49 datasets found
  1. Provisional COVID-19 death counts, rates, and percent of total deaths, by...

    • catalog.data.gov
    • data.virginia.gov
    • +2more
    Updated Aug 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Provisional COVID-19 death counts, rates, and percent of total deaths, by jurisdiction of residence [Dataset]. https://catalog.data.gov/dataset/provisional-covid-19-death-counts-rates-and-percent-of-total-deaths-by-jurisdiction-of-res
    Explore at:
    Dataset updated
    Aug 30, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    This file contains COVID-19 death counts, death rates, and percent of total deaths by jurisdiction of residence. The data is grouped by different time periods including 3-month period, weekly, and total (cumulative since January 1, 2020). United States death counts and rates include the 50 states, plus the District of Columbia and New York City. New York state estimates exclude New York City. Puerto Rico is included in HHS Region 2 estimates. Deaths with confirmed or presumed COVID-19, coded to ICD–10 code U07.1. Number of deaths reported in this file are the total number of COVID-19 deaths received and coded as of the date of analysis and may not represent all deaths that occurred in that period. Counts of deaths occurring before or after the reporting period are not included in the file. Data during recent periods are incomplete because of the lag in time between when the death occurred and when the death certificate is completed, submitted to NCHS and processed for reporting purposes. This delay can range from 1 week to 8 weeks or more, depending on the jurisdiction and cause of death. Death counts should not be compared across states. Data timeliness varies by state. Some states report deaths on a daily basis, while other states report deaths weekly or monthly. The ten (10) United States Department of Health and Human Services (HHS) regions include the following jurisdictions. Region 1: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont; Region 2: New Jersey, New York, New York City, Puerto Rico; Region 3: Delaware, District of Columbia, Maryland, Pennsylvania, Virginia, West Virginia; Region 4: Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, Tennessee; Region 5: Illinois, Indiana, Michigan, Minnesota, Ohio, Wisconsin; Region 6: Arkansas, Louisiana, New Mexico, Oklahoma, Texas; Region 7: Iowa, Kansas, Missouri, Nebraska; Region 8: Colorado, Montana, North Dakota, South Dakota, Utah, Wyoming; Region 9: Arizona, California, Hawaii, Nevada; Region 10: Alaska, Idaho, Oregon, Washington. Rates were calculated using the population estimates for 2021, which are estimated as of July 1, 2021 based on the Blended Base produced by the US Census Bureau in lieu of the April 1, 2020 decennial population count. The Blended Base consists of the blend of Vintage 2020 postcensal population estimates, 2020 Demographic Analysis Estimates, and 2020 Census PL 94-171 Redistricting File (see https://www2.census.gov/programs-surveys/popest/technical-documentation/methodology/2020-2021/methods-statement-v2021.pdf). Rates are based on deaths occurring in the specified week/month and are age-adjusted to the 2000 standard population using the direct method (see https://www.cdc.gov/nchs/data/nvsr/nvsr70/nvsr70-08-508.pdf). These rates differ from annual age-adjusted rates, typically presented in NCHS publications based on a full year of data and annualized weekly/monthly age-adjusted rates which have been adjusted to allow comparison with annual rates. Annualization rates presents deaths per year per 100,000 population that would be expected in a year if the observed period specific (weekly/monthly) rate prevailed for a full year. Sub-national death counts between 1-9 are suppressed in accordance with NCHS data confidentiality standards. Rates based on death counts less than 20 are suppressed in accordance with NCHS standards of reliability as specified in NCHS Data Presentation Standards for Proportions (available from: https://www.cdc.gov/nchs/data/series/sr_02/sr02_175.pdf.).

  2. Leading causes of death, total population, by age group

    • www150.statcan.gc.ca
    • ouvert.canada.ca
    • +1more
    Updated Feb 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Leading causes of death, total population, by age group [Dataset]. http://doi.org/10.25318/1310039401-eng
    Explore at:
    Dataset updated
    Feb 19, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Rank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.

  3. Death Percentages By Age Group

    • kaggle.com
    Updated Mar 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Patrick O'Connor (2025). Death Percentages By Age Group [Dataset]. https://www.kaggle.com/datasets/wumanandpat/death-percentages-by-age-group/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 18, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Patrick O'Connor
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The United Nations Department of Economics and Social Affairs, as part of their World Population Prospects initiative, have collated 75 years worth of annual death statistics. They have setup a variety of age groups to monitor, and for given population group they have estimated the fraction of the deaths that fall in each of the age groups on an annual basis.

