward. In the example of Cityville explained above, the fifth ward may have five votes reported, but since there is no corresponding fifth ward in the official layer, these five votes will be assigned to each of the other wards in Cityville according the percentage of population.Another case is when a new ward is reported, but its votes are part of reporting unit. In this case, the votes for the new ward are assigned to the other wards in the reporting unit by population percentage; and not to wards in the municipality as a whole. For example, Cityville’s ward 5 was given as a reporting unit together with wards 1, 4, and 5. In this case, the votes in ward five are assigned to wards 1 and 4 according to population percentage. Outline Ward-by-Ward Election ResultsThe process of collecting election data and disaggregating to municipal wards occurs after a general election, so disaggregation has occurred with different ward layers and different population totals. We have outlined (to the best of our knowledge) what layer and population totals were used to produce these ward-by-ward election results.Election data disaggregates from WEC Reporting Unit -> Ward [Variant year outlined below]Elections 1990 – 2000: Wards 1991 (Census 1990 totals used for disaggregation)Elections 2002 – 2010: Wards 2001 (Census 2000 totals used for disaggregation)Elections 2012: Wards 2011 (Census 2010 totals used for disaggregation)Elections 2014 – 2016: Wards 2018 (Census 2010 totals used for disaggregation)Elections 2018: Wards 2018Blocks 2011 -> Centroid geometry and spatially joined with Wards [All Versions]Each Block has an assignment to each of the ward versions outlined aboveIn the event that a ward exists now in which no block exists (occurred with spring 2020) due to annexations, a block centroid was created with a population 0, and encoded with the proper Census IDs.Wards [All Versions] disaggregate -> Blocks 2011This yields a block centroid layer that contains all elections from 1990 to 2018Blocks 2011 [with all election data] -> Wards 2020 (then MCD 2020, and County 2020) All election data (including later elections) is aggregated to the Wards 2020 assignment of the blocksNotes:Population of municipal wards 1991, 2001 and 2011 used for disaggregation were determined by their respective Census.Population and Election data will be contained within a county boundary. This means that even though MCD and ward boundaries vary greatly between versions of the wards, county boundaries have stayed the same, so data should total within a county the same between wards 2011 and wards 2020.Election data may be different for the same legislative district, for the same election, due to changes in the wards from 2011 and 2020. This is due to boundary corrections in the data from 2011 to 2020, and annexations, where a block may have been reassigned.*WEC replaced the previous Government Accountability Board (GAB) in 2016, which replaced the previous State Elections Board in 2008.
The 2016 U.S. presidential election was contested by Donald J. Trump of the Republican Party, and Hillary Rodham Clinton of the Democratic Party. Clinton had been viewed by many as the most likely to succeed President Obama in the years leading up to the election, after losing the Democratic nomination to him in 2008, and entered the primaries as the firm favorite. Independent Senator Bernie Sanders soon emerged as Clinton's closest rival, and the popularity margins decreased going into the primaries. A few other candidates had put their name forward for the Democratic nomination, however all except Clinton and Sanders had dropped out by the New Hampshire primary. Following a hotly contested race, Clinton arrived at the Democratic National Convention with 54 percent of pledged delegates, while Sanders had 46 percent. Controversy emerged when it was revealed that Clinton received the support of 78 percent of Democratic superdelegates, while Sanders received just seven percent. With her victory, Hillary Clinton became the first female candidate nominated by a major party for the presidency. With seventeen potential presidential nominees, the Republican primary field was the largest in US history. Similarly to the Democratic race however, the number of candidates thinned out by the time of the New Hampshire primary, with Donald Trump and Ted Cruz as the frontrunners. As the primaries progressed, Trump pulled ahead while the remainder of the candidates withdrew from the race, and he was named as the Republican candidate in May 2016. Much of Trump's success has been attributed to the free media attention he received due to his outspoken and controversial behavior, with a 2018 study claiming that Trump received approximately two billion dollars worth of free coverage during the primaries alone. Campaign The 2016 presidential election was preceded by, arguably, the most internationally covered and scandal-driven campaign in U.S. history. Clinton campaigned on the improvement and expansion of President Obama's more popular policies, while Trump's campaign was based on his personality and charisma, and took a different direction than the traditional conservative, Republican approach. In the months before the election, Trump came to represent a change in how the U.S. government worked, using catchy slogans such as "drain the swamp" to show how he would fix what many viewed to be a broken establishment; painting Clinton as the embodiment of this establishment, due to her experience as First Lady, Senator and Secretary of State. The candidates also had fraught relationships with the press, although the Trump campaign was seen to have benefitted more from this publicity than Clinton's. Controversies Trump's off the cuff and controversial remarks gained him many followers throughout the campaign, however, just one month before the election, a 2005 video emerged of Trump making derogatory comments about grabbing women "by the pussy". The media and public's reaction caused many high-profile Republicans to condemn the comments (for which he apologized), with many calling for his withdrawal from the race. This controversy was soon overshadowed when it emerged that the FBI was investigating Hillary