Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Non-Hispanic population of North English by race. It includes the distribution of the Non-Hispanic population of North English across various race categories as identified by the Census Bureau. The dataset can be utilized to understand the Non-Hispanic population distribution of North English across relevant racial categories.
Key observations
With a zero Hispanic population, North English is 100% Non-Hispanic. Among the Non-Hispanic population, the largest racial group is White alone with a population of 886 (97.68% of the total Non-Hispanic population).
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for North English Population by Race & Ethnicity. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Non-Hispanic population of South English by race. It includes the distribution of the Non-Hispanic population of South English across various race categories as identified by the Census Bureau. The dataset can be utilized to understand the Non-Hispanic population distribution of South English across relevant racial categories.
Key observations
Of the Non-Hispanic population in South English, the largest racial group is White alone with a population of 171 (90.96% of the total Non-Hispanic population).
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for South English Population by Race & Ethnicity. You can refer the same here
For the past several censuses, the Census Bureau has invited people to self-respond before following up in-person using census takers. The 2010 Census invited people to self-respond predominately by returning paper questionnaires in the mail. The 2020 Census allows people to self-respond in three ways: online, by phone, or by mail. The 2020 Census self-response rates are self-response rates for current census geographies. These rates are the daily and cumulative self-response rates for all housing units that received invitations to self-respond to the 2020 Census. The 2020 Census self-response rates are available for states, counties, census tracts, congressional districts, towns and townships, consolidated cities, incorporated places, tribal areas, and tribal census tracts. The Self-Response Rate of Los Angeles County is 65.1% for 2020 Census, which is slightly lower than 69.6% of California State rate. More information about these data are available in the Self-Response Rates Map Data and Technical Documentation document associated with the 2020 Self-Response Rates Map or review our FAQs. Animated Self-Response Rate 2010 vs 2020 is available at ESRI site SRR Animated Maps and can explore Census 2020 SRR data at ESRI Demographic site Census 2020 SSR Data. Following Demographic Characteristics are included in this data and web maps to visualize their relationships with Census Self-Response Rate (SRR)..1. Population Density2. Poverty Rate3. Median Household income4. Education Attainment5. English Speaking Ability6. Household without Internet Access7. Non-Hispanic White Population8. Non-Hispanic African-American Population9. Non-Hispanic Asian Population10. Hispanic Population
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of North English by race. It includes the population of North English across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of North English across relevant racial categories.
Key observations
The percent distribution of North English population by race (across all racial categories recognized by the U.S. Census Bureau): 97.68% are white, 0.11% are Asian and 2.21% are multiracial.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for North English Population by Race & Ethnicity. You can refer the same here
Lake County, Illinois Demographic Data. Explanation of field attributes: Total Population – The entire population of Lake County. White – Individuals who are of Caucasian race. This is a percent.African American – Individuals who are of African American race. This is a percent.Asian – Individuals who are of Asian race. This is a percent. Hispanic – Individuals who are of Hispanic ethnicity. This is a percent. Does not Speak English- Individuals who speak a language other than English in their household. This is a percent. Under 5 years of age – Individuals who are under 5 years of age. This is a percent. Under 18 years of age – Individuals who are under 18 years of age. This is a percent. 18-64 years of age – Individuals who are between 18 and 64 years of age. This is a percent. 65 years of age and older – Individuals who are 65 years old or older. This is a percent. Male – Individuals who are male in gender. This is a percent. Female – Individuals who are female in gender. This is a percent. High School Degree – Individuals who have obtained a high school degree. This is a percent. Associate Degree – Individuals who have obtained an associate degree. This is a percent. Bachelor’s Degree or Higher – Individuals who have obtained a bachelor’s degree or higher. This is a percent. Utilizes Food Stamps – Households receiving food stamps/ part of SNAP (Supplemental Nutrition Assistance Program). This is a percent. Median Household Income - A median household income refers to the income level earned by a given household where half of the homes in the area earn more and half earn less. This is a dollar amount. No High School – Individuals who have not obtained a high school degree. This is a percent. Poverty – Poverty refers to families and people whose income in the past 12 months is below the poverty level. This is a percent.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Non-Hispanic population of English by race. It includes the distribution of the Non-Hispanic population of English across various race categories as identified by the Census Bureau. The dataset can be utilized to understand the Non-Hispanic population distribution of English across relevant racial categories.