    The dataset breaks out the population along a variety of factors - by sex - by country - by region or sub-region - by income group - and so on

  4. T

    World Coronavirus COVID-19 Deaths

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Mar 9, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2020). World Coronavirus COVID-19 Deaths [Dataset]. https://tradingeconomics.com/world/coronavirus-deaths
    Explore at:
    excel, csv, xml, jsonAvailable download formats
    Dataset updated
    Mar 9, 2020
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 4, 2020 - May 17, 2023
    Area covered
    World, World
    Description

    The World Health Organization reported 6932591 Coronavirus Deaths since the epidemic began. In addition, countries reported 766440796 Coronavirus Cases. This dataset provides - World Coronavirus Deaths- actual values, historical data, forecast, chart, statistics, economic calendar and news.

  5. census-bureau-international

    • kaggle.com
    zip
    Updated May 6, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Google BigQuery (2020). census-bureau-international [Dataset]. https://www.kaggle.com/bigquery/census-bureau-international
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    May 6, 2020
    Dataset provided by
    BigQueryhttps://cloud.google.com/bigquery
    Authors
    Google BigQuery
    Description

    Context

    The United States Census Bureau’s international dataset provides estimates of country populations since 1950 and projections through 2050. Specifically, the dataset includes midyear population figures broken down by age and gender assignment at birth. Additionally, time-series data is provided for attributes including fertility rates, birth rates, death rates, and migration rates.

    Querying BigQuery tables

    You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.census_bureau_international.

    Sample Query 1

    What countries have the longest life expectancy? In this query, 2016 census information is retrieved by joining the mortality_life_expectancy and country_names_area tables for countries larger than 25,000 km2. Without the size constraint, Monaco is the top result with an average life expectancy of over 89 years!

    standardSQL

    SELECT age.country_name, age.life_expectancy, size.country_area FROM ( SELECT country_name, life_expectancy FROM bigquery-public-data.census_bureau_international.mortality_life_expectancy WHERE year = 2016) age INNER JOIN ( SELECT country_name, country_area FROM bigquery-public-data.census_bureau_international.country_names_area where country_area > 25000) size ON age.country_name = size.country_name ORDER BY 2 DESC /* Limit removed for Data Studio Visualization */ LIMIT 10

    Sample Query 2

    Which countries have the largest proportion of their population under 25? Over 40% of the world’s population is under 25 and greater than 50% of the world’s population is under 30! This query retrieves the countries with the largest proportion of young people by joining the age-specific population table with the midyear (total) population table.

    standardSQL

    SELECT age.country_name, SUM(age.population) AS under_25, pop.midyear_population AS total, ROUND((SUM(age.population) / pop.midyear_population) * 100,2) AS pct_under_25 FROM ( SELECT country_name, population, country_code FROM bigquery-public-data.census_bureau_international.midyear_population_agespecific WHERE year =2017 AND age < 25) age INNER JOIN ( SELECT midyear_population, country_code FROM bigquery-public-data.census_bureau_international.midyear_population WHERE year = 2017) pop ON age.country_code = pop.country_code GROUP BY 1, 3 ORDER BY 4 DESC /* Remove limit for visualization*/ LIMIT 10

    Sample Query 3

    The International Census dataset contains growth information in the form of birth rates, death rates, and migration rates. Net migration is the net number of migrants per 1,000 population, an important component of total population and one that often drives the work of the United Nations Refugee Agency. This query joins the growth rate table with the area table to retrieve 2017 data for countries greater than 500 km2.

    SELECT growth.country_name, growth.net_migration, CAST(area.country_area AS INT64) AS country_area FROM ( SELECT country_name, net_migration, country_code FROM bigquery-public-data.census_bureau_international.birth_death_growth_rates WHERE year = 2017) growth INNER JOIN ( SELECT country_area, country_code FROM bigquery-public-data.census_bureau_international.country_names_area

    Update frequency

    Historic (none)

    Dataset source

    United States Census Bureau

    Terms of use: This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.

