16 datasets found
  1. F

    All Employees, Federal

    • fred.stlouisfed.org
    json
    Updated Aug 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). All Employees, Federal [Dataset]. https://fred.stlouisfed.org/series/CES9091000001
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Aug 1, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for All Employees, Federal (CES9091000001) from Jan 1939 to Jul 2025 about establishment survey, federal, government, employment, and USA.

  2. T

    United States Government Payrolls

    • tradingeconomics.com
    • tr.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Mar 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Government Payrolls [Dataset]. https://tradingeconomics.com/united-states/government-payrolls
    Explore at:
    xml, json, excel, csvAvailable download formats
    Dataset updated
    Mar 15, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Feb 28, 1939 - Jul 31, 2025
    Area covered
    United States
    Description

    Government Payrolls in the United States decreased by 10 thousand in July of 2025. This dataset provides the latest reported value for - United States Government Payrolls - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  3. N

    Federal Way, WA annual median income by work experience and sex dataset:...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Federal Way, WA annual median income by work experience and sex dataset: Aged 15+, 2010-2023 (in 2023 inflation-adjusted dollars) // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/federal-way-wa-income-by-gender/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Federal Way, Washington
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates. The dataset covers the years 2010 to 2023, representing 14 years of data. To analyze income differences between genders (male and female), we conducted an initial data analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series (R-CPI-U-RS) based on current methodologies. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Federal Way. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.

    Key observations: Insights from 2023

    Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Federal Way, the median income for all workers aged 15 years and older, regardless of work hours, was $49,179 for males and $34,280 for females.

    These income figures indicate a substantial gender-based pay disparity, showcasing a gap of approximately 30% between the median incomes of males and females in Federal Way. With women, regardless of work hours, earning 70 cents to each dollar earned by men, this income disparity reveals a concerning trend toward wage inequality that demands attention in thecity of Federal Way.

    - Full-time workers, aged 15 years and older: In Federal Way, among full-time, year-round workers aged 15 years and older, males earned a median income of $64,318, while females earned $58,010, resulting in a 10% gender pay gap among full-time workers. This illustrates that women earn 90 cents for each dollar earned by men in full-time positions. While this gap shows a trend where women are inching closer to wage parity with men, it also exhibits a noticeable income difference for women working full-time in the city of Federal Way.

    Interestingly, when analyzing income across all roles, including non-full-time employment, the gender pay gap percentage was higher for women compared to men. It appears that full-time employment presents a more favorable income scenario for women compared to other employment patterns in Federal Way.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Gender classifications include:

    • Male
    • Female

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Variables / Data Columns

    • Year: This column presents the data year. Expected values are 2010 to 2023
    • Male Total Income: Annual median income, for males regardless of work hours
    • Male FT Income: Annual median income, for males working full time, year-round
    • Male PT Income: Annual median income, for males working part time
    • Female Total Income: Annual median income, for females regardless of work hours
    • Female FT Income: Annual median income, for females working full time, year-round
    • Female PT Income: Annual median income, for females working part time

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Federal Way median household income by race. You can refer the same here

  4. T

    United States Unemployment Rate

    • tradingeconomics.com
    • pt.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jul 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Unemployment Rate [Dataset]. https://tradingeconomics.com/united-states/unemployment-rate
    Explore at:
    excel, xml, csv, jsonAvailable download formats
    Dataset updated
    Jul 3, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1948 - Jul 31, 2025
    Area covered
    United States
    Description

    Unemployment Rate in the United States increased to 4.20 percent in July from 4.10 percent in June of 2025. This dataset provides the latest reported value for - United States Unemployment Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  5. Employment by industry, annual

    • www150.statcan.gc.ca
    • open.canada.ca
    • +2more
    Updated Mar 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Employment by industry, annual [Dataset]. http://doi.org/10.25318/1410020201-eng
    Explore at:
    Dataset updated
    Mar 27, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Government of Canadahttp://www.gg.ca/
    Area covered
    Canada
    Description

    Number of employees by North American Industry Classification System (NAICS) and type of employee, last 5 years.

