10 datasets found
  1. Insightful & Vast USA Statistics

    • kaggle.com
    Updated May 19, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Golden Oak Research Group (2018). Insightful & Vast USA Statistics [Dataset]. https://www.kaggle.com/forums/f/6032/insightful-vast-usa-statistics
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 19, 2018
    Dataset provided by
    Kaggle
    Authors
    Golden Oak Research Group
    Area covered
    United States
    Description

    Very Important

    • Check out the new must-see kernel for this dataset Click Here
    • Make Sure to upvote for more datasets and kernel :D

    Overview:

    Explore the dataset and potentially gain valuable insight into your data science project through interesting features. The dataset was developed for a portfolio optimization graduate project I was working on. The goal was to the monetize risk of company deleveraging by associated with changes in economic data. Applications of the dataset may include. To see the data in action visit my analytics page. Analytics Page & Dashboard and to access all 295,000+ records click here.

    • Mortgage-Backed Securities
    • Geographic Business Investment
    • Real Estate Analysis

    For any questions, you may reach us at research_development@goldenoakresearch.com. For immediate assistance, you may reach me on at 585-626-2965. Please Note: the number is my personal number and email is preferred

    Statistical Themes:

    Note: in total there are 75 fields the following are just themes the fields fall under Home Owner Costs: Sum of utilities, property taxes.

    • Second Mortgage: Households with a second mortgage statistics.
    • Home Equity Loan: Households with a Home equity Loan statistics.
    • Debt: Households with any type of debt statistics.
    • Mortgage Costs: Statistics regarding mortgage payments, home equity loans, utilities and property taxes
    • Home Owner Costs: Sum of utilities, property taxes statistics
    • Gross Rent: Contract rent plus the estimated average monthly cost of utility features
    • Gross Rent as Percent of Income Gross rent as the percent of income very interesting
    • High school Graduation: High school graduation statistics.
    • Population Demographics: Population demographic statistics.
    • Age Demographics: Age demographic statistics.
    • Household Income: Total income of people residing in the household.
    • Family Income: Total income of people related to the householder.

    Sources, if you wish to get the data your self :)

    2012-2016 ACS 5-Year Documentation was provided by the U.S. Census Reports. Retrieved May 2, 2018, from

    Access All 325,258 Location of Our Most Complete Database Ever:

    Providing you the potential to monetize risk and optimize your investment portfolio through quality economic features at unbeatable price. Access all 295,000+ records on an incredibly small scale, see links below for more details:

  2. d

    NYSERDA Low- to Moderate-Income New York State Census Population Analysis...

    • catalog.data.gov
    • datasets.ai
    • +3more
    Updated Jun 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ny.gov (2025). NYSERDA Low- to Moderate-Income New York State Census Population Analysis Dataset: Average for 2013-2015 [Dataset]. https://catalog.data.gov/dataset/nyserda-low-to-moderate-income-new-york-state-census-population-analysis-dataset-aver-2013
    Explore at:
    Dataset updated
    Jun 28, 2025
    Dataset provided by
    data.ny.gov
    Area covered
    New York
    Description

    How does your organization use this dataset? What other NYSERDA or energy-related datasets would you like to see on Open NY? Let us know by emailing OpenNY@nyserda.ny.gov. The Low- to Moderate-Income (LMI) New York State (NYS) Census Population Analysis dataset is resultant from the LMI market database designed by APPRISE as part of the NYSERDA LMI Market Characterization Study (https://www.nyserda.ny.gov/lmi-tool). All data are derived from the U.S. Census Bureau’s American Community Survey (ACS) 1-year Public Use Microdata Sample (PUMS) files for 2013, 2014, and 2015. Each row in the LMI dataset is an individual record for a household that responded to the survey and each column is a variable of interest for analyzing the low- to moderate-income population. The LMI dataset includes: county/county group, households with elderly, households with children, economic development region, income groups, percent of poverty level, low- to moderate-income groups, household type, non-elderly disabled indicator, race/ethnicity, linguistic isolation, housing unit type, owner-renter status, main heating fuel type, home energy payment method, housing vintage, LMI study region, LMI population segment, mortgage indicator, time in home, head of household education level, head of household age, and household weight. The LMI NYS Census Population Analysis dataset is intended for users who want to explore the underlying data that supports the LMI Analysis Tool. The majority of those interested in LMI statistics and generating custom charts should use the interactive LMI Analysis Tool at https://www.nyserda.ny.gov/lmi-tool. This underlying LMI dataset is intended for users with experience working with survey data files and producing weighted survey estimates using statistical software packages (such as SAS, SPSS, or Stata).

