Facebook
TwitterIn the first quarter of 2025, almost ********** of the total wealth in the United States was owned by the top 10 percent of earners. In comparison, the lowest ** percent of earners only owned *** percent of the total wealth. Income inequality in the U.S. Despite the idea that the United States is a country where hard work and pulling yourself up by your bootstraps will inevitably lead to success, this is often not the case. In 2024, *** percent of U.S. households had an annual income under 15,000 U.S. dollars. With such a small percentage of people in the United States owning such a vast majority of the country’s wealth, the gap between the rich and poor in America remains stark. The top one percent The United States was the country with the most billionaires in the world in 2025. Elon Musk, with a net worth of *** billion U.S. dollars, was among the richest people in the United States in 2025. Over the past 50 years, the CEO-to-worker compensation ratio has exploded, causing the gap between rich and poor to grow, with some economists theorizing that this gap is the largest it has been since right before the Great Depression.
Facebook
TwitterThe OECD Income Distribution database (IDD) has been developed to benchmark and monitor countries' performance in the field of income inequality and poverty. It contains a number of standardised indicators based on the central concept of "equivalised household disposable income", i.e. the total income received by the households less the current taxes and transfers they pay, adjusted for household size with an equivalence scale. While household income is only one of the factors shaping people's economic well-being, it is also the one for which comparable data for all OECD countries are most common. Income distribution has a long-standing tradition among household-level statistics, with regular data collections going back to the 1980s (and sometimes earlier) in many OECD countries.
Achieving comparability in this field is a challenge, as national practices differ widely in terms of concepts, measures, and statistical sources. In order to maximise international comparability as well as inter-temporal consistency of data, the IDD data collection and compilation process is based on a common set of statistical conventions (e.g. on income concepts and components). The information obtained by the OECD through a network of national data providers, via a standardized questionnaire, is based on national sources that are deemed to be most representative for each country.
Small changes in estimates between years should be treated with caution as they may not be statistically significant.
Fore more details, please refer to: https://www.oecd.org/els/soc/IDD-Metadata.pdf and https://www.oecd.org/social/income-distribution-database.htm
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Switzerland Income Share Held by Lowest 10% data was reported at 3.200 % in 2015. This stayed constant from the previous number of 3.200 % for 2014. Switzerland Income Share Held by Lowest 10% data is updated yearly, averaging 3.150 % from Dec 2006 (Median) to 2015, with 10 observations. The data reached an all-time high of 3.300 % in 2013 and a record low of 2.900 % in 2007. Switzerland Income Share Held by Lowest 10% data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Switzerland – Table CH.World Bank.WDI: Poverty. Percentage share of income or consumption is the share that accrues to subgroups of population indicated by deciles or quintiles.; ; World Bank, Development Research Group. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are from the Luxembourg Income Study database. For more information and methodology, please see PovcalNet (http://iresearch.worldbank.org/PovcalNet/index.htm).; ; The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than one thousand six hundred household surveys across 164 countries in six regions and 25 other high income countries (industrialized economies). While income distribution data are published for all countries with data available, poverty data are published for low- and middle-income countries and countries eligible to receive loans from the World Bank (such as Chile) and recently graduated countries (such as Estonia) only. See PovcalNet (http://iresearch.worldbank.org/PovcalNet/WhatIsNew.aspx) for definitions of geographical regions and industrialized countries.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Income Share Held by Highest 10% data was reported at 30.600 % in 2016. This records an increase from the previous number of 30.100 % for 2013. United States US: Income Share Held by Highest 10% data is updated yearly, averaging 30.100 % from Dec 1979 (Median) to 2016, with 11 observations. The data reached an all-time high of 30.600 % in 2016 and a record low of 25.300 % in 1979. United States US: Income Share Held by Highest 10% data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Poverty. Percentage share of income or consumption is the share that accrues to subgroups of population indicated by deciles or quintiles.; ; World Bank, Development Research Group. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are from the Luxembourg Income Study database. For more information and methodology, please see PovcalNet (http://iresearch.worldbank.org/PovcalNet/index.htm).; ; The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than one thousand six hundred household surveys across 164 countries in six regions and 25 other high income countries (industrialized economies). While income distribution data are published for all countries with data available, poverty data are published for low- and middle-income countries and countries eligible to receive loans from the World Bank (such as Chile) and recently graduated countries (such as Estonia) only. See PovcalNet (http://iresearch.worldbank.org/PovcalNet/WhatIsNew.aspx) for definitions of geographical regions and industrialized countries.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the mean household income for each of the five quintiles in Black Earth, WI, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.
