Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the mean household income for each of the five quintiles in China, Maine, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income Levels:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for China town median household income. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the mean household income for each of the five quintiles in Mexico, MO, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income Levels:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Mexico median household income. You can refer the same here
Facebook
TwitterIncome of individuals by age group, sex and income source, Canada, provinces and selected census metropolitan areas, annual.
Facebook
TwitterThe Health Inequality Project uses big data to measure differences in life expectancy by income across areas and identify strategies to improve health outcomes for low-income Americans.
This table reports life expectancy point estimates and standard errors for men and women at age 40 for each percentile of the national income distribution. Both race-adjusted and unadjusted estimates are reported.
This table reports life expectancy point estimates and standard errors for men and women at age 40 for each percentile of the national income distribution separately by year. Both race-adjusted and unadjusted estimates are reported.
This dataset was created on 2020-01-10 18:53:00.508 by merging multiple datasets together. The source datasets for this version were:
Commuting Zone Life Expectancy Estimates by year: CZ-level by-year life expectancy estimates for men and women, by income quartile
Commuting Zone Life Expectancy: Commuting zone (CZ)-level life expectancy estimates for men and women, by income quartile
Commuting Zone Life Expectancy Trends: CZ-level estimates of trends in life expectancy for men and women, by income quartile
Commuting Zone Characteristics: CZ-level characteristics
Commuting Zone Life Expectancy for larger populations: CZ-level life expectancy estimates for men and women, by income ventile
This table reports life expectancy point estimates and standard errors for men and women at age 40 for each quartile of the national income distribution by state of residence and year. Both race-adjusted and unadjusted estimates are reported.
This table reports US mortality rates by gender, age, year and household income percentile. Household incomes are measured two years prior to the mortality rate for mortality rates at ages 40-63, and at age 61 for mortality rates at ages 64-76. The “lag” variable indicates the number of years between measurement of income and mortality.
Observations with 1 or 2 deaths have been masked: all mortality rates that reflect only 1 or 2 deaths have been recoded to reflect 3 deaths
This table reports coefficients and standard errors from regressions of life expectancy estimates for men and women at age 40 for each quartile of the national income distribution on calendar year by commuting zone of residence. Only the slope coefficient, representing the average increase or decrease in life expectancy per year, is reported. Trend estimates for both race-adjusted and unadjusted life expectancies are reported. Estimates are reported for the 100 largest CZs (populations greater than 590,000) only.
This table reports life expectancy estimates at age 40 for Males and Females for all countries. Source: World Health Organization, accessed at: http://apps.who.int/gho/athena/
This table reports life expectancy point estimates and standard errors for men and women at age 40 for each quartile of the national income distribution by county of residence. Both race-adjusted and unadjusted estimates are reported. Estimates are reported for counties with populations larger than 25,000 only
This table reports life expectancy point estimates and standard errors for men and women at age 40 for each quartile of the national income distribution by commuting zone of residence and year. Both race-adjusted and unadjusted estimates are reported. Estimates are reported for the 100 largest CZs (populations greater than 590,000) only.
This table reports US population and death counts by age, year, and sex from various sources. Counts labelled “dm1” are derived from the Social Security Administration Data Master 1 file. Counts labelled “irs” are derived from tax data. Counts labelled “cdc” are derived from NCHS life tables.
This table reports numerous county characteristics, compiled from various sources. These characteristics are described in the county life expectancy table.
Two variables constructed by the Cen
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
I wanted to study the income distribution for the Spanish population and check if it follows a lognormal distribution, as usually stated in economics books.
This dataset contains statistics about the distribution of individual gross income in euros for the people of Spain between the 10th and 90th percentile of salaries, such as mean, median, 10th and 90th percentiles, and lower and upper quartiles. These statistics are available nationwide or by gender, state, and year up to 2022. I also enriched the INE data with AEAT data to add the percentiles 95th, 99th, and 99.9th.