Key observations
Of the Non-Hispanic population in English, the largest racial group is White alone with a population of 1,009 (99.02% of the total Non-Hispanic population).
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for English Population by Race & Ethnicity. You can refer the same here
Title VI of the Civil Rights Act and the Executive Order on Environmental Justice (#12898) do not provide specific guidance to evaluate EJ issues within a region's transportation planning process. Therefore, MPOs must devise their own methods for ensuring that EJ issues are investigated and evaluated in transportation decision-making. In 2001, DVRPC developed an EJ technical assessment to identify direct and disparate impacts of its plans, programs, and planning process on defined population groups in the Delaware Valley region. This assessment, called the Indicators of Potential Disadvantage Methodology, is utilized in a variety of DVRPC plans and programs. DVRPC currently assesses the following population groups, defined by the U.S. Census Bureau:YouthOlder AdultsFemaleRacial MinorityEthnic MinorityForeign-BornDisabledLimited English ProficiencyLow-IncomeCensus tables used to gather data from the 2018-2022 American Community Survey 5-Year EstimatesUsing U.S. Census American Community Survey data, the population groups listed above are identified and located at the census tract level. Data is gathered at the regional level, combining populations from each of the nine counties, for either individuals or households, depending on the indicator. From there, the total number of persons in each demographic group is divided by the appropriate universe (either population or households) for the nine-county region, providing a regional average for that population group. Any census tract that meets or exceeds the regional average level, or threshold, is considered an EJ-sensitive tract for that group.Census tables used to gather data from the 2018-2022 American Community Survey 5-Year Estimates.For more information and for methodology, visit DVRPC's website:http://www.dvrpc.org/GetInvolved/TitleVI/For technical documentation visit DVRPC's GitHub IPD repo: https://github.com/dvrpc/ipdSource of tract boundaries: 2020 US Census Bureau, TIGER/Line ShapefilesNote: Tracts with null values should be symbolized as "Insufficient or No Data".Data Dictionary for Attributes:(Source = DVRPC indicates a calculated field)FieldAliasDescriptionSourceyearIPD analysis yearDVRPCgeoid2011-digit tract GEOIDCensus tract identifierACS 5-yearstatefp2-digit state GEOIDFIPS Code for StateACS 5-yearcountyfp3-digit county GEOIDFIPS Code for CountyACS 5-yeartractceTract numberTract NumberACS 5-yearnameTract numberCensus tract identifier with decimal placesACS 5-yearnamelsadTract nameCensus tract name with decimal placesACS 5-yeard_classDisabled percentile classClassification of tract's disabled percentage as: well below average, below average, average, above average, or well above averagecalculatedd_estDisabled count estimateEstimated count of disabled populationACS 5-yeard_est_moeDisabled count margin of errorMargin of error for estimated count of disabled populationACS 5-yeard_pctDisabled percent estimateEstimated percentage of disabled populationACS 5-yeard_pct_moeDisabled percent margin of errorMargin of error for percentage of disabled populationACS 5-yeard_pctileDisabled percentileTract's regional percentile for percentage disabledcalculatedd_scoreDisabled percentile scoreCorresponding numeric score for tract's disabled classification: 0, 1, 2, 3, 4calculatedem_classEthnic minority percentile classClassification of tract's Hispanic/Latino percentage as: well below average, below average, average, above average, or well above averagecalculatedem_estEthnic minority count estimateEstimated count of Hispanic/Latino populationACS 5-yearem_est_moeEthnic minority count margin of errorMargin of error for estimated count of Hispanic/Latino populationACS 5-yearem_pctEthnic minority percent estimateEstimated percentage of Hispanic/Latino populationcalculatedem_pct_moeEthnic minority percent margin of errorMargin of error for percentage of Hispanic/Latino populationcalculatedem_pctileEthnic minority percentileTract's regional percentile for percentage Hispanic/Latinocalculatedem_scoreEthnic minority percentile scoreCorresponding numeric score for tract's Hispanic/Latino classification: 0, 1, 2, 3, 4calculatedf_classFemale percentile classClassification of tract's female percentage as: well below average, below average, average, above average, or well above averagecalculatedf_estFemale count estimateEstimated count of female populationACS 5-yearf_est_moeFemale count margin of errorMargin of error for estimated count of female populationACS 5-yearf_pctFemale percent estimateEstimated percentage of female populationACS 5-yearf_pct_moeFemale percent margin of errorMargin of error for percentage of female populationACS 5-yearf_pctileFemale percentileTract's regional percentile for percentage femalecalculatedf_scoreFemale percentile scoreCorresponding numeric score for tract's female classification: 0, 1, 2, 3, 4calculatedfb_classForeign-born percentile classClassification of tract's foreign born percentage as: well