  3. A

    ‘ Zillow Housing Aspirations Report’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Feb 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘ Zillow Housing Aspirations Report’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-zillow-housing-aspirations-report-28aa/30d4e5d5/?iid=000-068&v=presentation
    Explore at:
    Dataset updated
    Feb 13, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘ Zillow Housing Aspirations Report’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yamqwe/zillow-housing-aspirations-reporte on 13 February 2022.

    --- Dataset description provided by original source is as follows ---

    About this dataset

    Additional Data Products

    Product: Zillow Housing Aspirations Report

    Date: April 2017

    Definitions

    Home Types and Housing Stock

    • All Homes: Zillow defines all homes as single-family, condominium and co-operative homes with a county record. Unless specified, all series cover this segment of the housing stock.
    • Condo/Co-op: Condominium and co-operative homes.
    • Multifamily 5+ units: Units in buildings with 5 or more housing units, that are not a condominiums or co-ops.
    • Duplex/Triplex: Housing units in buildings with 2 or 3 housing units.

    Additional Data Products

    • Zillow Home Value Forecast (ZHVF): The ZHVF is the one-year forecast of the ZHVI. Our forecast methodology is methodology post.
    • Zillow creates our negative equity data using our own data in conjunction with data received through our partnership with TransUnion, a leading credit bureau. We match estimated home values against actual outstanding home-related debt amounts provided by TransUnion. To read more about how we calculate our negative equity metrics, please see our here.
    • Cash Buyers: The share of homes in a given area purchased without financing/in cash. To read about how we calculate our cash buyer data, please see our research brief.
    • Mortgage Affordability, Rental Affordability, Price-to-Income Ratio, Historical ZHVI, Historical ZHVI and Houshold Income are calculated as a part of Zillow’s quarterly Affordability Indices. To calculate mortgage affordability, we first calculate the mortgage payment for the median-valued home in a metropolitan area by using the metro-level Zillow Home Value Index for a given quarter and the 30-year fixed mortgage interest rate during that time period, provided by the Freddie Mac Primary Mortgage Market Survey (based on a 20 percent down payment). Then, we consider what portion of the monthly median household income (U.S. Census) goes toward this monthly mortgage payment. Median household income is available with a lag. For quarters where median income is not available from the U.S. Census Bureau, we calculate future quarters of median household income by estimating it using the Bureau of Labor Statistics’ Employment Cost Index. The affordability forecast is calculated similarly to the current affordability index but uses the one year Zillow Home Value Forecast instead of the current Zillow Home Value Index and a specified interest rate in lieu of PMMS. It also assumes a 20 percent down payment. We calculate rent affordability similarly to mortgage affordability; however we use the Zillow Rent Index, which tracks the monthly median rent in particular geographical regions, to capture rental prices. Rents are chained back in time by using U.S. Census Bureau American Community Survey data from 2006 to the start of the Zillow Rent Index, and Decennial Census for all other years.
    • The mortgage rate series is the average mortgage rate quoted on Zillow Mortgages for a 30-year, fixed-rate mortgage in 15-minute increments during business hours, 6:00 AM to 5:00 PM Pacific. It does not include quotes for jumbo loans, FHA loans, VA loans, loans with mortgage insurance or quotes to consumers with credit scores below 720. Federal holidays are excluded. The jumbo mortgage rate series is the average jumbo mortgage rate quoted on Zillow Mortgages for a 30-year, fixed-rate, jumbo mortgage in one-hour increments during business hours, 6:00 AM to 5:00 PM Pacific Time. It does not include quotes to consumers with credit scores below 720. Traditional federal holidays and hours with insufficient sample sizes are excluded.