This data is publicly available and was extracted from "Instituto Nacional de estadística" INE (Span's National Institute of Statistics). It was then cleaned and translated where convenient to follow best practices.
There are many useful applications of this data as and not limited to the: - Given a person who works in Spain and her salary, how is she doing? - Are there gender differences reflected in salaries? - Are there significant differences between states? - How are salaries evolving over time? - Is the distribution lognormal? - How much taxes can Spain expect to collect for the population in question? - Analysis of tax collection. - Many, many more.
Facebook
Twitterhttps://data.gov.sg/open-data-licencehttps://data.gov.sg/open-data-licence
Dataset from Singapore Department of Statistics. For more information, visit https://data.gov.sg/datasets/d_52760e82e8786bac11cca40eb29d1a93/view
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
To analyze the salaries of company employees using Pandas, NumPy, and other tools, you can structure the analysis process into several steps:
Case Study: Employee Salary Analysis In this case study, we aim to analyze the salaries of employees across different departments and levels within a company. Our goal is to uncover key patterns, identify outliers, and provide insights that can support decisions related to compensation and workforce management.
Step 1: Data Collection and Preparation Data Sources: The dataset typically includes employee ID, name, department, position, years of experience, salary, and additional compensation (bonuses, stock options, etc.). Data Cleaning: We use Pandas to handle missing or incomplete data, remove duplicates, and standardize formats. Example: df.dropna() to handle missing salary information, and df.drop_duplicates() to eliminate duplicate entries. Step 2: Data Exploration and Descriptive Statistics Exploratory Data Analysis (EDA): Using Pandas to calculate basic statistics such as mean, median, mode, and standard deviation for employee salaries. Example: df['salary'].describe() provides an overview of the distribution of salaries. Data Visualization: Leveraging tools like Matplotlib or Seaborn for visualizing salary distributions, box plots to detect outliers, and bar charts for department-wise salary breakdowns. Example: sns.boxplot(x='department', y='salary', data=df) provides a visual representation of salary variations by department. Step 3: Analysis Using NumPy Calculating Salary Ranges: NumPy can be used to calculate the range, variance, and percentiles of salary data to identify the spread and skewness of the salary distribution. Example: np.percentile(df['salary'], [25, 50, 75]) helps identify salary quartiles. Correlation Analysis: Identify the relationship between variables such as experience and salary using NumPy to compute correlation coefficients. Example: np.corrcoef(df['years_of_experience'], df['salary']) reveals if experience is a significant factor in salary determination. Step 4: Grouping and Aggregation Salary by Department and Position: Using Pandas' groupby function, we can summarize salary information for different departments and job titles to identify trends or inequalities. Example: df.groupby('department')['salary'].mean() calculates the average salary per department. Step 5: Salary Forecasting (Optional) Predictive Analysis: Using tools such as Scikit-learn, we could build a regression model to predict future salary increases based on factors like experience, education level, and performance ratings. Step 6: Insights and Recommendations Outlier Identification: Detect any employees earning significantly more or less than the average, which could signal inequities or high performers. Salary Discrepancies: Highlight any salary discrepancies between departments or gender that may require further investigation. Compensation Planning: Based on the analysis, suggest potential changes to the salary structure or bonus allocations to ensure fair compensation across the organization. Tools Used: Pandas: For data manipulation, grouping, and descriptive analysis. NumPy: For numerical operations such as percentiles and correlations. Matplotlib/Seaborn: For data visualization to highlight key patterns and trends. Scikit-learn (Optional): For building predictive models if salary forecasting is included in the analysis. This approach ensures a comprehensive analysis of employee salaries, providing actionable insights for human resource planning and compensation strategy.
Facebook
TwitterThis table presents income shares, thresholds, tax shares, and total counts of individual Canadian tax filers, with a focus on high income individuals (95% income threshold, 99% threshold, etc.). Income thresholds are geography-specific; for example, the number of Nova Scotians in the top 1% will be calculated as the number of taxfiling Nova Scotians whose total income exceeded the 99% income threshold of Nova Scotian tax filers. Different definitions of income are available in the table namely market, total, and after-tax income, both with and without capital gains.