below average, below average, average, above average, or well above averagecalculatedfb_estForeign-born count estimateEstimated count of foreign born populationACS 5-yearfb_est_moeForeign-born count margin of errorMargin of error for estimated count of foreign born populationACS 5-yearfb_pctForeign-born percent estimateEstimated percentage of foreign born populationcalculatedfb_pct_moeForeign-born percent margin of errorMargin of error for percentage of foreign born populationcalculatedfb_pctileForeign-born percentileTract's regional percentile for percentage foreign borncalculatedfb_scoreForeign-born percentile scoreCorresponding numeric score for tract's foreign born classification: 0, 1, 2, 3, 4calculatedle_classLimited English proficiency percentile classClassification of tract's limited english proficiency percentage as: well below average, below average, average, above average, or well above averagecalculatedle_estLimited English proficiency count estimateEstimated count of limited english proficiency populationACS 5-yearle_est_moeLimited English proficiency count margin of errorMargin of error for estimated count of limited english proficiency populationACS 5-yearle_pctLimited English proficiency percent estimateEstimated percentage of limited english proficiency populationACS 5-yearle_pct_moeLimited English proficiency percent margin of errorMargin of error for percentage of limited english proficiency populationACS 5-yearle_pctileLimited English proficiency percentileTract's regional percentile for percentage limited english proficiencycalculatedle_scoreLimited English proficiency percentile scoreCorresponding numeric score for tract's limited english proficiency classification: 0, 1, 2, 3, 4calculatedli_classLow-income percentile classClassification of tract's low income percentage as: well below average, below average, average, above average, or well above averagecalculatedli_estLow-income count estimateEstimated count of low income (below 200% of poverty level) populationACS 5-yearli_est_moeLow-income count margin of errorMargin of error for estimated count of low income populationACS 5-yearli_pctLow-income percent estimateEstimated percentage of low income (below 200% of poverty level) populationcalculatedli_pct_moeLow-income percent margin of errorMargin of error for percentage of low income populationcalculatedli_pctileLow-income percentileTract's regional percentile for percentage low incomecalculatedli_scoreLow-income percentile scoreCorresponding numeric score for tract's low income classification: 0, 1, 2, 3, 4calculatedoa_classOlder adult percentile classClassification of tract's older adult percentage as: well below average, below average, average, above average, or well above averagecalculatedoa_estOlder adult count estimateEstimated count of older adult population (65 years or older)ACS 5-yearoa_est_moeOlder adult count margin of errorMargin of error for estimated count of older adult populationACS 5-yearoa_pctOlder adult percent estimateEstimated percentage of older adult population (65 years or older)ACS 5-yearoa_pct_moeOlder adult percent margin of errorMargin of error for percentage of older adult populationACS 5-yearoa_pctileOlder adult percentileTract's regional percentile for percentage older adultcalculatedoa_scoreOlder adult percentile scoreCorresponding numeric score for tract's older adult classification: 0, 1, 2, 3, 4calculatedrm_classRacial minority percentile classClassification of tract's non-white percentage as: well below average, below average, average, above average, or well above averagecalculatedrm_estRacial minority count estimateEstimated count of non-white populationACS 5-yearrm_est_moeRacial minority count margin of errorMargin of error for estimated count of non-white populationACS 5-yearrm_pctRacial minority percent estimateEstimated percentage of non-white populationcalculatedrm_pct_moeRacial minority percent margin of errorMargin of error for percentage of non-white populationcalculatedrm_pctileRacial minority percentileTract's regional percentile for percentage non-whitecalculatedrm_scoreRacial minority percentile scoreCorresponding numeric score for tract's non-white classification: 0, 1, 2, 3, 4calculatedtot_ppTotal population estimateEstimated total population of tract (universe [or denominator] for youth, older adult, female, racial minoriry, ethnic minority, & foreign born)ACS 5-yeartot_pp_moeTotal population margin of errorMargin of error for estimated total population of tractACS 5-yeary_classYouth percentile classClassification of tract's youth percentage as: well below average, below average, average, above average, or well above averagecalculatedy_estYouth count estimateEstimated count of youth population (under 18 years)ACS 5-yeary_est_moeYouth count margin of errorMargin of error for estimated count of youth populationACS 5-yeary_pctYouth population percentage estimateEstimated percentage of youth population (under 18 years)calculatedy_pct_moeYouth population percentage margin of
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of English by race. It includes the population of English across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of English across relevant racial categories.