  6. U

    United States US: Total Business Enterprise R&D Personnel: Per Thousand...

    • ceicdata.com
    Updated Mar 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2023). United States US: Total Business Enterprise R&D Personnel: Per Thousand Employment In Industry [Dataset]. https://www.ceicdata.com/en/united-states/number-of-researchers-and-personnel-on-research-and-development-oecd-member-annual/us-total-business-enterprise-rd-personnel-per-thousand-employment-in-industry
    Explore at:
    Dataset updated
    Mar 15, 2023
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2011 - Dec 1, 2020
    Area covered
    United States
    Description

    United States US: Total Business Enterprise R&D Personnel: Per Thousand Employment In Industry data was reported at 17.169 Per 1000 in 2020. This records an increase from the previous number of 15.152 Per 1000 for 2019. United States US: Total Business Enterprise R&D Personnel: Per Thousand Employment In Industry data is updated yearly, averaging 13.282 Per 1000 from Dec 2011 (Median) to 2020, with 10 observations. The data reached an all-time high of 17.169 Per 1000 in 2020 and a record low of 12.478 Per 1000 in 2012. United States US: Total Business Enterprise R&D Personnel: Per Thousand Employment In Industry data remains active status in CEIC and is reported by Organisation for Economic Co-operation and Development. The data is categorized under Global Database’s United States – Table US.OECD.MSTI: Number of Researchers and Personnel on Research and Development: OECD Member: Annual.

    For the UnitedStates, in the business sector, the funds from the rest of the world previously included in the business-financed BERD, are available separately from 2008.
    From 2006 onwards, GOVERD includes state government intramural performance (most of which being financed by the federal government and state government own funds). From 2016 onwards, PNPERD data are based on a new R&D performer survey. In the higher education sector all fields of SSH are included from 2003 onwards.
    Following a survey of federally-funded research and development centers (FFRDCs) in 2005, it was concluded that FFRDC R&D belongs in the government sector - rather than the sector of the FFRDC administrator, as had been reported in the past. R&D expenditures by FFRDCs were reclassified from the other three R&D performing sectors to the Government sector; previously published data were revised accordingly.
    Between 2003 and 2004, the method used to classify data by industry has been revised. This particularly affects the ISIC category 'wholesale trade' and consequently the BERD for total services. U.S. R&D data are generally comparable, but there are some areas of underestimation:i) Up to 2008, Government sector R&D performance covers only federal government activities.
    That by State and local government establishments is excluded;
    ii) Except for the Government and the Business Enterprise sectors, the R&D data exclude most capital expenditures.
    For the Business Enterprise sector, depreciation is reported in place of gross capital expenditures up to 2014. Higher education (and national total) data were revised back to 1998 due to an improved methodology that corrects for double-counting of R&D funds passed between institutions.Breakdown by type of R&D (basic research, applied research, etc.) was also revised back to 1998 in the business enterprise and higher education sectors due to improved estimation procedures.The methodology for estimating researchers was changed as of 1985.
    In the Government, Higher Education and PNP sectors the data since then refer to employed doctoral scientists and engineers who report their primary work activity as research, development or the management of R&D, plus, for the Higher Education sector, the number of full-time equivalent graduate students with research assistantships averaging an estimated 50 % of their time engaged in R&D activities.
    As of 1985 researchers in the Government sector exclude military personnel. As of 1987, Higher education R&D personnel also include those who report their primary work activity as design.Due to lack of official data for the different employment sectors, the total researchers figure is an OECD estimate up to 2019. Comprehensive reporting of R&D personnel statistics by the United States has resumed with records available since 2020, reflecting the addition of official figures for the number of researchers and total R&D personnel for the higher education sector and the Private non-profit sector; as well as the number of researchers for the government sector.
    The new data revise downwards previous OECD estimates as the OECD extrapolation methods drawing on historical US data, required to produce a consistent OECD aggregate, appear to have previously overestimated the growth in the number of researchers in the higher education sector.Pre-production development is excluded from Defence GBARD (in accordance with the Frascati Manual) as of 2000.
    2009 GBARD data also includes the one time incremental R&D funding legislated in the American Recovery and Reinvestment Act of 2009. Beginning with the 2000 GBARD data, budgets for capital expenditure - 'R&D plant' in national terminology - are included. GBARD data for earlier years relate to budgets for current costs only.
    ;