    See the GCP Marketplace listing for more details and sample queries: https://console.cloud.google.com/marketplace/details/united-states-census-bureau/international-census-data

  6. Data from: Age-Adjusted Death Rates

    • kaggle.com
    Updated Jan 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Age-Adjusted Death Rates [Dataset]. https://www.kaggle.com/datasets/thedevastator/age-adjusted-death-rates/suggestions?status=pending
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 23, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    The Devastator
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Age-Adjusted Death Rates

    Death Rates and Life Expectancy in the United States, 2011-2013

    By Health [source]

    About this dataset

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    In order to use this dataset, start by selecting a particular set of variables to investigate. You can choose from Measure Names (e.g., Death Rates or Life Expectancy), Race (e.g., All Races), Sex (Male/Female) and Year (2011-2013). Once you have selected your desired variables, you can begin analyzing the data by looking at mortality rates and life expectancy averages amongst different populations in the United States over time.

    You may also wish to perform more detailed analyses such as identifying trends or examining correlations between features, regional disparities in mortality rates or changes in average life expectancies over time. If so, you can do so by creating line graphs plotted against one or more independent variables such as Race and Sex to see how demographics impact these statistics overall and on a yearly basis using the Year variable computed from July 1st 2010 estimates

    Research Ideas

    • Analyzing mortality and life expectancy trends among certain races and sexes over time.
    • Examining the effects of different socioeconomic factors on death rates and life expectancies.
    • Making predictions about future mortality rates and average life expectancies with machine learning algorithms

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: Open Database License (ODbL) v1.0 - You are free to: - Share - copy and redistribute the material in any medium or format. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices. - No Derivatives - If you remix, transform, or build upon the material, you may not distribute the modified material. - No additional restrictions - You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

    Columns

    File: rows.csv | Column name | Description | |:----------------------------|:----------------------------------------------------------------------| | Measure Names | The type of measure being reported. (String) | | Race | The race of the population being reported. (String) | | Sex | The gender of the population being reported. (String) | | Year | The year the data was collected. (Integer) | | Average Life Expectancy | The average life expectancy of the population being reported. (Float) | | Mortality | The mortality rate of the population being reported. (Float) |

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. If you use this dataset in your research, please credit Health.

  7. Deaths Involving COVID-19 by Vaccination Status

    • open.canada.ca
    • gimi9.com
    • +3more
    csv, docx, html, xlsx
    Updated Jul 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Ontario (2025). Deaths Involving COVID-19 by Vaccination Status [Dataset]. https://open.canada.ca/data/dataset/1375bb00-6454-4d3e-a723-4ae9e849d655
    Explore at:
    docx, csv, html, xlsxAvailable download formats
    Dataset updated
    Jul 30, 2025
    Dataset provided by
    Government of Ontariohttps://www.ontario.ca/
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Time period covered
    Mar 1, 2021 - Nov 12, 2024
    Description

    This dataset reports the daily reported number of the 7-day moving average rates of Deaths involving COVID-19 by vaccination status and by age group. Learn how the Government of Ontario is helping to keep Ontarians safe during the 2019 Novel Coronavirus outbreak. Effective November 14, 2024 this page will no longer be updated. Information about COVID-19 and other respiratory viruses is available on Public Health Ontario’s interactive respiratory virus tool: https://www.publichealthontario.ca/en/Data-and-Analysis/Infectious-Disease/Respiratory-Virus-Tool Data includes: * Date on which the death occurred * Age group * 7-day moving average of the last seven days of the death rate per 100,000 for those not fully vaccinated * 7-day moving average of the last seven days of the death rate per 100,000 for those fully vaccinated * 7-day moving average of the last seven days of the death rate per 100,000 for those vaccinated with at least one booster ##Additional notes As of June 16, all COVID-19 datasets will be updated weekly on Thursdays by 2pm. As of January 12, 2024, data from the date of January 1, 2024 onwards reflect updated population estimates. This update specifically impacts data for the 'not fully vaccinated' category. On November 30, 2023 the count of COVID-19 deaths was updated to include missing historical deaths from January 15, 2020 to March 31, 2023. CCM is a dynamic disease reporting system which allows ongoing update to data previously entered. As a result, data extracted from CCM represents a snapshot at the time of extraction and may differ from previous or subsequent results. Public Health Units continually clean up COVID-19 data, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes and current totals being different from previously reported cases and deaths. Observed trends over time should be interpreted with caution for the most recent period due to reporting and/or data entry lags. The data does not include vaccination data for people who did not provide consent for vaccination records to be entered into the provincial COVaxON system. This includes individual records as well as records from some Indigenous communities where those communities have not consented to including vaccination information in COVaxON. “Not fully vaccinated” category includes people with no vaccine and one dose of double-dose vaccine. “People with one dose of double-dose vaccine” category has a small and constantly changing number. The combination will stabilize the results. Spikes, negative numbers and other data anomalies: Due to ongoing data entry and data quality assurance activities in Case and Contact Management system (CCM) file, Public Health Units continually clean up COVID-19, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes, negative numbers and current totals being different from previously reported case and death counts. Public Health Units report cause of death in the CCM based on information available to them at the time of reporting and in accordance with definitions provided by Public Health Ontario. The medical certificate of death is the official record and the cause of death could be different. Deaths are defined per the outcome field in CCM marked as “Fatal”. Deaths in COVID-19 cases identified as unrelated to COVID-19 are not included in the Deaths involving COVID-19 reported. Rates for the most recent days are subject to reporting lags All data reflects totals from 8 p.m. the previous day. This dataset is subject to change.