Clinton for using a private email server while handling classified information, furthering Trump's narrative that the Washington establishment was corrupt. Two days before the election, the FBI concluded that Clinton had not done anything wrong; however the investigation had already damaged the public's perception of Clinton's trustworthiness, and deflected many undecided voters towards Trump. Results Against the majority of predictions, Donald Trump won the 2016 election, and became the 45th President of the United States. Clinton won almost three million more votes than her opponent, however Trump's strong performance in swing states gave him a 57 percent share of the electoral votes, while Clinton took just 42 percent. The unpopularity of both candidates also contributed to much voter abstention, and almost six percent of the popular vote went to third party candidates (despite their poor approval ratings). An unprecedented number of faithless electors also refused to give their electoral votes to the two main candidates, instead giving them to five non-candidates. In December, it emerged that the Russian government may have interfered in this election, and the 2019 Mueller Report concluded that Russian interference in the U.S. election contributed to Clinton's defeat and the victory of Donald Trump. In total, 26 Russian citizens and three Russian organizations were indicted, and the investigation led to the indictment and conviction of many top-level officials in the Trump campaign; however Trump and the Russian government both strenuously deny these claims, and Trump's attempts to frame the Ukrainian government for Russia's involvement contributed to his impeachment in 2019.
https://www.gesis.org/en/institute/data-usage-termshttps://www.gesis.org/en/institute/data-usage-terms
The module was administered as a post-election interview. The resulting data are provided along with voting, demographic, district and macro variables in a single dataset.
CSES Variable List The list of variables is being provided on the CSES Website to help in understanding what content is available from CSES, and to compare the content available in each module.
Themes: MICRO-LEVEL DATA:
Identification and study administration variables: weighting factors;election type; date of election 1st and 2nd round; study timing (post election study, pre-election and post-election study, between rounds of majoritarian election); mode of interview; gender of interviewer; date questionnaire administered; primary electoral district of respondent; number of days the interview was conducted after the election
Demography: age; gender; education; marital status; union membership; union membership of others in household; current employment status; main occupation; employment type - public or private; industrial sector; occupation of chief wage earner and of spouse; household income; number of persons in household; number of children in household under the age of 18; attendance at religious services; religiosity; religious denomination; language usually spoken at home; race; ethnicity; region of residence; rural or urban residence
Survey variables: respondent cast a ballot at the current and the previous election; respondent cast candidate preference vote at the previous election; satisfaction with the democratic process in the country; last election was conducted fairly; form of questionnaire (long or short); party identification; intensity of party identification; political parties care what people think; political parties are necessary; recall of candidates from the last election (name, gender and party); number of candidates correctly named; sympathy scale for selected parties and political leaders; assessment of the state of the economy in the country; assessment of economic development in the country; degree of improvement or deterioration of economy; politicians know what people think; contact with a member of parliament or congress during the past twelve months; attitude towards selected statements: it makes a difference who is in power and who people vote for; people express their political opinion; self-assessment on a left-right-scale; assessment of parties and political leaders on a left-right-scale; political information items
DISTRICT-LEVEL DATA:
number of seats contested in electoral district; number of candidates; number of party lists; percent vote of different parties; official voter turnout in electoral district
MACRO-LEVEL DATA:
founding year of parties; ideological families of parties; international organization the parties belong to; left-right position of parties assigned by experts; election outcomes by parties in current (lower house/upper house) legislative election; percent of seats in lower house received by parties in current lower house/upper house election; percent of seats in upper house received by parties in current lower house/upper house election; percent of votes received by presidential candidate of parties in current elections; electoral turnout; electoral alliances permitted during the election campaign; existing electoral alliances; most salient factors in the election; head of state (regime type); if multiple rounds: selection of head of state; direct election of head of state and process of direct election; threshold for first-round victory; procedure for candidate selection at final round; simple majority or absolute majority for 2nd round victory; year of presidential election (before or after this legislative election); process if indirect election of head of state; head of government (president or prime minister); selection of prime minister; number of elected legislative chambers; for lower and upper houses was coded: number of electoral segments; number of primary districts; number of seats; district magnitude (number of members elected from each district); number of secondary and tertiary electoral districts; compulsory voting; votes cast; voting procedure; electoral formula; party threshold; parties can run joint lists; requirements for joint party lists; possibility of apparentement; types of apparentement agreements; multi-party endorsements; multi-party endorsements on ballot; ally party support; constitu...