    Definition of MSTI variables 'Value Added of Industry' and 'Industrial Employment':

    R&D data are typically expressed as a percentage of GDP to allow cross-country comparisons. When compiling such indicators for the business enterprise sector, one may wish to exclude, from GDP measures, economic activities for which the Business R&D (BERD) is null or negligible by definition. By doing so, the adjusted denominator (GDP, or Value Added, excluding non-relevant industries) better correspond to the numerator (BERD) with which it is compared to.

    The MSTI variable 'Value added in industry' is used to this end:

    It is calculated as the total Gross Value Added (GVA) excluding 'real estate activities' (ISIC rev.4 68) where the 'imputed rent of owner-occupied dwellings', specific to the framework of the System of National Accounts, represents a significant share of total GVA and has no R&D counterpart. Moreover, the R&D performed by the community, social and personal services is mainly driven by R&D performers other than businesses.

    Consequently, the following service industries are also excluded: ISIC rev.4 84 to 88 and 97 to 98. GVA data are presented at basic prices except for the People's Republic of China, Japan and New Zealand (expressed at producers' prices).In the same way, some indicators on R&D personnel in the business sector are expressed as a percentage of industrial employment. The latter corresponds to total employment excluding ISIC rev.4 68, 84 to 88 and 97 to 98.

  7. Percentage of workforce laid off because of COVID-19, by business...

    • open.canada.ca
    • data.urbandatacentre.ca
    • +3more
    csv, html, xml
    Updated May 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2025). Percentage of workforce laid off because of COVID-19, by business characteristics [Dataset]. https://open.canada.ca/data/en/dataset/4c6d8b07-af8b-46fb-8445-55f4dea10d36
    Explore at:
    xml, csv, htmlAvailable download formats
    Dataset updated
    May 26, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Percentage of workforce laid off because of COVID-19, by North American Industry Classification System (NAICS) code, business employment size, type of business and majority ownership.

  8. T

    United States Government Spending To GDP

    • tradingeconomics.com
    • pl.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, United States Government Spending To GDP [Dataset]. https://tradingeconomics.com/united-states/government-spending-to-gdp
    Explore at:
    excel, xml, csv, jsonAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1900 - Dec 31, 2024
    Area covered
    United States
    Description

    Government spending in the United States was last recorded at 39.7 percent of GDP in 2024 . This dataset provides - United States Government Spending To Gdp- actual values, historical data, forecast, chart, statistics, economic calendar and news.

  9. w

    Fire statistics data tables

    • gov.uk
    • s3.amazonaws.com
    Updated Jul 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ministry of Housing, Communities and Local Government (2025). Fire statistics data tables [Dataset]. https://www.gov.uk/government/statistical-data-sets/fire-statistics-data-tables
    Explore at:
    Dataset updated
    Jul 10, 2025
    Dataset provided by
    GOV.UK
    Authors
    Ministry of Housing, Communities and Local Government
    Description

    On 1 April 2025 responsibility for fire and rescue transferred from the Home Office to the Ministry of Housing, Communities and Local Government.

    This information covers fires, false alarms and other incidents attended by fire crews, and the statistics include the numbers of incidents, fires, fatalities and casualties as well as information on response times to fires. The Ministry of Housing, Communities and Local Government (MHCLG) also collect information on the workforce, fire prevention work, health and safety and firefighter pensions. All data tables on fire statistics are below.