Key observations
https://i.neilsberg.com/ch/black-earth-wi-mean-household-income-by-quintiles.jpeg" alt="Mean household income by quintiles in Black Earth, WI (in 2022 inflation-adjusted dollars))">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Income Levels:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Black Earth median household income. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Black Earth median household income by race. The dataset can be utilized to understand the racial distribution of Black Earth income.
The dataset will have the following datasets when applicable
Please note: The 2020 1-Year ACS estimates data was not reported by the Census Bureau due to the impact on survey collection and analysis caused by COVID-19. Consequently, median household income data for 2020 is unavailable for large cities (population 65,000 and above).
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Explore our comprehensive data analysis and visual representations for a deeper understanding of Black Earth median household income by race. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is a data record which corresponds to the paper "A consistent dataset for the net income distribution for 184 countries, aggregated to 32 geographical regions and the world from 1958-2015" (Narayan et al. 2023, in prep) https://essd.copernicus.org/preprints/essd-2023-137/
Description/Abstract- Data on the income distribution within and across countries are increasingly becoming important to inform analysis on income inequality and human welfare. While datasets on the income distribution collected from household surveys are available for multiple countries, these datasets often do not represent the same income concept and therefore make comparisons across countries and across datasets difficult. Here, we present a consistent dataset on the income distribution across 184 countries which all represent a single income concept namely net-income. We complement the observed values in this dataset with values of the income distribution imputed from summary measures such as the GINI coefficient to generate a consistent time series across countries from 1958 to 2015. For the imputation, we use a recently developed PCA based approach which shows an excellent fit to the latest data on income distributions. We also present another version of this dataset which is aggregated from the country level to 32 geographical regions and the world as a whole. Our aggregation method takes into account both within country and cross- country income inequality when aggregating to the regional level. This dataset will enable more robust analysis of the income distribution at multiple scales.
Facebook
TwitterDataset used in World Bank Policy Research Working Paper #2876, published in World Bank Economic Review, No. 1, 2005, pp. 21-44.
The effects of globalization on income distribution in rich and poor countries are a matter of controversy. While international trade theory in its most abstract formulation implies that increased trade and foreign investment should make income distribution more equal in poor countries and less equal in rich countries, finding these effects has proved elusive. The author presents another attempt to discern the effects of globalization by using data from household budget surveys and looking at the impact of openness and foreign direct investment on relative income shares of low and high deciles. The author finds some evidence that at very low average income levels, it is the rich who benefit from openness. As income levels rise to those of countries such as Chile, Colombia, or Czech Republic, for example, the situation changes, and it is the relative income of the poor and the middle class that rises compared with the rich. It seems that openness makes income distribution worse before making it better-or differently in that the effect of openness on a country's income distribution depends on the country's initial income level.