Key observations
The percent distribution of English population by race (across all racial categories recognized by the U.S. Census Bureau): 95.91% are white and 4.09% are multiracial.
https://i.neilsberg.com/ch/english-in-population-by-race.jpeg" alt="English population by race">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for English Population by Race & Ethnicity. You can refer the same here
http://reference.data.gov.uk/id/open-government-licencehttp://reference.data.gov.uk/id/open-government-licence
This dataset represents ethnic group (19 tick-box level) by highest level qualification, for England and Wales combined. The data are also broken down by age and by sex.
The ethnic group that the person completing the census feels they belong to. This could be based on their culture, family background, identity, or physical appearance. Respondents could choose one out of 19 tick-box response categories, including write-in response options.
Total counts for some population groups may not match between published tables. This is to protect the confidentiality of individuals' data. Population counts have been rounded to the nearest 5 and any counts below 10 are suppressed, this is signified by a 'c' in the data tables.
"Asian Welsh" and "Black Welsh" ethnic groups were included on the census questionnaire in Wales only, these categories were new for 2021.
This dataset provides Census 2021 estimates that classify usual residents in England and Wales by ethnic group. The estimates are as at Census Day, 21 March 2021. This dataset shows population counts for usual residents aged 16+ Some people aged 16 years old will not have completed key stage 4 yet on census day, and so did not have the opportunity to record any qualifications on the census.
These estimates are not comparable to Department of Education figures on highest level of attainment because they include qualifications obtained outside England and Wales.
For quality information in general, please read more from here.
Ethnic Group (19 tick-box level)
These are the 19 ethnic group used in this dataset:
No qualifications
No qualifications
Level 1
Level 1 and entry level qualifications: 1 to 4 GCSEs grade A* to C , Any GCSEs at other grades, O levels or CSEs (any grades), 1 AS level, NVQ level 1, Foundation GNVQ, Basic or Essential Skills
Level 2
5 or more GCSEs (A* to C or 9 to 4), O levels (passes), CSEs (grade 1), School Certification, 1 A level, 2 to 3 AS levels, VCEs, Intermediate or Higher Diploma, Welsh Baccalaureate Intermediate Diploma, NVQ level 2, Intermediate GNVQ, City and Guilds Craft, BTEC First or General Diploma, RSA Diploma
Apprenticeship
Apprenticeship
Level 3
2 or more A levels or VCEs, 4 or more AS levels, Higher School Certificate, Progression or Advanced Diploma, Welsh Baccalaureate Advance Diploma, NVQ level 3; Advanced GNVQ, City and Guilds Advanced Craft, ONC, OND, BTEC National, RSA Advanced Diploma
Level 4 +
Degree (BA, BSc), higher degree (MA, PhD, PGCE), NVQ level 4 to 5, HNC, HND, RSA Higher Diploma, BTEC Higher level, professional qualifications (for example, teaching, nursing, accountancy)
Other
Vocational or work-related qualifications, other qualifications achieved in England or Wales, qualifications achieved outside England or Wales (equivalent not stated or unknown)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Family PACT Client Demographics by County’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/ac7c0a53-9cfc-439e-8638-9c654d687fea on 26 January 2022.