    MHCLG has responsibility for fire services in England. The vast majority of data tables produced by the Ministry of Housing, Communities and Local Government are for England but some (0101, 0103, 0201, 0501, 1401) tables are for Great Britain split by nation. In the past the Department for Communities and Local Government (who previously had responsibility for fire services in England) produced data tables for Great Britain and at times the UK. Similar information for devolved administrations are available at https://www.firescotland.gov.uk/about/statistics/" class="govuk-link">Scotland: Fire and Rescue Statistics, https://statswales.gov.wales/Catalogue/Community-Safety-and-Social-Inclusion/Community-Safety" class="govuk-link">Wales: Community safety and https://www.nifrs.org/home/about-us/publications/" class="govuk-link">Northern Ireland: Fire and Rescue Statistics.

    If you use assistive technology (for example, a screen reader) and need a version of any of these documents in a more accessible format, please email alternativeformats@communities.gov.uk. Please tell us what format you need. It will help us if you say what assistive technology you use.

    Related content

    Fire statistics guidance
    Fire statistics incident level datasets

    Incidents attended

    https://assets.publishing.service.gov.uk/media/686d2aa22557debd867cbe14/FIRE0101.xlsx">FIRE0101: Incidents attended by fire and rescue services by nation and population (MS Excel Spreadsheet, 153 KB) Previous FIRE0101 tables

    https://assets.publishing.service.gov.uk/media/686d2ab52557debd867cbe15/FIRE0102.xlsx">FIRE0102: Incidents attended by fire and rescue services in England, by incident type and fire and rescue authority (MS Excel Spreadsheet, 2.19 MB) Previous FIRE0102 tables

    https://assets.publishing.service.gov.uk/media/686d2aca10d550c668de3c69/FIRE0103.xlsx">FIRE0103: Fires attended by fire and rescue services by nation and population (MS Excel Spreadsheet, 201 KB) Previous FIRE0103 tables

    https://assets.publishing.service.gov.uk/media/686d2ad92557debd867cbe16/FIRE0104.xlsx">FIRE0104: Fire false alarms by reason for false alarm, England (MS Excel Spreadsheet, 492 KB) Previous FIRE0104 tables

    Dwelling fires attended

    https://assets.publishing.service.gov.uk/media/686d2af42cfe301b5fb6789f/FIRE0201.xlsx">FIRE0201: Dwelling fires attended by fire and rescue services by motive, population and nation (MS Excel Spreadsheet, <span class="gem-c-attac

  10. N

    Federal Heights, CO annual median income by work experience and sex dataset:...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Federal Heights, CO annual median income by work experience and sex dataset: Aged 15+, 2010-2023 (in 2023 inflation-adjusted dollars) // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/a514b9f8-f4ce-11ef-8577-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Federal Heights, Colorado
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates. The dataset covers the years 2010 to 2023, representing 14 years of data. To analyze income differences between genders (male and female), we conducted an initial data analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series (R-CPI-U-RS) based on current methodologies. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Federal Heights. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.

    Key observations: Insights from 2023

    Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Federal Heights, the median income for all workers aged 15 years and older, regardless of work hours, was $39,520 for males and $27,343 for females.

    These income figures highlight a substantial gender-based income gap in Federal Heights. Women, regardless of work hours, earn 69 cents for each dollar earned by men. This significant gender pay gap, approximately 31%, underscores concerning gender-based income inequality in the city of Federal Heights.

    - Full-time workers, aged 15 years and older: In Federal Heights, among full-time, year-round workers aged 15 years and older, males earned a median income of $49,339, while females earned $42,046, resulting in a 15% gender pay gap among full-time workers. This illustrates that women earn 85 cents for each dollar earned by men in full-time positions. While this gap shows a trend where women are inching closer to wage parity with men, it also exhibits a noticeable income difference for women working full-time in the city of Federal Heights.