    About Zillow Data (and Terms of Use Information)

    • Zillow is in the process of transitioning some data sources with the goal of producing published data that is more comprehensive, reliable, accurate and timely. As this new data is incorporated, the publication of select metrics may be delayed or temporarily suspended. We look forward to resuming our usual publication schedule for all of our established datasets as soon as possible, and we apologize for any inconvenience. Thank you for your patience and understanding.
    • All data accessed and downloaded from this page is free for public use by consumers, media, analysts, academics etc., consistent with our published Terms of Use. Proper and clear attribution of all data to Zillow is required.
    • For other data requests or inquiries for Zillow Real Estate Research, contact us here.
    • All files are time series unless noted otherwise.
    • To download all Zillow metrics for specific levels of geography, click here.
    • To download a crosswalk between Zillow regions and federally defined regions for counties and metro areas, click here.
    • Unless otherwise noted, all series cover single-family residences, condominiums and co-op homes only.

    Source: https://www.zillow.com/research/data/

    This dataset was created by Zillow Data and contains around 200 samples along with Unnamed: 1, Unnamed: 0, technical information and other features such as: - Unnamed: 1 - Unnamed: 0 - and more.

    How to use this dataset

    • Analyze Unnamed: 1 in relation to Unnamed: 0
    • Study the influence of Unnamed: 1 on Unnamed: 0
    • More datasets

    Acknowledgements

    If you use this dataset in your research, please credit Zillow Data

    Start A New Notebook!

    --- Original source retains full ownership of the source dataset ---

  4. Credit_Risk_Analysis

    • kaggle.com
    Updated Aug 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nandita Pore (2023). Credit_Risk_Analysis [Dataset]. https://www.kaggle.com/datasets/nanditapore/credit-risk-analysis/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 28, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Nandita Pore
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Description: Welcome to the "Loan Applicant Data for Credit Risk Analysis" dataset on Kaggle! This dataset provides essential information about loan applicants and their characteristics. Your task is to develop predictive models to determine the likelihood of loan default based on these simplified features.

    In today's financial landscape, assessing credit risk is crucial for lenders and financial institutions. This dataset offers a simplified view of the factors that contribute to credit risk, making it an excellent opportunity for data scientists to apply their skills in machine learning and predictive modeling.

    Column Descriptions:

    • ID: Unique identifier for each loan applicant.
    • Age: Age of the loan applicant.
    • Income: Income of the loan applicant.
    • Home: Home ownership status (Own, Mortgage, Rent).
    • Emp_Length: Employment length in years.
    • Intent: Purpose of the loan (e.g., education, home improvement).
    • Amount: Loan amount applied for.
    • Rate: Interest rate on the loan.
    • Status: Loan approval status (Fully Paid, Charged Off, Current).
    • Percent_Income: Loan amount as a percentage of income.
    • Default: Whether the applicant has defaulted on a loan previously (Yes, No).
    • Cred_Length: Length of the applicant's credit history.

    Explore this dataset, preprocess the data as needed, and develop machine learning models, especially using Random Forest, to predict loan default. Your insights and solutions could contribute to better credit risk assessment methods and potentially help lenders make more informed decisions.

    Remember to respect data privacy and ethics guidelines while working with this data. Good luck, and happy analyzing!

  5. Expenditure on mortgage and rent as a proportion of total expenditure and...

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Jul 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2023). Expenditure on mortgage and rent as a proportion of total expenditure and disposable income, UK [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/personalandhouseholdfinances/expenditure/datasets/expenditureonmortgageandrentasaproportionoftotalexpenditureanddisposableincomeuk
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jul 14, 2023
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Area covered
    United Kingdom
    Description

    Expenditure on rent by renters and mortgages by mortgage holders, by region and age from the Living Costs and Food Survey for the financial year ending 2022. Data is presented as a proportion of total expenditure and a proportion of disposable income.

  6. what percentage of your gross salary does the consumer financial protection...

    • kappasignal.com
    Updated May 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). what percentage of your gross salary does the consumer financial protection bureau suggest your student loan payment be in order to be affordable and limit your risk of delinquency and default? (Forecast) [Dataset]. https://www.kappasignal.com/2023/05/what-percentage-of-your-gross-salary.html
    Explore at:
    Dataset updated
    May 8, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    what percentage of your gross salary does the consumer financial protection bureau suggest your student loan payment be in order to be affordable and limit your risk of delinquency and default?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  7. Envestnet | Yodlee's De-Identified Retail Sales Data | Row/Aggregate Level |...