Aggregate data [agg]
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Dominican Republic DO: Proportion of People Living Below 50 Percent Of Median Income: % data was reported at 14.300 % in 2022. This records an increase from the previous number of 12.900 % for 2021. Dominican Republic DO: Proportion of People Living Below 50 Percent Of Median Income: % data is updated yearly, averaging 18.900 % from Dec 1986 (Median) to 2022, with 28 observations. The data reached an all-time high of 22.900 % in 1986 and a record low of 12.900 % in 2021. Dominican Republic DO: Proportion of People Living Below 50 Percent Of Median Income: % data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Dominican Republic – Table DO.World Bank.WDI: Social: Poverty and Inequality. The percentage of people in the population who live in households whose per capita income or consumption is below half of the median income or consumption per capita. The median is measured at 2017 Purchasing Power Parity (PPP) using the Poverty and Inequality Platform (http://www.pip.worldbank.org). For some countries, medians are not reported due to grouped and/or confidential data. The reference year is the year in which the underlying household survey data was collected. In cases for which the data collection period bridged two calendar years, the first year in which data were collected is reported.;World Bank, Poverty and Inequality Platform. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are mostly from the Luxembourg Income Study database. For more information and methodology, please see http://pip.worldbank.org.;;The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than 2000 household surveys across 169 countries. See the Poverty and Inequality Platform (PIP) for details (www.pip.worldbank.org).
Facebook
TwitterThe World Income Inequality Database (WIID) contains information on income inequality in various countries, and is maintained by the United Nations University-World Institute for Development Economics Research (UNU-WIDER). The database was originally compiled during 1997-99 for the research project Rising Income Inequality and Poverty Reduction, directed by Giovanni Andrea Corina. A revised and updated version of the database was published in June 2005 as part of the project Global Trends in Inequality and Poverty, directed by Tony Shorrocks and Guang Hua Wan. The database was revised in 2007 and a new version was launched in May 2008.
The database contains data on inequality in the distribution of income in various countries. The central variable in the dataset is the Gini index, a measure of income distribution in a society. In addition, the dataset contains information on income shares by quintile or decile. The database contains data for 159 countries, including some historical entities. The temporal coverage varies substantially across countries. For some countries there is only one data entry; in other cases there are over 100 data points. The earliest entry is from 1867 (United Kingdom), the latest from 2003. The majority of the data (65%) cover the years from 1980 onwards. The 2008 update (version WIID2c) includes some major updates and quality improvements, in fact leading to a reduced number of variables in the new version. The new version has 334 new observations and several revisions/ corrections made in 2007 and 2008.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Income Share Held by Lowest 10% data was reported at 1.700 % in 2016. This stayed constant from the previous number of 1.700 % for 2013. United States US: Income Share Held by Lowest 10% data is updated yearly, averaging 1.800 % from Dec 1979 (Median) to 2016, with 11 observations. The data reached an all-time high of 2.300 % in 1979 and a record low of 1.700 % in 2016. United States US: Income Share Held by Lowest 10% data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Poverty. Percentage share of income or consumption is the share that accrues to subgroups of population indicated by deciles or quintiles.; ; World Bank, Development Research Group. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are from the Luxembourg Income Study database. For more information and methodology, please see PovcalNet (http://iresearch.worldbank.org/PovcalNet/index.htm).; ; The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than one thousand six hundred household surveys across 164 countries in six regions and 25 other high income countries (industrialized economies). While income distribution data are published for all countries with data available, poverty data are published for low- and middle-income countries and countries eligible to receive loans from the World Bank (such as Chile) and recently graduated countries (such as Estonia) only. See PovcalNet (http://iresearch.worldbank.org/PovcalNet/WhatIsNew.aspx) for definitions of geographical regions and industrialized countries.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This comprehensive dataset encapsulates a detailed snapshot of the wealthiest individuals globally, as listed by Forbes in 2024. Compiled through meticulous web scraping and data aggregation, the dataset includes a wide range of attributes for each billionaire. Fields encompass basic personal information such as name, age, and gender, alongside financial details including net worth and sources of wealth. The dataset further delves into aspects like industry involvement, organizational affiliations, philanthropic endeavors, and educational backgrounds.
Key attributes in this dataset include:
Name: Full legal name of the billionaire. Age: Age of the individual. 2024 Net Worth: Estimated net worth in USD for the year 2024. Industry: Primary industry or sector of operation. Source of Wealth: Origin of the billionaire’s wealth. Title: Professional title or position. Organization: Name of the associated organization. Self-Made: Indicator if the wealth is self-made. Self-Made Score: A quantitative score assessing how self-made their wealth is. Philanthropy Score: A score reflecting the extent of their philanthropic activities. Residence: Main residence of the individual. Citizenship: Legal citizenship. Gender: Gender identity. Marital Status: Current marital status. Children: Number of children. Education: Highest level of education attained.