    Interestingly, when analyzing income across all roles, including non-full-time employment, the gender pay gap percentage was higher for women compared to men. It appears that full-time employment presents a more favorable income scenario for women compared to other employment patterns in Federal Heights.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Gender classifications include:

    • Male
    • Female

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Variables / Data Columns

    • Year: This column presents the data year. Expected values are 2010 to 2023
    • Male Total Income: Annual median income, for males regardless of work hours
    • Male FT Income: Annual median income, for males working full time, year-round
    • Male PT Income: Annual median income, for males working part time
    • Female Total Income: Annual median income, for females regardless of work hours
    • Female FT Income: Annual median income, for females working full time, year-round
    • Female PT Income: Annual median income, for females working part time

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Federal Heights median household income by race. You can refer the same here

  11. đŸ„ US Work-related injury

    • kaggle.com
    Updated Aug 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    mexwell (2023). đŸ„ US Work-related injury [Dataset]. https://www.kaggle.com/datasets/mexwell/us-work-related-injury
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 14, 2023
    Dataset provided by
    Kaggle
    Authors
    mexwell
    License

    http://www.gnu.org/licenses/old-licenses/gpl-2.0.en.htmlhttp://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html

    Area covered
    United States
    Description

    The Occupational Safety and Health Administration (OSHA) collected work-related injury and illness data from employers within specific industry and employment size specifications from 2002 through 2011. This data collection is called the OSHA Data Initiative or ODI. The data provided is used by OSHA to calculate establishment specific injury and illness incidence rates. This searchable database contains a table with the name, address, industry, and associated Total Case Rate (TCR), Days Away, Restricted, and Transfer (DART) case rate, and the Days Away From Work (DAFWII) case rate for the establishments that provided OSHA with valid data for calendar years 2002 through 2011. This data has been sampled down from its original size to 4%. In addition, the original dataset only has data from a small portion of all private sector establishments in the United States (80,000 out of 7.5 million total establishments). Therefore, these data are not representative of all businesses and general conclusions pertaining to all US business should not be overdrawn. Data quality: While OSHA takes multiple steps to ensure the data collected is accurate, problems and errors invariably exist for a small percentage of establishments. OSHA does not believe the data for the establishments with the highest rates on this file are accurate in absolute terms. Efforts were made during the collection cycle to correct submission errors, however some remain unresolved. It would be a mistake to say establishments with the highest rates on this file are the ‘most dangerous’ or ‘worst’ establishments in the Nation. Rate Calculation: An incidence rate of injuries and illnesses is computed from the following formula: (Number of injuries and illnesses X 200,000) / Employee hours worked = Incidence rate. The Total Case Rate includes all cases recorded on the OSHA Form 300 (Column G + Column H + Column I + Column J). The Days Away/Restriced/Transfer includes cases recorded in Column H + Column I. The Days Away includes cases recorded in Column H. For further information on injury and illness incidence rates, please visit the Bureau of Labor Statistics’ webpage at http://www.bls.gov/iif/osheval.htm State Participation: Not all state plan states participate in the ODI. The following states did not participate in the 2010 ODI (collection of CY 2009 data), establishment data is not available for these states: Alaska; Oregon; Puerto Rico; South Carolina; Washington; Wyoming.

    Data Dictionary

    KeyList of...CommentExample Value
    yearInteger$MISSING_FIELD2002
    address.cityString$MISSING_FIELD"Cherry Hill"
    address.stateString$MISSING_FIELD"NJ"
    address.streetString$MISSING_FIELD"100 Dobbs Ln Ste 102"
    address.zipInteger$MISSING_FIELD8034
    business.nameString$MISSING_FIELD"United States Cold Storage"
    business.second nameString$MISSING_FIELD"US Cold"
    industry.divisionString$MISSING_FIELD"Transportation, Communications, Electric, Gas, And Sanitary Services"
    industry.idInteger$MISSING_FIELD4222
    industry.labelString$MISSING_FIELD"Refrigerated Warehousing and Storage"
    industry.major_groupString$MISSING_FIELD"Motor Freight Transportation And Warehousing"
    statistics.days awayFloat$MISSING_FIELD0.0
    statistics.days away/restricted/transferFloat$MISSING_FIELD0.0
    statistics.total case rateFloat$MISSING_FIELD0.0

    Acknowlegement

    Original Data

    CORGIS Dataset Project

    Foto von National Cancer Institute auf Unsplash

  12. w

    Immigration system statistics data tables

    • gov.uk
    Updated May 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Home Office (2025). Immigration system statistics data tables [Dataset]. https://www.gov.uk/government/statistical-data-sets/immigration-system-statistics-data-tables
    Explore at:
    Dataset updated
    May 22, 2025
    Dataset provided by
    GOV.UK
    Authors
    Home Office
    Description

    List of the data tables as part of the Immigration System Statistics Home Office release. Summary and detailed data tables covering the immigration system, including out-of-country and in-country visas, asylum, detention, and returns.