Electoral participation in last provincial election, by sex and age group, Canada and provinces, 2013.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau.For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.Naming conventions:Prefixes: None Countp Percentr Ratem Mediana Mean (average)t Aggregate (total)ch Change in absolute terms (value in t2 - value in t1)pch Percent change ((value in t2 - value in t1) / value in t1)chp Change in percent (percent in t2 - percent in t1)s Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed Suffixes: _e19 Estimate from 2014-19 ACS_m19 Margin of Error from 2014-19 ACS_00_v19 Decennial 2000, re-estimated to 2019 geography_00_19 Change, 2000-19_e10_v19 2006-10 ACS, re-estimated to 2019 geography_m10_v19 Margin of Error from 2006-10 ACS, re-estimated to 2019 geography_e10_19 Change, 2010-19The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2015-2019). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2015-2019Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the manifest: https://www.arcgis.com/sharing/rest/content/items/3d489c725bb24f52a987b302147c46ee/data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides the number of votes and the percentage of the first preference vote won by each of the parties in the 2019 federal election. The data also includes the first preferences swing by party - a comparison of the percentage of first preference votes for each party compared to the percentage of first preference votes received at the previous federal election.
For more information please visit the Australian Electoral Commission.
Please note:
AURIN has combined and re-structured the original state level data for "First preferences by candidate by polling place".
AURIN has spatially enabled the data using locations of polling places.
AURIN has calculated the polling place vote percentages for each party and included them in this dataset.
Where multiple independent candidates were running for election in the same seat, their votes have been summed and their swing percentages have been excluded from this dataset.
A first preference vote is where the voter has given that party's candidates a number 1 on the ballot paper.
These results are not final.
https://www.icpsr.umich.edu/web/ICPSR/studies/42/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/42/terms
This data collection contains electoral and demographic data at several levels of aggregation (kreis, land/regierungsberzirk, and wahlkreis) for Germany in the Weimar Republic period of 1919-1933. Two datasets are available. Part 1, 1919 Data, presents raw and percentagized election returns at the wahlkreis level for the 1919 election to the Nationalversammlung. Information is provided on the number and percentage of eligible voters and the total votes cast for parties such as the German National People's Party, German People's Party, Christian People's Party, German Democratic Party, Social Democratic Party, and Independent Social Democratic Party. Part 2, 1920-1933 Data, consists of returns for elections to the Reichstag, 1920-1933, and for the Reichsprasident elections of 1925 and 1932 (including runoff elections in each year), returns for two national referenda, held in 1926 and 1929, and data pertaining to urban population, religion, and occupations, taken from the German Census of 1925. This second dataset contains data at several levels of aggregation and is a merged file. Crosstemporal discrepancies, such as changes in the names of the geographical units and the disappearance of units, have been adjusted for whenever possible. Variables in this file provide information for the total number and percentage of eligible voters and votes cast for parties, including the German Nationalist People's Party, German People's Party, German Center Party, German Democratic Party, German Social Democratic Party, German Communist Party, Bavarian People's Party, Nationalist-Socialist German Workers' Party (Hitler's movement), German Middle Class Party, German Business and Labor Party, Conservative People's Party, and other parties. Data are also provided for the total number and percentage of votes cast in the Reichsprasident elections of 1925 and 1932 for candidates Jarres, Held, Ludendorff, Braun, Marx, Hellpach, Thalman, Hitler, Duesterburg, Von Hindenburg, Winter, and others. Additional variables provide information on occupations in the country, including the number of wage earners employed in agriculture, industry and manufacturing, trade and transportation, civil service, army and navy, clergy, public health, welfare, domestic and personal services, and unknown occupations. Other census data cover the total number of wage earners in the labor force and the number of female wage earners employed in all occupations. Also provided is the percentage of the total population living in towns with 5,000 inhabitants or more, and the number and percentage of the population who were Protestants, Catholics, and Jews.