  8. f

    Estimating the completeness of death registration: An empirical method

    • plos.figshare.com
    pdf
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tim Adair; Alan D. Lopez (2023). Estimating the completeness of death registration: An empirical method [Dataset]. http://doi.org/10.1371/journal.pone.0197047
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Tim Adair; Alan D. Lopez
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    IntroductionMany national and subnational governments need to routinely measure the completeness of death registration for monitoring and statistical purposes. Existing methods, such as death distribution and capture-recapture methods, have a number of limitations such as inaccuracy and complexity that prevent widespread application. This paper presents a novel empirical method to estimate completeness of death registration at the national and subnational level.MethodsRandom-effects models to predict the logit of death registration completeness were developed from 2,451 country-years in 110 countries from 1970–2015 using the Global Burden of Disease 2015 database. Predictors include the registered crude death rate, under-five mortality rate, population age structure and under-five death registration completeness. Models were developed separately for males, females and both sexes.FindingsAll variables are highly significant and reliably predict completeness of registration across a wide range of registered crude death rates (R-squared 0.85). Mean error is highest at medium levels of observed completeness. The models show quite close agreement between predicted and observed completeness for populations outside the dataset. There is high concordance with the Hybrid death distribution method in Brazilian states. Uncertainty in the under-five mortality rate, assessed using the dataset and in Colombian departmentos, has minimal impact on national level predicted completeness, but a larger effect at the subnational level.ConclusionsThe method demonstrates sufficient flexibility to predict a wide range of completeness levels at a given registered crude death rate. The method can be applied utilising data readily available at the subnational level, and can be used to assess completeness of deaths reported from health facilities, censuses and surveys. Its utility is diminished where the adult mortality rate is unusually high for a given under-five mortality rate. The method overcomes the considerable limitations of existing methods and has considerable potential for widespread application by national and subnational governments.

  9. d

    Johns Hopkins COVID-19 Case Tracker

    • data.world
    csv, zip
    Updated Aug 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Johns Hopkins COVID-19 Case Tracker [Dataset]. https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Aug 31, 2025
    Authors
    The Associated Press
    Time period covered
    Jan 22, 2020 - Mar 9, 2023
    Area covered
    Description

    Updates

    • Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.

    • April 9, 2020

      • The population estimate data for New York County, NY has been updated to include all five New York City counties (Kings County, Queens County, Bronx County, Richmond County and New York County). This has been done to match the Johns Hopkins COVID-19 data, which aggregates counts for the five New York City counties to New York County.
    • April 20, 2020

      • Johns Hopkins death totals in the US now include confirmed and probable deaths in accordance with CDC guidelines as of April 14. One significant result of this change was an increase of more than 3,700 deaths in the New York City count. This change will likely result in increases for death counts elsewhere as well. The AP does not alter the Johns Hopkins source data, so probable deaths are included in this dataset as well.
    • April 29, 2020

      • The AP is now providing timeseries data for counts of COVID-19 cases and deaths. The raw counts are provided here unaltered, along with a population column with Census ACS-5 estimates and calculated daily case and death rates per 100,000 people. Please read the updated caveats section for more information.
    • September 1st, 2020

      • Johns Hopkins is now providing counts for the five New York City counties individually.
    • February 12, 2021

      • The Ohio Department of Health recently announced that as many as 4,000 COVID-19 deaths may have been underreported through the state’s reporting system, and that the "daily reported death counts will be high for a two to three-day period."
      • Because deaths data will be anomalous for consecutive days, we have chosen to freeze Ohio's rolling average for daily deaths at the last valid measure until Johns Hopkins is able to back-distribute the data. The raw daily death counts, as reported by Johns Hopkins and including the backlogged death data, will still be present in the new_deaths column.
    • February 16, 2021

      - Johns Hopkins has reconciled Ohio's historical deaths data with the state.