--- Dataset description provided by original source is as follows ---
This dataset includes the following variables: client county; number, percentage, average, and age of clients served, number and percentage of adolescent client served, number and percentage of male clients served , and clients served by race and ethnicity (Latino, White, African American, Asian and Pacific Islander, Other (including Native American); and clients served by primary language (Spanish, English, Other).
--- Original source retains full ownership of the source dataset ---
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the England Hispanic or Latino population. It includes the distribution of the Hispanic or Latino population, of England, by their ancestries, as identified by the Census Bureau. The dataset can be utilized to understand the origin of the Hispanic or Latino population of England.
Key observations
Among the Hispanic population in England, regardless of the race, the largest group is of Mexican origin, with a population of 116 (100% of the total Hispanic population).
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Origin for Hispanic or Latino population include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for England Population by Race & Ethnicity. You can refer the same here
Social vulnerability is defined as the disproportionate susceptibility of some social groups to the impacts of hazards, including death, injury, loss, or disruption of livelihood. In this dataset from Climate Ready Boston, groups identified as being more vulnerable are older adults, children, people of color, people with limited English proficiency, people with low or no incomes, people with disabilities, and people with medical illnesses. Source:The analysis and definitions used in Climate Ready Boston (2016) are based on "A framework to understand the relationship between social factors that reduce resilience in cities: Application to the City of Boston." Published 2015 in the International Journal of Disaster Risk Reduction by Atyia Martin, Northeastern University.Population Definitions:Older Adults:Older adults (those over age 65) have physical vulnerabilities in a climate event; they suffer from higher rates of medical illness than the rest of the population and can have some functional limitations in an evacuation scenario, as well as when preparing for and recovering from a disaster. Furthermore, older adults are physically more vulnerable to the impacts of extreme heat. Beyond the physical risk, older adults are more likely to be socially isolated. Without an appropriate support network, an initially small risk could be exacerbated if an older adult is not able to get help.Data source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract for population over 65 years of age.Attribute label: OlderAdultChildren: Families with children require additional resources in a climate event. When school is cancelled, parents need alternative childcare options, which can mean missing work. Children are especially vulnerable to extreme heat and stress following a natural disaster.Data source: 2010 American Community Survey 5-year Estimates (ACS) data by census tract for population under 5 years of age.Attribute label: TotChildPeople of Color: People of color make up a majority (53 percent) of Boston’s population. People of color are more likely to fall into multiple vulnerable groups aswell. People of color statistically have lower levels of income and higher levels of poverty than the population at large. People of color, many of whom also have limited English proficiency, may not have ready access in their primary language to information about the dangers of extreme heat or about cooling center resources. This risk to extreme heat can be compounded by the fact that people of color often live in more densely populated urban areas that are at higher risk for heat exposure due to the urban heat island effect.Data source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract: Black, Native American, Asian, Island, Other, Multi, Non-white Hispanics.Attribute label: POC2Limited English Proficiency: Without adequate English skills, residents can miss crucial information on how to preparefor hazards. Cultural practices for information sharing, for example, may focus on word-of-mouth communication. In a flood event, residents can also face challenges communicating with emergency response personnel. If residents are more sociallyisolated, they may be less likely to hear about upcoming events. Finally, immigrants, especially ones who are undocumented, may be reluctant to use government services out of fear of deportation or general distrust of the government or emergency personnel.Data Source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract, defined as speaks English only or speaks English “very well”.Attribute label: LEPLow to no Income: A lack of financial resources impacts a household’s ability to prepare for a disaster event and to support friends and neighborhoods. For example, residents without televisions, computers, or data-driven mobile phones may face challenges getting news about hazards or recovery resources. Renters may have trouble finding and paying deposits for replacement housing if their residence is impacted by flooding. Homeowners may be less able to afford insurance that will cover flood damage. Having low or no income can create difficulty evacuating in a disaster event because of a higher reliance