    • datarade.ai
    .sql, .txt
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Envestnet | Yodlee, Envestnet | Yodlee's De-Identified Retail Sales Data | Row/Aggregate Level | USA Consumer Data covering 3600+ corporations | 90M+ Accounts [Dataset]. https://datarade.ai/data-products/envestnet-yodlee-s-de-identified-retail-sales-data-row-ag-envestnet-yodlee
    Explore at:
    .sql, .txtAvailable download formats
    Dataset provided by
    Envestnethttp://envestnet.com/
    Yodlee
    Authors
    Envestnet | Yodlee
    Area covered
    United States of America
    Description

    Envestnet®| Yodlee®'s Retail Sales Data (Aggregate/Row) Panels consist of de-identified, near-real time (T+1) USA credit/debit/ACH transaction level data – offering a wide view of the consumer activity ecosystem. The underlying data is sourced from end users leveraging the aggregation portion of the Envestnet®| Yodlee®'s financial technology platform.

    Envestnet | Yodlee Consumer Panels (Aggregate/Row) include data relating to millions of transactions, including ticket size and merchant location. The dataset includes de-identified credit/debit card and bank transactions (such as a payroll deposit, account transfer, or mortgage payment). Our coverage offers insights into areas such as consumer, TMT, energy, REITs, internet, utilities, ecommerce, MBS, CMBS, equities, credit, commodities, FX, and corporate activity. We apply rigorous data science practices to deliver key KPIs daily that are focused, relevant, and ready to put into production.

    We offer free trials. Our team is available to provide support for loading, validation, sample scripts, or other services you may need to generate insights from our data.

    Investors, corporate researchers, and corporates can use our data to answer some key business questions such as: - How much are consumers spending with specific merchants/brands and how is that changing over time? - Is the share of consumer spend at a specific merchant increasing or decreasing? - How are consumers reacting to new products or services launched by merchants? - For loyal customers, how is the share of spend changing over time? - What is the company’s market share in a region for similar customers? - Is the company’s loyal user base increasing or decreasing? - Is the lifetime customer value increasing or decreasing?

    Additional Use Cases: - Use spending data to analyze sales/revenue broadly (sector-wide) or granular (company-specific). Historically, our tracked consumer spend has correlated above 85% with company-reported data from thousands of firms. Users can sort and filter by many metrics and KPIs, such as sales and transaction growth rates and online or offline transactions, as well as view customer behavior within a geographic market at a state or city level. - Reveal cohort consumer behavior to decipher long-term behavioral consumer spending shifts. Measure market share, wallet share, loyalty, consumer lifetime value, retention, demographics, and more.) - Study the effects of inflation rates via such metrics as increased total spend, ticket size, and number of transactions. - Seek out alpha-generating signals or manage your business strategically with essential, aggregated transaction and spending data analytics.

    Use Cases Categories (Our data provides an innumerable amount of use cases, and we look forward to working with new ones): 1. Market Research: Company Analysis, Company Valuation, Competitive Intelligence, Competitor Analysis, Competitor Analytics, Competitor Insights, Customer Data Enrichment, Customer Data Insights, Customer Data Intelligence, Demand Forecasting, Ecommerce Intelligence, Employee Pay Strategy, Employment Analytics, Job Income Analysis, Job Market Pricing, Marketing, Marketing Data Enrichment, Marketing Intelligence, Marketing Strategy, Payment History Analytics, Price Analysis, Pricing Analytics, Retail, Retail Analytics, Retail Intelligence, Retail POS Data Analysis, and Salary Benchmarking

    1. Investment Research: Financial Services, Hedge Funds, Investing, Mergers & Acquisitions (M&A), Stock Picking, Venture Capital (VC)