      Overview

    The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.

    The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.

    This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.

    The AP is updating this dataset hourly at 45 minutes past the hour.

    To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

    Queries

    Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic

    Interactive

    The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.

    @(https://datawrapper.dwcdn.net/nRyaf/15/)

    Interactive Embed Code

    <iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
    

    Caveats

    • This data represents the number of cases and deaths reported by each state and has been collected by Johns Hopkins from a number of sources cited on their website.
    • In some cases, deaths or cases of people who've crossed state lines -- either to receive treatment or because they became sick and couldn't return home while traveling -- are reported in a state they aren't currently in, because of state reporting rules.
    • In some states, there are a number of cases not assigned to a specific county -- for those cases, the county name is "unassigned to a single county"
    • This data should be credited to Johns Hopkins University's COVID-19 tracking project. The AP is simply making it available here for ease of use for reporters and members.
    • Caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
    • Population estimates at the county level are drawn from 2014-18 5-year estimates from the American Community Survey.
    • The Urban/Rural classification scheme is from the Center for Disease Control and Preventions's National Center for Health Statistics. It puts each county into one of six categories -- from Large Central Metro to Non-Core -- according to population and other characteristics. More details about the classifications can be found here.

    Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here

    Attribution

    This data should be credited to Johns Hopkins University COVID-19 tracking project

  10. t

    Causes of death, by sex - Vdataset - LDM

    • service.tib.eu
    Updated Jan 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Causes of death, by sex - Vdataset - LDM [Dataset]. https://service.tib.eu/ldmservice/dataset/eurostat_xlagqajierwffbsknlconq
    Explore at:
    Dataset updated
    Jan 8, 2025
    Description

    Death rate of a population adjusted to a standard age distribution. As most causes of death vary significantly with people's age and sex, the use of standardised death rates improves comparability over time and between countries, as they aim at measuring death rates independently of different age structures of populations. The standardised death rates used here are calculated on the basis of a standard European population (defined by the World Health Organization). Detailed data for 65 causes of death are available in the database (under the heading 'Data').

  11. Indicator 16.1.2: Conflict-related death rate (civilians) by sex age and...

    • sdgs.amerigeoss.org
    Updated Aug 18, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN DESA Statistics Division (2020). Indicator 16.1.2: Conflict-related death rate (civilians) by sex age and cause of death (percent) [Dataset]. https://sdgs.amerigeoss.org/datasets/undesa::indicator-16-1-2-conflict-related-death-rate-civilians-by-sex-age-and-cause-of-death-percent/explore?showTable=true
    Explore at:
    Dataset updated
    Aug 18, 2020
    Dataset provided by
    United Nations Department of Economic and Social Affairshttps://www.un.org/en/desa
    Authors
    UN DESA Statistics Division
    Area covered
    Description

    Series Name: Conflict-related death rate (civilians) by sex age and cause of death (percent)Series Code: VC_DTH_TOCVRRelease Version: 2020.Q2.G.03 This dataset is the part of the Global SDG Indicator Database compiled through the UN System in preparation for the Secretary-General's annual report on Progress towards the Sustainable Development Goals.Indicator 16.1.2: Conflict-related deaths per 100,000 population, by sex, age and causeTarget 16.1: Significantly reduce all forms of violence and related death rates everywhereGoal 16: Promote peaceful and inclusive societies for sustainable development, provide access to justice for all and build effective, accountable and inclusive institutions at all levelsFor more information on the compilation methodology of this dataset, see https://unstats.un.org/sdgs/metadata/

  12. World Bank - Age and Population

    • hub.arcgis.com
    Updated Jan 11, 2012
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri U.S. Federal Datasets (2012). World Bank - Age and Population [Dataset]. https://hub.arcgis.com/datasets/5b39485c49c44e6b84af126478a4930f_2/data?geometry=-180%2C-89.982%2C180%2C62.747
    Explore at:
    Dataset updated
    Jan 11, 2012
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri U.S. Federal Datasets
    Area covered
    Description