This dataset is ideal for analysis, offering insights into the distribution of wealth, the influence of education on wealth accumulation, and trends across different industries. It also provides a foundation for exploring the impact of socioeconomic factors on personal wealth. The data were collected and formatted with careful consideration to ensure accuracy, making it a valuable resource for researchers, economists, and anyone interested in the dynamics of wealth and success.
Please note that some data is missing in this dataset, primarily due to the unavailability of information from Forbes. This issue becomes more prevalent beyond the top 400 entries. Many individuals lack a self-made score, a philanthropy score, or specific details regarding their title or organization as per Forbes' listings. I am currently working to update the dataset with this missing information. However, this update process is quite tedious and time-consuming since it is mostly manual. I appreciate your patience and understanding as I work through these details.
Facebook
TwitterThis file contains data on Gini coefficients, cumulative quintile shares, explanations regarding the basis on which the Gini coefficient was computed, and the source of the information. There are two data-sets, one containing the "high quality" sample and the other one including all the information (of lower quality) that had been collected.
The database was constructed for the production of the following paper:
Deininger, Klaus and Lyn Squire, "A New Data Set Measuring Income Inequality", The World Bank Economic Review, 10(3): 565-91, 1996.
This article presents a new data set on inequality in the distribution of income. The authors explain the criteria they applied in selecting data on Gini coefficients and on individual quintile groups’ income shares. Comparison of the new data set with existing compilations reveals that the data assembled here represent an improvement in quality and a significant expansion in coverage, although differences in the definition of the underlying data might still affect intertemporal and international comparability. Based on this new data set, the authors do not find a systematic link between growth and changes in aggregate inequality. They do find a strong positive relationship between growth and reduction of poverty.
In what follows, we provide brief descriptions of main features for individual countries that are included in the data-base. Without being comprehensive, these notes are intended to indicate some of the considerations underlying our decision to include or exclude certain observations.
Argentina Various permanent household surveys, all covering urban centers only, have been regularly conducted since 1972 and are quoted in a wide variety of sources and years, e.g., for 1980 (World Bank 1992), 1985 (Altimir 1994), and 1989 (World Bank 1992). Estimates for 1963, 1965, 1969/70, 1970/71, 1974, 1975, 1980, and 1981 (Altimir 1987) are based only on Greater Buenos Aires. Estimates for 1961, 1963, 1970 (Jain 1975) and for 1970 (van Ginneken 1984) have only limited geographic coverage and do not satisfy our minimum criteria.
Despite the many urban surveys, there are no income distribution data that are representative of the population as a whole. References to national income distribution for the years 1953, 1959, and 1961(CEPAL 1968 in Altimir 1986 ) are based on extrapolation from national accounts and have therefore not been included. Data for 1953 and 1961 from Weisskoff (1970) , from Lecaillon (1984) , and from Cromwell (1977) are also excluded.
Australia Household surveys, the result of which is reported in the statistical yearbook, have been conducted in 1968/9, 1975/6, 1978/9, 1981, 1985, 1986, 1989, and 1990.
Data for 1962 (Cromwell, 1977) and 1966/67 (Sawyer 1976) were excluded as they covered only tax payers. Jain's data for 1970 was excluded because it covered income recipients only. Data from Podder (1972) for 1967/68, from Jain (1975) for the same year, from UN (1985) for 78/79, from Sunders and Hobbes (1993) for 1986 and for 1989 were excluded given the availability of the primary sources. Data from Bishop (1991) for 1981/82, from Buhman (1988) for 1981/82, from Kakwani (1986) for 1975/76, and from Sunders and Hobbes (1993) for 1986 were utilized to test for the effect of different definitions. The values for 1967 used by Persson and Tabellini and Alesina and Rodrik (based on Paukert and Jain) are close to the ones reported in the Statistical Yearbook for 1969.