    2. Consumer Analysis: Consumer Data Enrichment, Consumer Intelligence

    3. Market Data: AnalyticsB2C Data Enrichment, Bank Data Enrichment, Behavioral Analytics, Benchmarking, Customer Insights, Customer Intelligence, Data Enhancement, Data Enrichment, Data Intelligence, Data Modeling, Ecommerce Analysis, Ecommerce Data Enrichment, Economic Analysis, Financial Data Enrichment, Financial Intelligence, Local Economic Forecasting, Location-based Analytics, Market Analysis, Market Analytics, Market Intelligence, Market Potential Analysis, Market Research, Market Share Analysis, Sales, Sales Data Enrichment, Sales Enablement, Sales Insights, Sales Intelligence, Spending Analytics, Stock Market Predictions, and Trend Analysis

  8. Envestnet | Yodlee's De-Identified Food and Grocery Transaction Data |...

    • datarade.ai
    .sql, .txt
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Envestnet | Yodlee, Envestnet | Yodlee's De-Identified Food and Grocery Transaction Data | Row/Aggregate Level | USA Consumer Data covering 3600+ Companies | 90M+ Accts [Dataset]. https://datarade.ai/data-products/envestnet-yodlee-s-de-identified-food-and-grocery-transacti-envestnet-yodlee
    Explore at:
    .sql, .txtAvailable download formats
    Dataset provided by
    Envestnethttp://envestnet.com/
    Yodlee
    Authors
    Envestnet | Yodlee
    Area covered
    United States of America
    Description

    Envestnet®| Yodlee®'s Electronic Payment Data (Aggregate/Row) Panels consist of de-identified, near-real time (T+1) USA credit/debit/ACH transaction level data – offering a wide view of the consumer activity ecosystem. The underlying data is sourced from end users leveraging the aggregation portion of the Envestnet®| Yodlee®'s financial technology platform.

    Envestnet | Yodlee Consumer Panels (Aggregate/Row) include data relating to millions of transactions, including ticket size and merchant location. The dataset includes de-identified credit/debit card and bank transactions (such as a payroll deposit, account transfer, or mortgage payment). Our coverage offers insights into areas such as consumer, TMT, energy, REITs, internet, utilities, ecommerce, MBS, CMBS, equities, credit, commodities, FX, and corporate activity. We apply rigorous data science practices to deliver key KPIs daily that are focused, relevant, and ready to put into production.

    We offer free trials. Our team is available to provide support for loading, validation, sample scripts, or other services you may need to generate insights from our data.

    Investors, corporate researchers, and corporates can use our data to answer some key business questions such as: - How much are consumers spending with specific merchants/brands and how is that changing over time? - Is the share of consumer spend at a specific merchant increasing or decreasing? - How are consumers reacting to new products or services launched by merchants? - For loyal customers, how is the share of spend changing over time? - What is the company’s market share in a region for similar customers? - Is the company’s loyal user base increasing or decreasing? - Is the lifetime customer value increasing or decreasing?

    Additional Use Cases: - Use spending data to analyze sales/revenue broadly (sector-wide) or granular (company-specific). Historically, our tracked consumer spend has correlated above 85% with company-reported data from thousands of firms. Users can sort and filter by many metrics and KPIs, such as sales and transaction growth rates and online or offline transactions, as well as view customer behavior within a geographic market at a state or city level. - Reveal cohort consumer behavior to decipher long-term behavioral consumer spending shifts. Measure market share, wallet share, loyalty, consumer lifetime value, retention, demographics, and more.) - Study the effects of inflation rates via such metrics as increased total spend, ticket size, and number of transactions. - Seek out alpha-generating signals or manage your business strategically with essential, aggregated transaction and spending data analytics.

    Use Cases Categories (Our data provides an innumerable amount of use cases, and we look forward to working with new ones): 1. Market Research: Company Analysis, Company Valuation, Competitive Intelligence, Competitor Analysis, Competitor Analytics, Competitor Insights, Customer Data Enrichment, Customer Data Insights, Customer Data Intelligence, Demand Forecasting, Ecommerce Intelligence, Employee Pay Strategy, Employment Analytics, Job Income Analysis, Job Market Pricing, Marketing, Marketing Data Enrichment, Marketing Intelligence, Marketing Strategy, Payment History Analytics, Price Analysis, Pricing Analytics, Retail, Retail Analytics, Retail Intelligence, Retail POS Data Analysis, and Salary Benchmarking

    1. Investment Research: Financial Services, Hedge Funds, Investing, Mergers & Acquisitions (M&A), Stock Picking, Venture Capital (VC)