    If you have any feedback, please email MigrationStatsEnquiries@homeoffice.gov.uk.

    Accessible file formats

    The Microsoft Excel .xlsx files may not be suitable for users of assistive technology.
    If you use assistive technology (such as a screen reader) and need a version of these documents in a more accessible format, please email MigrationStatsEnquiries@homeoffice.gov.uk
    Please tell us what format you need. It will help us if you say what assistive technology you use.

    Related content

    Immigration system statistics, year ending March 2025
    Immigration system statistics quarterly release
    Immigration system statistics user guide
    Publishing detailed data tables in migration statistics
    Policy and legislative changes affecting migration to the UK: timeline
    Immigration statistics data archives

    Passenger arrivals

    https://assets.publishing.service.gov.uk/media/68258d71aa3556876875ec80/passenger-arrivals-summary-mar-2025-tables.xlsx">Passenger arrivals summary tables, year ending March 2025 (MS Excel Spreadsheet, 66.5 KB)

    ‘Passengers refused entry at the border summary tables’ and ‘Passengers refused entry at the border detailed datasets’ have been discontinued. The latest published versions of these tables are from February 2025 and are available in the ‘Passenger refusals – release discontinued’ section. A similar data series, ‘Refused entry at port and subsequently departed’, is available within the Returns detailed and summary tables.

    Electronic travel authorisation

    https://assets.publishing.service.gov.uk/media/681e406753add7d476d8187f/electronic-travel-authorisation-datasets-mar-2025.xlsx">Electronic travel authorisation detailed datasets, year ending March 2025 (MS Excel Spreadsheet, 56.7 KB)
    ETA_D01: Applications for electronic travel authorisations, by nationality ETA_D02: Outcomes of applications for electronic travel authorisations, by nationality

    Entry clearance visas granted outside the UK

    https://assets.publishing.service.gov.uk/media/68247953b296b83ad5262ed7/visas-summary-mar-2025-tables.xlsx">Entry clearance visas summary tables, year ending March 2025 (MS Excel Spreadsheet, 113 KB)

    https://assets.publishing.service.gov.uk/media/682c4241010c5c28d1c7e820/entry-clearance-visa-outcomes-datasets-mar-2025.xlsx">Entry clearance visa applications and outcomes detailed datasets, year ending March 2025 (MS Excel Spreadsheet, 29.1 MB)
    Vis_D01: Entry clearance visa applications, by nationality and visa type
    Vis_D02: Outcomes of entry clearance visa applications, by nationality, visa type, and outcome

    Additional d

  13. e

    Economic Policy Questions (Form A) - Dataset - B2FIND

    • b2find.eudat.eu
    Updated Oct 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Economic Policy Questions (Form A) - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/3d6e8561-1d13-5a9f-aae7-ab8e630792ae
    Explore at:
    Dataset updated
    Oct 23, 2023
    Description