Austria: In addition to data referring to the employed population (Guger 1989), national household surveys for 1987 and 1991 are included in the LIS data base. As these data do not include income from self-employment, we do not report them in our high quality data-set.
Bahamas Data for Ginis and shares are available for 1973, 1977, 1979, 1986, 1988, 1989, 1991, 1992, and 1993 in government reports on population censuses and household budget surveys, and for 1973 and 1975 from UN (1981). Estimates for 1970 (Jain 1975), 1973, 1975, 1977, and 1979 (Fields 1989) have been excluded given the availability of primary sources.
Bangladesh Data from household surveys for 1973/74, 1976/77, 1977/78, 1981/82, and 1985/86 are available from the Statistical Yearbook, complemented by household-survey based information from Chen (1995) and the World Development Report. Household surveys with rural coverage for 1959, 1960, 1963/64, 1965, 1966/67 and 1968/69, and with urban coverage for 1963/64, 1965, 1966/67, and 1968/69 are also available from the Statistical yearbook. Data for 1963/64 ,1964 and 1966/67, (Jain 1975) are not included due to limited geographic coverage, We also excluded secondary sources for 1973/74, 1976/77, 1981/82 (Fields 1989), 1977 (UN 1981), 1983 (Milanovic 1994), and 1985/86 due to availability of the primary source.
Barbados National household surveys have been conducted in 1951/52 and 1978/79 (Downs, 1988). Estimates based on personal tax returns, reported consistently for 1951-1981 (Holder and Prescott, 1989), had to be excluded as they exclude the non-wage earning population. Jain's figure (used by Alesina and Rodrik) is based on the same source.
Belgium Household surveys with national coverage are available for 1978/79 (UN 1985), and for 1985, 1988, and 1992 (LIS 1995). Earlier data for 1969, 1973, 1975, 1976 and 1977 (UN 1981) refer to taxable households only and are not included.
Bolivia The only survey with national coverage is the 1990 LSMS (World Development Report). Surveys for 1986 and 1989 cover the main cities only (Psacharopoulos et al. 1992) and are therefore not included. Data for 1968 (Cromwell 1977) do not refer to a clear definition and is therefore excluded.
Botswana The only survey with national coverage was conducted in 1985-1986 (Chen et al 1993); surveys in 74/75 and 85/86 included rural areas only (UN 1981). We excluded Gini estimates for 1971/72 that refer to the economically active population only (Jain 1975), as well as 1974/75 and 1985/86 (Valentine 1993) due to lack of national coverage or consistency in definition.
Brazil Data from 1960, 1970, 1974/75, 1976, 1977, 1978, 1980, 1982, 1983, 1985, 1987 and 1989 are available from the statistical yearbook, in addition to data for 1978 (Fields 1987) and for 1979 (Psacharopoulos et al. 1992). Other sources have been excluded as they were either not of national coverage, based on wage earners only, or because a more consistent source was available.
Bulgaria: Data from household surveys are available for 1963-69 (in two year intervals), for 1970-90 (on an annual basis) from the Statistical yearbook and for 1991 - 93 from household surveys by the World Bank (Milanovic and Ying).
Burkina Faso A priority survey has been undertaken in 1995.
Central African Republic: Except for a household survey conducted in 1992, no information was available.
Cameroon The only data are from a 1983/4 household budget survey (World Bank Poverty Assessment).
Canada Gini- and share data for the 1950-61 (in irregular intervals), 1961-81 (biennially), and 1981-91 (annually) are available from official sources (Statistical Yearbook for years before 1971 and Income Distributions by Size in Canada for years since 1973, various issues). All other references seem to be based on these primary sources.
Chad: An estimate for 1958 is available in the literature, and used by Alesina and Rodrik and Persson and Tabellini but was not included due to lack of primary sources.