    2. Consumer Analysis: Consumer Data Enrichment, Consumer Intelligence

    3. Market Data: AnalyticsB2C Data Enrichment, Bank Data Enrichment, Behavioral Analytics, Benchmarking, Customer Insights, Customer Intelligence, Data Enhancement, Data Enrichment, Data Intelligence, Data Modeling, Ecommerce Analysis, Ecommerce Data Enrichment, Economic Analysis, Financial Data Enrichment, Financial Intelligence, Local Economic Forecasting, Location-based Analytics, Market Analysis, Market Analytics, Market Intelligence, Market Potential Analysis, Market Research, Market Share Analysis, Sales, Sales Data Enrichment, Sales Enablement, Sales Insights, Sales Intelligence, Spending Analytics, Stock Market Predictions, and Trend Analysis

  9. Envestnet | Yodlee's De-Identified Restaurant and Food Delivery Transaction...

    • datarade.ai
    .sql, .txt
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Envestnet | Yodlee, Envestnet | Yodlee's De-Identified Restaurant and Food Delivery Transaction Data | Row/Aggregate Level | USA Consumer Data covering 3600+ corporations [Dataset]. https://datarade.ai/data-products/envestnet-yodlee-s-de-identified-restaurant-and-food-delive-envestnet-yodlee
    Explore at:
    .sql, .txtAvailable download formats
    Dataset provided by
    Envestnethttp://envestnet.com/
    Yodlee
    Authors
    Envestnet | Yodlee
    Area covered
    United States of America
    Description

    Envestnet®| Yodlee®'s Restaurant and Food Delivery Transaction Data (Aggregate/Row) Panels consist of de-identified, near-real time (T+1) USA credit/debit/ACH transaction level data – offering a wide view of the consumer activity ecosystem. The underlying data is sourced from end users leveraging the aggregation portion of the Envestnet®| Yodlee®'s financial technology platform.

    Envestnet | Yodlee Consumer Panels (Aggregate/Row) include data relating to millions of transactions, including ticket size and merchant location. The dataset includes de-identified credit/debit card and bank transactions (such as a payroll deposit, account transfer, or mortgage payment). Our coverage offers insights into areas such as consumer, TMT, energy, REITs, internet, utilities, ecommerce, MBS, CMBS, equities, credit, commodities, FX, and corporate activity. We apply rigorous data science practices to deliver key KPIs daily that are focused, relevant, and ready to put into production.

    We offer free trials. Our team is available to provide support for loading, validation, sample scripts, or other services you may need to generate insights from our data.

    Investors, corporate researchers, and corporates can use our data to answer some key business questions such as: - How much are consumers spending with specific merchants/brands and how is that changing over time? - Is the share of consumer spend at a specific merchant increasing or decreasing? - How are consumers reacting to new products or services launched by merchants? - For loyal customers, how is the share of spend changing over time? - What is the company’s market share in a region for similar customers? - Is the company’s loyal user base increasing or decreasing? - Is the lifetime customer value increasing or decreasing?

    Additional Use Cases: - Use spending data to analyze sales/revenue broadly (sector-wide) or granular (company-specific). Historically, our tracked consumer spend has correlated above 85% with company-reported data from thousands of firms. Users can sort and filter by many metrics and KPIs, such as sales and transaction growth rates and online or offline transactions, as well as view customer behavior within a geographic market at a state or city level. - Reveal cohort consumer behavior to decipher long-term behavioral consumer spending shifts. Measure market share, wallet share, loyalty, consumer lifetime value, retention, demographics, and more.) - Study the effects of inflation rates via such metrics as increased total spend, ticket size, and number of transactions. - Seek out alpha-generating signals or manage your business strategically with essential, aggregated transaction and spending data analytics.