    This map service, derived from World Bank data, shows various characteristics of the Health topic. The World Bank Group provides financing, state-of-the-art analysis, and policy advice to help countries expand access to quality, affordable health care; protects people from falling into poverty or worsening poverty due to illness; and promotes investments in all sectors that form the foundation of healthy societies.Age Dependency Ratio: Age dependency ratio is the ratio of dependents--people younger than 15 or older than 64--to the working-age population--those ages 15-64. Data are shown as the proportion of dependents per 100 working-age population. Data from 1960 – 2012.Age Dependency Ratio Old: Age dependency ratio, old, is the ratio of older dependents--people older than 64--to the working-age population--those ages 15-64. Data are shown as the proportion of dependents per 100 working-age population. Data from 1960 – 2012.Birth/Death Rate: Crude birth/death rate indicates the number of births/deaths occurring during the year, per
    1,000 population estimated at midyear. Subtracting the crude death rate from the crude birth rate provides the rate of natural increase, which is equal to the rate of population change in the absence of migration. Data spans from 1960 – 2008.Total Fertility: Total fertility rate represents the number of children that would be born to a woman if she were to live to the end of her childbearing years and bear children in accordance with current age-specific fertility rates. Data shown is for 1960 - 2008.Population Growth: Annual population growth rate for year t is the exponential rate of growth of midyear population from year t-1 to t, expressed as a percentage.
    Population is based on the de facto definition of population, which
    counts all residents regardless of legal status or citizenship--except
    for refugees not permanently settled in the country of asylum, who are
    generally considered part of the population of the country of origin. Data spans from 1960 – 2009.Life Expectancy: Life expectancy at birth indicates the number of years a newborn infant
    would live if prevailing patterns of mortality at the time of its birth were to stay the same throughout its life. Data spans from 1960 – 2008.Population Female: Female population is the percentage of the population that is female. Population is based on the de facto definition of population. Data from 1960 – 2009.For more information, please visit: World Bank Open Data. _Other International User Community content that may interest you World Bank World Bank Age World Bank Health

  13. g

    Death due to alcoholic abuse, by sex | gimi9.com

    • gimi9.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Death due to alcoholic abuse, by sex | gimi9.com [Dataset]. https://gimi9.com/dataset/eu_rep2namroxi8l8deyq15w
    Explore at:
    Description

    Death rate of a population adjusted to a standard age distribution. As most causes of death vary significantly with people's age and sex, the use of standardised death rates improves comparability over time and between countries, as they aim at measuring death rates independently of different age structures of populations. The standardised death rates used here are calculated on the basis of a standard European population (defined by the World Health Organization). Detailed data for 65 causes of death are available in the database (under the heading 'Data').

  14. t

    Death due to diseases of the nervous system, by sex

    • service.tib.eu
    • gimi9.com
    Updated Jan 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Death due to diseases of the nervous system, by sex [Dataset]. https://service.tib.eu/ldmservice/dataset/eurostat_ntrg1rweql6pvzx55dcdsw
    Explore at:
    Dataset updated
    Jan 8, 2025
    Description

    Death rate of a population adjusted to a standard age distribution. As most causes of death vary significantly with people's age and sex, the use of standardised death rates improves comparability over time and between countries, as they aim at measuring death rates independently of different age structures of populations. The standardised death rates used here are calculated on the basis of a standard European population (defined by the World Health Organization). Detailed data for 65 causes of death are available in the database (under the heading 'Data').

  15. t

    Death due to accidents, by sex

    • service.tib.eu
    • gimi9.com
    Updated Jan 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Death due to accidents, by sex [Dataset]. https://service.tib.eu/ldmservice/dataset/eurostat_igqsxywbiamow67p7a1edq
    Explore at:
    Dataset updated
    Jan 8, 2025
    Description

    Death rate of a population adjusted to a standard age distribution. As most causes of death vary significantly with people's age and sex, the use of standardised death rates improves comparability over time and between countries, as they aim at measuring death rates independently of different age structures of populations. The standardised death rates used here are calculated on the basis of a standard European population (defined by the World Health Organization). Detailed data for 65 causes of death are available in the database (under the heading 'Data').

  16. f

    Data_Sheet_2_Why Does Child Mortality Decrease With Age? Modeling the...