Chile The first nation-wide survey that included not only employment income was carried out in 1968 (UN 1981). This is complemented by household survey-based data for 1971 (Fields 1989), 1989, and 1994. Other data that refer either only to part of the population or -as in the case of a long series available from World Bank country operations- are not clearly based on primary sources, are excluded.
China Annual household surveys from 1980 to 1992, conducted separately in rural and urban areas, were consolidated by Ying (1995), based on the statistical yearbook. Data from other secondary sources are excluded due to limited geographic and population coverage and data from Chen et al (1993) for 1985 and 1990 have not been included, to maintain consistency of sources..
Colombia The first household survey with national coverage was conducted in 1970 (DANE 1970). In addition, there are data for 1971, 1972, 1974 CEPAL (1986), and for 1978, 1988/89, and 1991 (World Bank Poverty Assessment 1992 and Chen et al. 1995). Data referring to years before 1970 -including the 1964 estimate used in Persson and Tabellini were excluded, as were estimates for the wage earning population only.
Costa Rica Data on Gini coefficients and quintile shares are available for 1961, 1971 (Cespedes 1973),1977 (OPNPE 1982), 1979 (Fields 1989), 1981 (Chen et al 1993), 1983 (Bourguignon and Morrison 1989), 1986 (Sauma-Fiatt 1990), and 1989 (Chen et al 1993). Gini coefficients for 1971 (Gonzalez-Vega and Cespedes in Rottenberg 1993), 1973 and 1985 (Bourguignon and Morrison 1989) cover urban areas only and were excluded.
Cote d'Ivoire: Data based on national-level household surveys (LSMS) are available for 1985, 1986, 1987, 1988, and 1995. Information for the 1970s (Schneider 1991) is based on national accounting information and therefore excluded
Cuba Official information on income distribution is limited. Data from secondary sources are available for 1953, 1962, 1973, and 1978, relying on personal wage income, i.e. excluding the population that is not economically active (Brundenius 1984).
Czech Republic Household surveys for 1993 and 1994 were obtained from Milanovic and Ying. While it is in principle possible to go back further, splitting national level surveys for the former Czechoslovakia into their independent parts, we decided not to do so as the same argument could be used to
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Income Share Held by Lowest 20% data was reported at 5.000 % in 2016. This records a decrease from the previous number of 5.100 % for 2013. United States US: Income Share Held by Lowest 20% data is updated yearly, averaging 5.300 % from Dec 1979 (Median) to 2016, with 11 observations. The data reached an all-time high of 6.400 % in 1979 and a record low of 5.000 % in 2016. United States US: Income Share Held by Lowest 20% data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Poverty. Percentage share of income or consumption is the share that accrues to subgroups of population indicated by deciles or quintiles. Percentage shares by quintile may not sum to 100 because of rounding.; ; World Bank, Development Research Group. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are from the Luxembourg Income Study database. For more information and methodology, please see PovcalNet (http://iresearch.worldbank.org/PovcalNet/index.htm).; ; The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than one thousand six hundred household surveys across 164 countries in six regions and 25 other high income countries (industrialized economies). While income distribution data are published for all countries with data available, poverty data are published for low- and middle-income countries and countries eligible to receive loans from the World Bank (such as Chile) and recently graduated countries (such as Estonia) only. See PovcalNet (http://iresearch.worldbank.org/PovcalNet/WhatIsNew.aspx) for definitions of geographical regions and industrialized countries.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Survey Mean Consumption or Income per Capita: Bottom 40% of Population: Annualized Average Growth Rate data was reported at 1.310 % in 2016. United States US: Survey Mean Consumption or Income per Capita: Bottom 40% of Population: Annualized Average Growth Rate data is updated yearly, averaging 1.310 % from Dec 2016 (Median) to 2016, with 1 observations. United States US: Survey Mean Consumption or Income per Capita: Bottom 40% of Population: Annualized Average Growth Rate data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Poverty. The growth rate in the welfare aggregate of the bottom 40% is computed as the annualized average growth rate in per capita real consumption or income of the bottom 40% of the population in the income distribution in a country from household surveys over a roughly 5-year period. Mean per capita real consumption or income is measured at 2011 Purchasing Power Parity (PPP) using the PovcalNet (http://iresearch.worldbank.org/PovcalNet). For