    Use Cases Categories (Our data provides an innumerable amount of use cases, and we look forward to working with new ones): 1. Market Research: Company Analysis, Company Valuation, Competitive Intelligence, Competitor Analysis, Competitor Analytics, Competitor Insights, Customer Data Enrichment, Customer Data Insights, Customer Data Intelligence, Demand Forecasting, Ecommerce Intelligence, Employee Pay Strategy, Employment Analytics, Job Income Analysis, Job Market Pricing, Marketing, Marketing Data Enrichment, Marketing Intelligence, Marketing Strategy, Payment History Analytics, Price Analysis, Pricing Analytics, Retail, Retail Analytics, Retail Intelligence, Retail POS Data Analysis, and Salary Benchmarking

    1. Investment Research: Financial Services, Hedge Funds, Investing, Mergers & Acquisitions (M&A), Stock Picking, Venture Capital (VC)

    2. Consumer Analysis: Consumer Data Enrichment, Consumer Intelligence

    3. Market Data: AnalyticsB2C Data Enrichment, Bank Data Enrichment, Behavioral Analytics, Benchmarking, Customer Insights, Customer Intelligence, Data Enhancement, Data Enrichment, Data Intelligence, Data Modeling, Ecommerce Analysis, Ecommerce Data Enrichment, Economic Analysis, Financial Data Enrichment, Financial Intelligence, Local Economic Forecasting, Location-based Analytics, Market Analysis, Market Analytics, Market Intelligence, Market Potential Analysis, Market Research, Market Share Analysis, Sales, Sales Data Enrichment, Sales Enablement, Sales Insights, Sales Intelligence, Spending Analytics, Stock Market Predictions, and Trend Analysis

  10. Envestnet | Yodlee's De-Identified Tourism Transaction Data | Row/Aggregate...

    • datarade.ai
    .sql, .txt
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Envestnet | Yodlee, Envestnet | Yodlee's De-Identified Tourism Transaction Data | Row/Aggregate Level | USA Consumer Data covering 3600+ corporations | 90M+ Accounts [Dataset]. https://datarade.ai/data-products/envestnet-yodlee-s-de-identified-tourism-transaction-data-envestnet-yodlee
    Explore at:
    .sql, .txtAvailable download formats
    Dataset provided by
    Envestnethttp://envestnet.com/
    Yodlee
    Authors
    Envestnet | Yodlee
    Area covered
    United States of America
    Description

    Envestnet®| Yodlee®'s Tourism Transaction Data (Aggregate/Row) Panels consist of de-identified, near-real time (T+1) USA credit/debit/ACH transaction level data – offering a wide view of the consumer activity ecosystem. The underlying data is sourced from end users leveraging the aggregation portion of the Envestnet®| Yodlee®'s financial technology platform.

    Envestnet | Yodlee Consumer Panels (Aggregate/Row) include data relating to millions of transactions, including ticket size and merchant location. The dataset includes de-identified credit/debit card and bank transactions (such as a payroll deposit, account transfer, or mortgage payment). Our coverage offers insights into areas such as consumer, TMT, energy, REITs, internet, utilities, ecommerce, MBS, CMBS, equities, credit, commodities, FX, and corporate activity. We apply rigorous data science practices to deliver key KPIs daily that are focused, relevant, and ready to put into production.

    We offer free trials. Our team is available to provide support for loading, validation, sample scripts, or other services you may need to generate insights from our data.

    Investors, corporate researchers, and corporates can use our data to answer some key business questions such as: - How much are consumers spending with specific merchants/brands and how is that changing over time? - Is the share of consumer spend at a specific merchant increasing or decreasing? - How are consumers reacting to new products or services launched by merchants? - For loyal customers, how is the share of spend changing over time? - What is the company’s market share in a region for similar customers? - Is the company’s loyal user base increasing or decreasing? - Is the lifetime customer value increasing or decreasing?

    Additional Use Cases: - Use spending data to analyze sales/revenue broadly (sector-wide) or granular (company-specific). Historically, our tracked consumer spend has correlated above 85% with company-reported data from thousands of firms. Users can sort and filter by many metrics and KPIs, such as sales and transaction growth rates and online or offline transactions, as well as view customer behavior within a geographic market at a state or city level. - Reveal cohort consumer behavior to decipher long-term behavioral consumer spending shifts. Measure market share, wallet share, loyalty, consumer lifetime value, retention, demographics, and more.) - Study the effects of inflation rates via such metrics as increased total spend, ticket size, and number of transactions. - Seek out alpha-generating signals or manage your business strategically with essential, aggregated transaction and spending data analytics.