    • frontiersin.figshare.com
    bin
    Updated Jun 4, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Josef Dolejs; Helena Homolková (2023). Data_Sheet_2_Why Does Child Mortality Decrease With Age? Modeling the Age-Associated Decrease in Mortality Rate Using WHO Metadata From 14 European Countries.docx [Dataset]. http://doi.org/10.3389/fped.2020.527811.s003
    Explore at:
    binAvailable download formats
    Dataset updated
    Jun 4, 2023
    Dataset provided by
    Frontiers
    Authors
    Josef Dolejs; Helena Homolková
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Background: Mortality rate rapidly decreases with age after birth, and, simultaneously, the spectrum of death causes show remarkable changes with age. This study analyzed age-associated decreases in mortality rate from diseases of all main chapters of the 10th revision of the International Classification of Diseases.Methods: The number of deaths was extracted from the mortality database of the World Health Organization. As zero cases could be ascertained for a specific age category, the Halley method was used to calculate the mortality rates in all possible calendar years and in all countries combined.Results: All causes mortality from the 1st day of life to the age of 10 years can be represented by an inverse proportion model with a single parameter. High coefficients of determination were observed for total mortality in all populations (arithmetic mean = 0.9942 and standard deviation = 0.0039).Slower or no mortality decrease with age was detected in the 1st year of life, while the inverse proportion method was valid for the age range [1, 10) years in most of all main chapters with three exceptions. The decrease was faster for the chapter “Certain conditions originating in the perinatal period” (XVI).The inverse proportion was valid already from the 1st day for the chapter “Congenital malformations, deformations and chromosomal abnormalities” (XVII).The shape of the mortality decrease was very different for the chapter “Neoplasms” (II) and the rates of mortality from neoplasms were age-independent in the age range [1, 10) years in all populations.Conclusion: The theory of congenital individual risks of death is presented and can explain the results. If it is valid, latent congenital impairments may be present among all cases of death that are not related to congenital impairments. All results are based on published data, and the data are presented as a supplement.

  17. f

    Cancer Mortality by Country of Birth, Sex, and Socioeconomic Position in...

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    doc
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gholamreza Abdoli; Matteo Bottai; Tahereh Moradi (2023). Cancer Mortality by Country of Birth, Sex, and Socioeconomic Position in Sweden, 1961–2009 [Dataset]. http://doi.org/10.1371/journal.pone.0093174
    Explore at:
    docAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Gholamreza Abdoli; Matteo Bottai; Tahereh Moradi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Sweden
    Description

    In 2010, cancer deaths accounted for more than 15% of all deaths worldwide, and this fraction is estimated to rise in the coming years. Increased cancer mortality has been observed in immigrant populations, but a comprehensive analysis by country of birth has not been conducted. We followed all individuals living in Sweden between 1961 and 2009 (7,109,327 men and 6,958,714 women), and calculated crude cancer mortality rates and age-standardized rates (ASRs) using the world population for standardization. We observed a downward trend in all-site ASRs over the past two decades in men regardless of country of birth but no such trend was found in women. All-site cancer mortality increased with decreasing levels of education regardless of sex and country of birth (p for trend

  18. t

    Death due to pneumonia, by sex - Vdataset - LDM

    • service.tib.eu
    Updated Jan 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Death due to pneumonia, by sex - Vdataset - LDM [Dataset]. https://service.tib.eu/ldmservice/dataset/eurostat_ym2byvido2jkewnoyc7uw
    Explore at:
    Dataset updated
    Jan 8, 2025
    Description

    Death rate of a population adjusted to a standard age distribution. As most causes of death vary significantly with people's age and sex, the use of standardised death rates improves comparability over time and between countries, as they aim at measuring death rates independently of different age structures of populations. The standardised death rates used here are calculated on the basis of a standard European population (defined by the World Health Organization). Detailed data for 65 causes of death are available in the database (under the heading 'Data').

  19. t

    Death due to chronic liver disease, by sex - Vdataset - LDM

    • service.tib.eu
    Updated Jan 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Death due to chronic liver disease, by sex - Vdataset - LDM [Dataset]. https://service.tib.eu/ldmservice/dataset/eurostat_ncmlerenckesacbwi1zvjw
    Explore at:
    Dataset updated
    Jan 8, 2025
    Description

    Death rate of a population adjusted to a standard age distribution. As most causes of death vary significantly with people's age and sex, the use of standardised death rates improves comparability over time and between countries, as they aim at measuring death rates independently of different age structures of populations. The standardised death rates used here are calculated on the basis of a standard European population (defined by the World Health Organization). Detailed data for 65 causes of death are available in the database (under the heading 'Data').