some countries means are not reported due to grouped and/or confidential data. The annualized growth rate is computed as (Mean in final year/Mean in initial year)^(1/(Final year - Initial year)) - 1. The reference year is the year in which the underlying household survey data was collected. In cases for which the data collection period bridged two calendar years, the first year in which data were collected is reported. The initial year refers to the nearest survey collected 5 years before the most recent survey available, only surveys collected between 3 and 7 years before the most recent survey are considered. The final year refers to the most recent survey available between 2011 and 2015. Growth rates for Iraq are based on survey means of 2005 PPP$. The coverage and quality of the 2011 PPP price data for Iraq and most other North African and Middle Eastern countries were hindered by the exceptional period of instability they faced at the time of the 2011 exercise of the International Comparison Program. See PovcalNet for detailed explanations.; ; World Bank, Global Database of Shared Prosperity (GDSP) circa 2010-2015 (http://www.worldbank.org/en/topic/poverty/brief/global-database-of-shared-prosperity).; ; The comparability of welfare aggregates (consumption or income) for the chosen years T0 and T1 is assessed for every country. If comparability across the two surveys is a major concern for a country, the selection criteria are re-applied to select the next best survey year(s). Annualized growth rates are calculated between the survey years, using a compound growth formula. The survey years defining the period for which growth rates are calculated and the type of welfare aggregate used to calculate the growth rates are noted in the footnotes.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Greece GR: Income Share Held by Highest 10% data was reported at 26.200 % in 2015. This records an increase from the previous number of 26.100 % for 2014. Greece GR: Income Share Held by Highest 10% data is updated yearly, averaging 26.000 % from Dec 2003 (Median) to 2015, with 13 observations. The data reached an all-time high of 26.700 % in 2006 and a record low of 24.600 % in 2003. Greece GR: Income Share Held by Highest 10% data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Greece – Table GR.World Bank.WDI: Poverty. Percentage share of income or consumption is the share that accrues to subgroups of population indicated by deciles or quintiles.; ; World Bank, Development Research Group. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are from the Luxembourg Income Study database. For more information and methodology, please see PovcalNet (http://iresearch.worldbank.org/PovcalNet/index.htm).; ; The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than one thousand six hundred household surveys across 164 countries in six regions and 25 other high income countries (industrialized economies). While income distribution data are published for all countries with data available, poverty data are published for low- and middle-income countries and countries eligible to receive loans from the World Bank (such as Chile) and recently graduated countries (such as Estonia) only. See PovcalNet (http://iresearch.worldbank.org/PovcalNet/WhatIsNew.aspx) for definitions of geographical regions and industrialized countries.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Income Share Held by Highest 20% data was reported at 46.900 % in 2016. This records an increase from the previous number of 46.400 % for 2013. United States US: Income Share Held by Highest 20% data is updated yearly, averaging 46.000 % from Dec 1979 (Median) to 2016, with 11 observations. The data reached an all-time high of 46.900 % in 2016 and a record low of 41.200 % in 1979. United States US: Income Share Held by Highest 20% data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Poverty. Percentage share of income or consumption is the share that accrues to subgroups of population indicated by deciles or quintiles. Percentage shares by quintile may not sum to 100 because of rounding.; ; World Bank, Development Research Group. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are from the Luxembourg Income Study database. For more information and methodology, please see PovcalNet (http://iresearch.worldbank.org/PovcalNet/index.htm).; ; The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than one thousand six hundred household surveys across 164 countries in six regions and 25 other high income countries (industrialized economies). While income distribution data are published for all countries with data available, poverty data are published for low- and middle-income countries and countries eligible to receive loans from the World Bank (such as Chile) and recently graduated countries (such as Estonia) only. See PovcalNet (http://iresearch.worldbank.org/PovcalNet/WhatIsNew.aspx) for definitions of geographical regions and industrialized countries.