Facebook
TwitterThe Distributional Financial Accounts (DFAs) provide a quarterly measure of the distribution of U.S. household wealth since 1989, based on a comprehensive integration of disaggregated household-level wealth data with official aggregate wealth measures. The data set contains the level and share of each balance sheet item on the Financial Accounts' household wealth table (Table B.101.h), for various sub-populations in the United States. In our core data set, aggregate household wealth is allocated to each of four percentile groups of wealth: the top 1 percent, the next 9 percent (i.e., 90th to 99th percentile), the next 40 percent (50th to 90th percentile), and the bottom half (below the 50th percentile). Additionally, the data set contains the level and share of aggregate household wealth by income, age, generation, education, and race. The quarterly frequency makes the data useful for studying the business cycle dynamics of wealth concentration--which are typically difficult to observe in lower-frequency data because peaks and troughs often fall between times of measurement. These data will be updated about 10 or 11 weeks after the end of each quarter, making them a timely measure of the distribution of wealth.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
By FiveThirtyEight [source]
This repository contains a comprehensive selection of lavish data and processing scripts behind the articles, graphics, and interactive experiences generated by FiveThirtyEight. With this dataset, you'll have the power to explore college programs and their graduates like never before and create stories of your own! Whether you use it to check our work or craft your own powerful visuals, we would absolutely love to know if you found it useful. Under the Creative Commons Attribution 4.0 International License and MIT License respectively, our data is available for anyone who chooses to use it. Let us know how our resources turned out at
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
- Create an interactive comparison tool for researching college majors and their earning potential, so that prospective students can make informed decisions about what to study.
- Analyze the proportions of male and female graduates across different majors to uncover gender disparities in higher education.
- Explore the correlations between major categories, average salaries earned by graduates from specific major categories, unemployment rates for those with specific majors and more – to identify trends in job opportunities for certain specialties of study
If you use this dataset in your research, please credit the original authors. Data Source
License: CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication No Copyright - You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission. See Other Information.
File: majors-list.csv | Column name | Description | |:-------------------|:----------------------------------------------------| | FOD1P | First-level division of the field of study (String) | | Major | The specific major of the field of study (String) | | Major_Category | The broader category of the field of study (String) |
File: recent-grads.csv | Column name | Description | |:-------------------------|:-------------------------------------------------------------------------------| | Major | The specific major of the field of study (String) | | Rank | The rank of the major in terms of popularity (Integer) | | Major_code | The code associated with the major (Integer) | | Major_category | The category of the major (String) | | Total | The total number of students in the major (Integer) | | Sample_size | The sample size of the major (Integer) | | Men | The number of male students in the major (Integer) | | Women | The number of female students in the major (Integer) | | ShareWomen | The percentage of female students in the major (Float) | | Employed | The number of employed graduates from the major (Integer) | | Full_time | The number of full-time employed graduates from the major (Integer) | | Part_time | The number of part-time employed graduates from the major (Integer) | | Full_time_year_round | The number of full-time year-round employed graduates from the major (Integer) | | Unemployed | The number of unemployed graduates from the major (Integer) | | Unemployment_rate | The unemployment rate of graduates from the major (Float) | | Median | The median salary of graduates from the major (Integer) | | P25th | The 25th percentile salary of graduates from the major (Integer) | | P75th | The 75th percentile salary of graduates from the major (Integer) | | College_jobs | The number of college jobs held by graduates from the major...
Facebook
TwitterUpper income limit, income share and average of market, total and after-tax income by economic family type and income decile, annual.
Facebook
TwitterFamilies of tax filers; Distribution of total income by census family type and age of older partner, parent or individual (final T1 Family File; T1FF).