    Use Cases Categories (Our data provides an innumerable amount of use cases, and we look forward to working with new ones): 1. Market Research: Company Analysis, Company Valuation, Competitive Intelligence, Competitor Analysis, Competitor Analytics, Competitor Insights, Customer Data Enrichment, Customer Data Insights, Customer Data Intelligence, Demand Forecasting, Ecommerce Intelligence, Employee Pay Strategy, Employment Analytics, Job Income Analysis, Job Market Pricing, Marketing, Marketing Data Enrichment, Marketing Intelligence, Marketing Strategy, Payment History Analytics, Price Analysis, Pricing Analytics, Retail, Retail Analytics, Retail Intelligence, Retail POS Data Analysis, and Salary Benchmarking

    1. Investment Research: Financial Services, Hedge Funds, Investing, Mergers & Acquisitions (M&A), Stock Picking, Venture Capital (VC)

    2. Consumer Analysis: Consumer Data Enrichment, Consumer Intelligence

    3. Market Data: AnalyticsB2C Data Enrichment, Bank Data Enrichment, Behavioral Analytics, Benchmarking, Customer Insights, Customer Intelligence, Data Enhancement, Data Enrichment, Data Intelligence, Data Modeling, Ecommerce Analysis, Ecommerce Data Enrichment, Economic Analysis, Financial Data Enrichment, Financial Intelligence, Local Economic Forecasting, Location-based Analytics, Market Analysis, Market Analytics, Market Intelligence, Market Potential Analysis, Market Research, Market Share Analysis, Sales, Sales Data Enrichment, Sales Enablement, Sales Insights, Sales Intelligence, Spending Analytics, Stock Market Predictions, and Trend Analysis

  11. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Golden Oak Research Group (2018). Insightful & Vast USA Statistics [Dataset]. https://www.kaggle.com/forums/f/6032/insightful-vast-usa-statistics
Organization logo

Insightful & Vast USA Statistics

Income, Age, Marriage, Mortgage, Home Equity Loan & Demographics

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
May 19, 2018
Dataset provided by
Kaggle
Authors
Golden Oak Research Group
Area covered
United States
Description

Very Important

  • Check out the new must-see kernel for this dataset Click Here
  • Make Sure to upvote for more datasets and kernel :D

Overview:

Explore the dataset and potentially gain valuable insight into your data science project through interesting features. The dataset was developed for a portfolio optimization graduate project I was working on. The goal was to the monetize risk of company deleveraging by associated with changes in economic data. Applications of the dataset may include. To see the data in action visit my analytics page. Analytics Page & Dashboard and to access all 295,000+ records click here.

  • Mortgage-Backed Securities
  • Geographic Business Investment
  • Real Estate Analysis

For any questions, you may reach us at research_development@goldenoakresearch.com. For immediate assistance, you may reach me on at 585-626-2965. Please Note: the number is my personal number and email is preferred

Statistical Themes:

Note: in total there are 75 fields the following are just themes the fields fall under Home Owner Costs: Sum of utilities, property taxes.

  • Second Mortgage: Households with a second mortgage statistics.
  • Home Equity Loan: Households with a Home equity Loan statistics.
  • Debt: Households with any type of debt statistics.
  • Mortgage Costs: Statistics regarding mortgage payments, home equity loans, utilities and property taxes
  • Home Owner Costs: Sum of utilities, property taxes statistics
  • Gross Rent: Contract rent plus the estimated average monthly cost of utility features
  • Gross Rent as Percent of Income Gross rent as the percent of income very interesting
  • High school Graduation: High school graduation statistics.
  • Population Demographics: Population demographic statistics.
  • Age Demographics: Age demographic statistics.
  • Household Income: Total income of people residing in the household.
  • Family Income: Total income of people related to the householder.

Sources, if you wish to get the data your self :)

2012-2016 ACS 5-Year Documentation was provided by the U.S. Census Reports. Retrieved May 2, 2018, from

Access All 325,258 Location of Our Most Complete Database Ever:

Providing you the potential to monetize risk and optimize your investment portfolio through quality economic features at unbeatable price. Access all 295,000+ records on an incredibly small scale, see links below for more details:

Search
Clear search
Close search
Google apps
Main menu