Facebook
TwitterODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
Welcome to the Forbes Billionaire List Dataset! 🌟
Context: This comprehensive dataset presents a wealth of information about the world's billionaires, curated from the prestigious Forbes Billionaires List. The Forbes list is widely recognized as a reliable source for tracking the net worth and profiles of the wealthiest individuals globally. It provides valuable insights into the distribution of wealth, entrepreneurial success stories, and the industries and countries where billionaires thrive.
Inspiration: This dataset was inspired by a desire to analyze and explore the fascinating world of billionaires. It provides enthusiasts with a rich resource to study wealth distribution patterns, demographic trends, entrepreneurial endeavors, and global economic landscapes. By examining the Forbes Billionaires List, we can gain valuable insights into the factors that contribute to extreme wealth and the industries driving economic growth.
Potential Applications: The Forbes Billionaire List Dataset offers numerous avenues for analysis and exploration. Here are a few potential applications: - Analyzing wealth distribution across countries and industries - Studying the relationship between age and net worth of billionaires - Identifying the top sources of wealth and the most successful industries - Exploring the demographic characteristics of billionaires - Examining the economic impact of billionaires on specific countries or regions
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Belgium BE: Proportion of People Living Below 50 Percent Of Median Income: % data was reported at 8.100 % in 2021. This records an increase from the previous number of 7.900 % for 2020. Belgium BE: Proportion of People Living Below 50 Percent Of Median Income: % data is updated yearly, averaging 9.100 % from Dec 1985 (Median) to 2021, with 25 observations. The data reached an all-time high of 10.500 % in 2015 and a record low of 6.000 % in 1985. Belgium BE: Proportion of People Living Below 50 Percent Of Median Income: % data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Belgium – Table BE.World Bank.WDI: Social: Poverty and Inequality. The percentage of people in the population who live in households whose per capita income or consumption is below half of the median income or consumption per capita. The median is measured at 2017 Purchasing Power Parity (PPP) using the Poverty and Inequality Platform (http://www.pip.worldbank.org). For some countries, medians are not reported due to grouped and/or confidential data. The reference year is the year in which the underlying household survey data was collected. In cases for which the data collection period bridged two calendar years, the first year in which data were collected is reported.;World Bank, Poverty and Inequality Platform. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are mostly from the Luxembourg Income Study database. For more information and methodology, please see http://pip.worldbank.org.;;The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than 2000 household surveys across 169 countries. See the Poverty and Inequality Platform (PIP) for details (www.pip.worldbank.org).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Blue Earth median household income by race. The dataset can be utilized to understand the racial distribution of Blue Earth income.
The dataset will have the following datasets when applicable
Please note: The 2020 1-Year ACS estimates data was not reported by the Census Bureau due to the impact on survey collection and analysis caused by COVID-19. Consequently, median household income data for 2020 is unavailable for large cities (population 65,000 and above).
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Explore our comprehensive data analysis and visual representations for a deeper understanding of Blue Earth median household income by race. You can refer the same here
Facebook
TwitterIn the first quarter of 2025, almost ********** of the total wealth in the United States was owned by the top 10 percent of earners. In comparison, the lowest ** percent of earners only owned *** percent of the total wealth. Income inequality in the U.S. Despite the idea that the United States is a country where hard work and pulling yourself up by your bootstraps will inevitably lead to success, this is often not the case. In 2024, *** percent of U.S. households had an annual income under 15,000 U.S. dollars. With such a small percentage of people in the United States owning such a vast majority of the country’s wealth, the gap between the rich and poor in America remains stark. The top one percent The United States was the country with the most billionaires in the world in 2025. Elon Musk, with a net worth of *** billion U.S. dollars, was among the richest people in the United States in 2025. Over the past 50 years, the CEO-to-worker compensation ratio has exploded, causing the gap between rich and poor to grow, with some economists theorizing that this gap is the largest it has been since right before the Great Depression.