    Judgement on economic and social conditions in the USA in comparison to the FRG. Topics: Development of personal economic conditions and the standard of living in the FRG; reasons for the so-called economic miracle and share of the USA in the economic recovery; perceived linking of German economic development with other countries; attitude to a European Common Market; reasons for the high American standard of living; comparison between the USA and the FRG regarding working conditions, productivity, social security and job security of workers; image of Americans; knowledge of economic data of the USA; investment inclination; attitude to the competitive economy; assumed ownership of various branches of the economy in the FRG and in the USA, differences according to government and private; expected influence of the American government on the economy and vice versa; estimated proportion of members of the middle classes; image of American agriculture; judgement on the ideological influence of the USA on the FRG; sources of information about America; membership in clubs and organizations and offices taken on; party preference; self-assessment of social class; local residency. Demography: age (classified); marital status; religious denomination; school education; occupation; employment; household income; state; refugee status. Interviewer rating: social class and willingness of respondent to cooperate; number of contact attempts. Also encoded were: age of interviewer and sex of interviewer; city size. Beurteilung der wirtschaftlichen und sozialen VerhĂ€ltnisse in den USA im Vergleich zur BRD. Themen: Entwicklung der persönlichen wirtschaftlichen VerhĂ€ltnisse und des Lebensstandards in der BRD; GrĂŒnde fĂŒr das sogenannte Wirtschaftswunder und Anteil der USA am wirtschaftlichen Aufschwung; wahrgenommene VerknĂŒpfung der deutschen Wirtschaftsentwicklung mit anderen LĂ€ndern; Einstellung zu einem europĂ€ischen gemeinsamen Markt; GrĂŒnde fĂŒr den hohen amerikanischen Lebensstandard; Vergleich zwischen USA und BRD bezĂŒglich der Arbeitsbedingungen, ProduktivitĂ€t, LeistungsfĂ€higkeit, Sozialversicherung und Arbeitsplatzsicherheit von Arbeitern; Image von Amerikanern; Kenntnis wirtschaftlicher Daten der USA; Investitionsneigung; Einstellung zur Wettbewerbswirtschaft; vermutete Eignerschaft verschiedener Wirtschaftszweig in der BRD und in den USA, unterschieden nach staatlich und privat; vermuteter Einfluß der amerikanischen Regierung auf die Wirtschaft und umgekehrt; geschĂ€tzter Anteil von Zugehörigen zum Mittelstand; Image der amerikanischen Landwirtschaft; Beurteilung des ideologischen Einflusses der USA auf die BRD; Informationsquellen ĂŒber Amerika; Mitgliedschaft in Vereinen und Organisationen und ĂŒbernommene Ämter; ParteiprĂ€ferenz; SelbsteinschĂ€tzung der Schichtzugehörigkeit; OrtsansĂ€ssigkeit. Demographie: Alter (klassiert); Familienstand; Konfession; Schulbildung; Beruf; BerufstĂ€tigkeit; Haushaltseinkommen; Bundesland; FlĂŒchtlingsstatus. Interviewerrating: Schichtzugehörigkeit und Kooperationsbereitschaft des Befragten; Anzahl der Kontaktversuche. ZusĂ€tzlich verkodet wurden: Intervieweralter und Interviewergeschlecht; OrtsgrĂ¶ĂŸe.

  14. Employees working overtime (weekly) by industry, annual

    • www150.statcan.gc.ca
    • open.canada.ca
    • +2more
    Updated Jan 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Employees working overtime (weekly) by industry, annual [Dataset]. http://doi.org/10.25318/1410007601-eng
    Explore at:
    Dataset updated
    Jan 27, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Government of Canadahttp://www.gg.ca/
    Area covered
    Canada
    Description

    Number of employees working overtime (weekly) and average overtime hours by North American Industry Classification System (NAICS), gender and age group, last 5 years.

  15. S

    Citywide Payroll Data (Fiscal Year)

    • data.ny.gov
    • data.cityofnewyork.us
    • +2more
    application/rdfxml +5
    Updated Oct 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of Payroll Administration (OPA) (2024). Citywide Payroll Data (Fiscal Year) [Dataset]. https://data.ny.gov/City-Government/Citywide-Payroll-Data-Fiscal-Year-/k397-673e/about
    Explore at:
    application/rssxml, csv, xml, application/rdfxml, tsv, jsonAvailable download formats
    Dataset updated
    Oct 30, 2024
    Dataset authored and provided by
    Office of Payroll Administration (OPA)
    Description