Abstract copyright UK Data Service and data collection copyright owner. This dataset comprises data from Waves 1 and 2 of the BES 2001 panel study, part of the first 'main component' of the BES. A third wave of the panel study was conducted in May 2002, but the data from this is not yet included in the UKDA dataset. Main Topics: The following subjects were covered in the survey: political preferences and values, economic perceptions, social attitudes, dispositions to engage in different forms of political activity, individual and household socio-demographic characteristics. Constituency-level information for aggregate analysis is also included in the data file. This covers election results for 2001, percentage of votes for each party, 'swing' between parties, changes in vote and turnout since 1997, demographic characteristics of each of the major party candidates, election results for 1997 and 1992, and characteristics of the area (including levels of home ownership, ethnicity, economic activity, age of population and Socio-Economic Group (SEG) classifications of households in the area). Multi-stage stratified random sample for full details of sampling procedures, please see documentation. Face-to-face interview Self-completion 2001 AGE ASSAULT ATTITUDES BRITISH POLITICAL P... BUSINESSES CANVASSING CARE OF DEPENDANTS CENSORSHIP CENTRAL GOVERNMENT CHARITABLE ORGANIZA... CHILDREN CIVIL AND POLITICAL... CIVIL SERVICE COMMUNITIES CONSERVATIVE PARTY ... CONSTITUENCIES CULTURAL BEHAVIOUR DEATH PENALTY DECENTRALIZED GOVER... DEMOCRACY ECONOMIC ACTIVITY ECONOMIC CONDITIONS EDUCATION EDUCATIONAL BACKGROUND ELECTION BROADCASTING ELECTION CAMPAIGNS ELECTION DATA ELECTION RESULTS ELECTIONS ELECTORAL ISSUES ELECTORAL SYSTEMS ELECTORS EMPLOYEES EMPLOYMENT ENVIRONMENTAL CONSE... EQUALITY BEFORE THE... ETHNIC GROUPS EUROPEAN UNION FINANCIAL EXPECTATIONS FINANCIAL RESOURCES FINANCIAL SUPPORT GENDER GENDER ROLE GOVERNMENT POLICY GREEN PARTY UNITED ... Great Britain HOME OWNERSHIP HOUSEHOLDS IMMIGRANTS INCOME INCOME DISTRIBUTION INFLATION INTERNET LABOUR PARTY GREAT ... LANGUAGES LAW ENFORCEMENT LEGISLATURE LEISURE TIME ACTIVI... LIBERAL DEMOCRATS G... LOCAL GOVERNMENT MARITAL STATUS MEMBERS OF PARLIAMENT MEMBERSHIP NATIONAL IDENTITY NEWSPAPER READERSHIP NEWSPAPERS OCCUPATIONAL STATUS OCCUPATIONS PARLIAMENTARY CANDI... PENSIONS PLAID CYMRU POLICE SERVICES POLITICAL ACCOUNTAB... POLITICAL ALLEGIANCE POLITICAL ATTITUDES POLITICAL EXTREMISM POLITICAL INFLUENCE POLITICAL INTEREST POLITICAL ISSUES POLITICAL LEADERS POLITICAL PARTICIPA... POLITICAL POWER POLITICAL SYSTEMS POLITICIANS PRISON SENTENCES PRIVATE SECTOR PROPORTIONAL REPRES... PUBLIC EXPENDITURE PUBLIC SECTOR PUBLIC TRANSPORT QUALIFICATIONS QUALITY OF LIFE REFERENDUM PARTY GR... REFUGEES REHABILITATION OFFE... RELIGIOUS AFFILIATION RENTED ACCOMMODATION RESIDENTIAL MOBILITY RISK SCOTTISH NATIONAL P... SELF EMPLOYED SINGLE EUROPEAN CUR... SOCIAL CLASS SOCIAL JUSTICE SOCIAL POLICY SOCIAL PROTEST SOCIAL SERVICES SOCIO ECONOMIC STATUS SPOUSE S ECONOMIC A... SPOUSE S OCCUPATION SPOUSES STANDARD OF LIVING STATE HEALTH SERVICES SUPERVISORY STATUS TACTICAL VOTING TAXATION TELEPHONES TELEVISION NEWS TOLERANCE TRADE UNION MEMBERSHIP TRADE UNIONS TRUST UNEMPLOYMENT VOLUNTARY WORK VOTING VOTING BEHAVIOUR VOTING INTENTION WEALTH WOMEN YOUTH
The alternative vote (AV) referendum was a public vote held across the United Kingdom on 5 May 2011 in which the electorate voted on a proposal to introduce a new voting system.