  20. t

    Death due to diabetes mellitus, by sex

    • service.tib.eu
    • gimi9.com
    • +1more
    Updated Jan 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Death due to diabetes mellitus, by sex [Dataset]. https://service.tib.eu/ldmservice/dataset/eurostat_te7qf3nqsnlbw6kzd2cqsq
    Explore at:
    Dataset updated
    Jan 8, 2025
    Description

    Death rate of a population adjusted to a standard age distribution. As most causes of death vary significantly with people's age and sex, the use of standardised death rates improves comparability over time and between countries, as they aim at measuring death rates independently of different age structures of populations. The standardised death rates used here are calculated on the basis of a standard European population (defined by the World Health Organization). Detailed data for 65 causes of death are available in the database (under the heading 'Data').

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Centers for Disease Control and Prevention (2025). Provisional COVID-19 death counts, rates, and percent of total deaths, by jurisdiction of residence [Dataset]. https://catalog.data.gov/dataset/provisional-covid-19-death-counts-rates-and-percent-of-total-deaths-by-jurisdiction-of-res
Organization logo

Provisional COVID-19 death counts, rates, and percent of total deaths, by jurisdiction of residence

Explore at:
4 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Aug 30, 2025
Dataset provided by
Centers for Disease Control and Preventionhttp://www.cdc.gov/
Description

This file contains COVID-19 death counts, death rates, and percent of total deaths by jurisdiction of residence. The data is grouped by different time periods including 3-month period, weekly, and total (cumulative since January 1, 2020). United States death counts and rates include the 50 states, plus the District of Columbia and New York City. New York state estimates exclude New York City. Puerto Rico is included in HHS Region 2 estimates. Deaths with confirmed or presumed COVID-19, coded to ICD–10 code U07.1. Number of deaths reported in this file are the total number of COVID-19 deaths received and coded as of the date of analysis and may not represent all deaths that occurred in that period. Counts of deaths occurring before or after the reporting period are not included in the file. Data during recent periods are incomplete because of the lag in time between when the death occurred and when the death certificate is completed, submitted to NCHS and processed for reporting purposes. This delay can range from 1 week to 8 weeks or more, depending on the jurisdiction and cause of death. Death counts should not be compared across states. Data timeliness varies by state. Some states report deaths on a daily basis, while other states report deaths weekly or monthly. The ten (10) United States Department of Health and Human Services (HHS) regions include the following jurisdictions. Region 1: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont; Region 2: New Jersey, New York, New York City, Puerto Rico; Region 3: Delaware, District of Columbia, Maryland, Pennsylvania, Virginia, West Virginia; Region 4: Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, Tennessee; Region 5: Illinois, Indiana, Michigan, Minnesota, Ohio, Wisconsin; Region 6: Arkansas, Louisiana, New Mexico, Oklahoma, Texas; Region 7: Iowa, Kansas, Missouri, Nebraska; Region 8: Colorado, Montana, North Dakota, South Dakota, Utah, Wyoming; Region 9: Arizona, California, Hawaii, Nevada; Region 10: Alaska, Idaho, Oregon, Washington. Rates were calculated using the population estimates for 2021, which are estimated as of July 1, 2021 based on the Blended Base produced by the US Census Bureau in lieu of the April 1, 2020 decennial population count. The Blended Base consists of the blend of Vintage 2020 postcensal population estimates, 2020 Demographic Analysis Estimates, and 2020 Census PL 94-171 Redistricting File (see https://www2.census.gov/programs-surveys/popest/technical-documentation/methodology/2020-2021/methods-statement-v2021.pdf). Rates are based on deaths occurring in the specified week/month and are age-adjusted to the 2000 standard population using the direct method (see https://www.cdc.gov/nchs/data/nvsr/nvsr70/nvsr70-08-508.pdf). These rates differ from annual age-adjusted rates, typically presented in NCHS publications based on a full year of data and annualized weekly/monthly age-adjusted rates which have been adjusted to allow comparison with annual rates. Annualization rates presents deaths per year per 100,000 population that would be expected in a year if the observed period specific (weekly/monthly) rate prevailed for a full year. Sub-national death counts between 1-9 are suppressed in accordance with NCHS data confidentiality standards. Rates based on death counts less than 20 are suppressed in accordance with NCHS standards of reliability as specified in NCHS Data Presentation Standards for Proportions (available from: https://www.cdc.gov/nchs/data/series/sr_02/sr02_175.pdf.).

Search
Clear search
Close search
Google apps
Main menu