    Data is collected because of public interest in how the City’s budget is being spent on salary and overtime pay for all municipal employees. Data is input into the City's Personnel Management System (“PMS”) by the respective user Agencies. Each record represents the following statistics for every city employee: Agency, Last Name, First Name, Middle Initial, Agency Start Date, Work Location Borough, Job Title Description, Leave Status as of the close of the FY (June 30th), Base Salary, Pay Basis, Regular Hours Paid, Regular Gross Paid, Overtime Hours worked, Total Overtime Paid, and Total Other Compensation (i.e. lump sum and/or retro payments). This data can be used to analyze how the City's financial resources are allocated and how much of the City's budget is being devoted to overtime. The reader of this data should be aware that increments of salary increases received over the course of any one fiscal year will not be reflected. All that is captured, is the employee's final base and gross salary at the end of the fiscal year. In very limited cases, a check replacement and subsequent refund may reflect both the original check as well as the re-issued check in employee pay totals.

    NOTE 1: To further improve the visibility into the number of employee OT hours worked, beginning with the FY 2023 report, an updated methodology will be used which will eliminate redundant reporting of OT hours in some specific instances. In the previous calculation, hours associated with both overtime pay as well as an accompanying overtime “companion code” pay were included in the employee total even though they represented pay for the same period of time. With the updated methodology, the dollars shown on the Open Data site will continue to be inclusive of both types of overtime, but the OT hours will now reflect a singular block of time, which will result in a more representative total of employee OT hours worked. The updated methodology will primarily impact the OT hours associated with City employees in uniformed civil service titles. The updated methodology will be applied to the Open Data posting for Fiscal Year 2023 and cannot be applied to prior postings and, as a result, the reader of this data should not compare OT hours prior to the 2023 report against OT hours published starting Fiscal Year 2023. The reader of this data may continue to compare OT dollars across all published Fiscal Years on Open Data.
    NOTE 2: As a part of FISA-OPA’s routine process for reviewing and releasing Citywide Payroll Data, data for some agencies (specifically NYC Police Department (NYPD) and the District Attorneys’ Offices (Manhattan, Kings, Queens, Richmond, Bronx, and Special Narcotics)) have been redacted since they are exempt from disclosure pursuant to the Freedom of Information Law, POL § 87(2)(f), on the ground that disclosure of the information could endanger the life and safety of the public servants listed thereon. They are further exempt from disclosure pursuant to POL § 87(2)(e)(iii), on the ground that any release of the information would identify confidential sources or disclose confidential information relating to a criminal investigation, and POL § 87(2)(e)(iv), on the ground that disclosure would reveal non-routine criminal investigative techniques or procedures. Some of these redactions will appear as XXX in the name columns.

  16. Percentage of workforce teleworking or working remotely, and percentage of...

    • ouvert.canada.ca
    • www150.statcan.gc.ca
    • +1more
    csv, html, xml
    Updated May 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2025). Percentage of workforce teleworking or working remotely, and percentage of workforce expected to continue teleworking or working remotely after the pandemic, by business characteristics [Dataset]. https://ouvert.canada.ca/data/dataset/9909c57f-b84e-4cc9-9255-3d526f60ef4d
    Explore at:
    html, xml, csvAvailable download formats
    Dataset updated
    May 26, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Percentage of workforce teleworking or working remotely prior to February 1, 2020, on May 29, 2020, during the COVID-19 pandemic, and percentage of workforce expected to continue teleworking or working remotely after the COVID-19 pandemic, by North American Industry Classification System (NAICS), business employment size, type of business, business activity and majority ownership.

  17. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2025). All Employees, Federal [Dataset]. https://fred.stlouisfed.org/series/CES9091000001

All Employees, Federal

CES9091000001

Explore at:
30 scholarly articles cite this dataset (View in Google Scholar)
jsonAvailable download formats
Dataset updated
Aug 1, 2025
License

https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

Description

Graph and download economic data for All Employees, Federal (CES9091000001) from Jan 1939 to Jul 2025 about establishment survey, federal, government, employment, and USA.

Search
Clear search
Close search
Google apps
Main menu