The question posed by the referendum was "At present, the UK uses the "first past the post" system to elect MPs to the House of Commons. Should the "alternative vote" system be used instead?"
The overall result for the UK was clear, with around 68 per cent of the population voting ‘No’ to AV. In London the result was closer with 60 per cent voting ‘No’, and the capital accounted for most of the areas in the UK that returned a 'Yes' majority. Results are analysed in DMAG Briefing 2011-04, and a spreadsheet of the full results is available.
https://s3-eu-west-1.amazonaws.com/londondatastore-upload/av-ref-cover.png" alt="Report">
The Voter Participation indicator presents voter turnout in Champaign County as a percentage, calculated using two different methods.
In the first method, the voter turnout percentage is calculated using the number of ballots cast compared to the total population in the county that is eligible to vote. In the second method, the voter turnout percentage is calculated using the number of ballots cast compared to the number of registered voters in the county.
Since both methods are in use by other agencies, and since there are real differences in the figures that both methods return, we have provided the voter participation rate for Champaign County using each method.
Voter participation is a solid illustration of a community’s engagement in the political process at the federal and state levels. One can infer a high level of political engagement from high voter participation rates.
The voter participation rate calculated using the total eligible population is consistently lower than the voter participation rate calculated using the number of registered voters, since the number of registered voters is smaller than the total eligible population.
There are consistent trends in both sets of data: the voter participation rate, no matter how it is calculated, shows large spikes in presidential election years (e.g., 2008, 2012, 2016, 2020) and smaller spikes in intermediary even years (e.g., 2010, 2014, 2018, 2022). The lowest levels of voter participation can be seen in odd years (e.g., 2015, 2017, 2019, 2021, 2023).
This data primarily comes from the election results resources on the Champaign County Clerk website. Election results resources from Champaign County include the number of ballots cast and the number of registered voters. The results are published frequently, following each election.
Data on the total eligible population for Champaign County was sourced from the U.S. Census Bureau, using American Community Survey (ACS) 1-Year Estimates for each year starting in 2005, when the American Community Survey was created. The estimates are released annually by the Census Bureau.
Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because this data is not available for Champaign County, the eligible voting population for 2020 is not included in this Indicator.
For interested data users, the 2020 ACS 1-Year Experimental data release includes datasets on Population by Sex and Population Under 18 Years by Age.
Sources: Champaign County Clerk Historical Election Data; U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using data.census.gov; (10 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using data.census.gov; (5 October 2023).; Champaign County Clerk Historical Election Data; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using data.census.gov; (7 October 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using data.census.gov; (8 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using data.census.gov; (8 June 2021).; Champaign County Clerk Election History; U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (13 May 2019).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (13 May 2019).; U.S. Census Bureau; American Community Survey, American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (6 March 2017).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (15 March 2016).; U.S. Census Bureau; American Community Survey, U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (15 March 2016).; U.S. Census Bureau; American Community Survey 2012 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (15 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (15 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (15 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (15 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (15 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (15 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (15 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table B05003; generated by CCRPC staff; using American FactFinder; (15 March 2016).