on public transportation. If unable to evacuate, residents may be more at risk without supplies to stay in their homes for an extended period of time. Low- and no-income residents can also be more vulnerable to hot weather if running air conditioning or fans puts utility costs out of reach.Data source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract for low-to- no income populations. The data represents a calculated field that combines people who were 100% below the poverty level and those who were 100–149% of the poverty level.Attribute label: Low_to_NoPeople with Disabilities: People with disabilities are among the most vulnerable in an emergency; they sustain disproportionate rates of illness, injury, and death in disaster events.46 People with disabilities can find it difficult to adequately prepare for a disaster event, including moving to a safer place. They are more likely to be left behind or abandoned during evacuations. Rescue and relief resources—like emergency transportation or shelters, for example— may not be universally accessible. Research has revealed a historic pattern of discrimination against people with disabilities in times of resource scarcity, like after a major storm and flood.Data source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract for total civilian non-institutionalized population, including: hearing difficulty, vision difficulty, cognitive difficulty, ambulatory difficulty, self-care difficulty, and independent living difficulty. Attribute label: TotDisMedical Illness: Symptoms of existing medical illnesses are often exacerbated by hot temperatures. For example, heat can trigger asthma attacks or increase already high blood pressure due to the stress of high temperatures put on the body. Climate events can interrupt access to normal sources of healthcare and even life-sustaining medication. Special planning is required for people experiencing medical illness. For example, people dependent on dialysis will have different evacuation and care needs than other Boston residents in a climate event.Data source: Medical illness is a proxy measure which is based on EASI data accessed through Simply Map. Health data at the local level in Massachusetts is not available beyond zip codes. EASI modeled the health statistics for the U.S. population based upon age, sex, and race probabilities using U.S. Census Bureau data. The probabilities are modeled against the census and current year and five year forecasts. Medical illness is the sum of asthma in children, asthma in adults, heart disease, emphysema, bronchitis, cancer, diabetes, kidney disease, and liver disease. A limitation is that these numbers may be over-counted as the result of people potentially having more than one medical illness. Therefore, the analysis may have greater numbers of people with medical illness within census tracts than actually present. Overall, the analysis was based on the relationship between social factors.Attribute label: MedIllnesOther attribute definitions:GEOID10: Geographic identifier: State Code (25), Country Code (025), 2010 Census TractAREA_SQFT: Tract area (in square feet)AREA_ACRES: Tract area (in acres)POP100_RE: Tract population countHU100_RE: Tract housing unit countName: Boston Neighborhood
For the past several censuses, the Census Bureau has invited people to self-respond before following up in-person using census takers. The 2010 Census invited people to self-respond predominately by returning paper questionnaires in the mail. The 2020 Census allows people to self-respond in three ways: online, by phone, or by mail.The 2020 Census self-response rates are self-response rates for current census geographies. These rates are the daily and cumulative self-response rates for all housing units that received invitations to self-respond to the 2020 Census. The 2020 Census self-response rates are available for states, counties, census tracts, congressional districts, towns and townships, consolidated cities, incorporated places, tribal areas, and tribal census tracts.The Self-Response Rate of Los Angeles County is 65.1% for 2020 Census, which is slightly lower than 69.6% of California State rate.More information about these data is available in the Self-Response Rates Map Data and Technical Documentation document associated with the 2020 Self-Response Rates Map or review FAQs.Animated Self-Response Rate 2010 vs 2020 is available at ESRI site SRR Animated Maps and can explore Census 2020 SRR data at ESRI Demographic site Census 2020 SSR Data.Following Demographic Characteristics are included in this data and web maps to visualize their relationships with Census Self-Response Rate (SRR).1. Population Density: 2020 Population per square mile,2. Poverty Rate: Percentage of population under 100% FPL,3. Median Household income: Based on countywide median HH income of $71,538.4. Highschool Education Attainment: Percentage of 18 years and older population without high school graduation.5. English Speaking Ability: Percentage of 18 years and older population with less or none English speaking ability. 6. Household without Internet Access: Percentage of HH without internet access.7. Non-Hispanic White Population: Percentage of Non-Hispanic White population.8. Non-Hispanic African-American Population: Percentage of Non-Hispanic African-American population.9. Non-Hispanic Asian Population: Percentage of Non-Hispanic Asian population.10. Hispanic Population: Percentage of Hispanic population.
During the Second World War, the three Axis powers of Germany, Italy, and Finland mobilized the largest share of their male population. For the Allies, the Soviet Union mobilized the largest share of men, as well as the largest total army of any country, but it was restricted in its ability to mobilize more due to the impact this would have on its economy. Other notable statistics come from the British Empire, where a larger share of men were drafted from Dominions than from the metropole, and there is also a discrepancy between the share of the black and white populations from South Africa.
However, it should be noted that there were many external factors from the war that influenced these figures. For example, gender ratios among the adult populations of many European countries was already skewed due to previous conflicts of the 20th century (namely WWI and the Russian Revolution), whereas the share of the male population eligible to fight in many Asian and African countries was lower than more demographically developed societies, as high child mortality rates meant that the average age of the population was much lower.
This dataset includes the following variables: client county; number, percentage, average, and age of clients served, number and percentage of adolescent client served, number and percentage of male clients served , and clients served by race and ethnicity (Latino, White, African American, Asian and Pacific Islander, Other (including Native American); and clients served by primary language (Spanish, English, Other).
http://reference.data.gov.uk/id/open-government-licencehttp://reference.data.gov.uk/id/open-government-licence
Dataset population: Persons
Ethnic group
Ethnic group classifies people according to their own perceived ethnic group and cultural background.
This topic contains ethnic group write-in responses without reference to the five broad ethnic group categories, e.g. all Irish people, irrespective of whether they are White, Mixed/multiple ethnic groups, Asian/Asian British, Black/African/Caribbean/Black British or Other ethnic group, are in the 'Irish' response category. This topic was created as part of the commissioned table processing.
National identity
A person's national identity is a self-determined assessment of their own identity with respect to the country or countries with which they feel an affiliation. This assessment of identity is not dependent on legal nationality or ethnic group.
The national identity question included six tick box responses:
Where a person ticked 'Other' they were asked to write in the name of the country. People were asked to tick all options that they felt applied to them. This means that in results relating to national identity people may be classified with a single national identity or a combination of identities.
This dataset includes the attendance rate for public school students PK-12 by student group and by district during the 2022-2023 school year. Student groups include: Students experiencing homelessness Students with disabilities Students who qualify for free/reduced lunch English learners All high needs students Non-high needs students Students by race/ethnicity (Hispanic/Latino of any race, Black or African American, White, All other races) Attendance rates are provided for each student group by district and for the state. Students who are considered high needs include students who are English language learners, who receive special education, or who qualify for free and reduced lunch. When no attendance data is displayed in a cell, data have been suppressed to safeguard student confidentiality, or to ensure that statistics based on a very small sample size are not interpreted as equally representative as those based on a sufficiently larger sample size. For more information on CSDE data suppression policies, please visit http://edsight.ct.gov/relatedreports/BDCRE%20Data%20Suppression%20Rules.pdf.
This dataset is a demographic shapefile for SCAG Active Transportation Program (ATP) that contains Census tract level population, race, employment, English speaking, income, and elderly data of the SCAG region. Race data includes the percentage of population that is white, black, Asian, Latino, Pacific Islander, Native American, multiple races, or other. Population data includes 2010 population 2015 population, and population density. Employment data includes 2015 employment, unemployment, and employment density. English speaking data includes the percentage of the population that speaks English well. This shapefile also includes median household income and percentage of the population that is 65 years or older. This data was sourced mostly from Census data as well as the Healthy Places Index (HPI). Original data sources are listed in the relevant fields.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Non-Hispanic population of South English by race. It includes the distribution of the Non-Hispanic population of South English across various race categories as identified by the Census Bureau. The dataset can be utilized to understand the Non-Hispanic population distribution of South English across relevant racial categories.
Key observations
Of the Non-Hispanic population in South English, the largest racial group is White alone with a population of 195 (91.98% of the total Non-Hispanic population).
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for South English Population by Race & Ethnicity. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Non-Hispanic population of North English by race. It includes the distribution of the Non-Hispanic population of North English across various race categories as identified by the Census Bureau. The dataset can be utilized to understand the Non-Hispanic population distribution of North English across relevant racial categories.
Key observations
With a zero Hispanic population, North English is 100% Non-Hispanic. Among the Non-Hispanic population, the largest racial group is White alone with a population of 886 (97.68% of the total Non-Hispanic population).
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for North English Population by Race & Ethnicity. You can refer the same here