Facebook
TwitterComprehensive salary benchmarking dataset covering compensation data across major technology companies, job families, locations, and experience levels. Includes base salary, total compensation, equity, and bonus information.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
New Earnings Survey (NES) and Annual Survey of Hours and Earnings (ASHE) percentile and median time series by full-time employees, full-time males and full-time females.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Annual estimates of paid hours worked and earnings for UK employees by sex, and full-time and part-time, by region, and public and private sector, and non-profit bodies and mutual associations. Hourly and weekly estimates are provided for the pay period that included a specified date in April. They relate to employees on adult rates of pay, whose earnings for the survey pay period were not affected by absence. Estimates for 2020 and 2021 include employees who have been furloughed under the Coronavirus Job Retention Scheme (CJRS). Annual estimates are provided for the tax year that ended on 5th April in the reference year. They relate to employees on adult rates of pay who have been in the same job for more than a year.
Facebook
TwitterDistribution of employment income of individuals by sex and work activity, Canada, provinces and selected census metropolitan areas, annual.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Information on farm household income and farm household composition. Source agency: Environment, Food and Rural Affairs Designation: National Statistics Language: English Alternative title: Farm Household Income and Household Composition, England If you require the datasets in a more accessible format, please contact fbs.queries@defra.gsi.gov.uk Background and guidance on the statistics Information on farm household income and farm household composition was collected in the Farm Business Survey (FBS) for England for the first time in 2004/05. Collection of household income data is restricted to the household of the principal farmer from each farm business. For practical reasons, data is not collected for the households of any other farmers and partners. Two-thirds of farm businesses have an input only from the principal farmer’s household (see table 5). However, details of household composition are collected for the households of all farmers and partners in the business, but not employed farm workers. Data on the income of farm households is used in conjunction with other economic information for the agricultural sector (e.g. farm business income) to help inform policy decisions and to help monitor and evaluate current policies relating to agriculture in the United Kingdom by Government. It also informs wider research into the economic performance of the agricultural industry. This release gives the main results from the income and composition of farm households and the off-farm activities of the farmer and their spouse (Including common law partners) sections of the FBS. These sections include information on the household income of the principal farmer’s household, off-farm income sources for the farmer and spouse and incomes of other members of their household and the number of working age and pensionable adults and children in each of the households on the farm (the information on household composition can be found in Appendix B). This release provides the main results from the 2013/14 FBS. The results are presented together with confidence intervals. Survey content and methodology The Farm Business Survey (FBS) is an annual survey providing information on the financial position and physical and economic performance of farm businesses in England. The sample of around 1,900 farm businesses covers all regions of England and all types of farming with the data being collected by face to face interview with the farmer. Results are weighted to represent the whole population of farm businesses that have at least 25 thousand Euros of standard output as recorded in the annual June Survey of Agriculture and Horticulture. In 2013 there were just over 58 thousand farm businesses meeting this criteria. Since 2009/10 a sub-sample of around 1,000 farms in the FBS has taken part in both the additional surveys on the income and composition of farm households and the off-farm activities of the farmer and their spouse. In previous years, the sub-sample had included over 1,600 farms. As such, caution should be taken when comparing to earlier years. The farms that responded to the additional survey on household incomes and off-farm activities of the farmer and spouse had similar characteristics to those farms in the main FBS in terms of farm type and geographical location. However, there is a smaller proportion of very large farms in the additional survey than in the main FBS. Full details of the characteristic of responding farms can be found at Appendix A of the notice. For further information about the Farm Business Survey please see: https://www.gov.uk/government/organisations/department-for-environment-food-rural-affairs/series/farm-business-survey Data analysis The results from the FBS relate to farms which have a standard output of at least 25,000 Euros. Initial weights are applied to the FBS records based on the inverse sampling fraction for each design stratum (farm type by farm size). These weights are then adjusted (calibration weighting) so that they can produce unbiased estimators of a number of different target variables. Completion of the additional survey on household incomes and off-farm activities of the farmer and spouse was voluntary and a sample of around 1,000 farms was achieved. In order to take account of non-response, the results have been reweighted using a method that preserves marginal totals for populations according to farm type and farm size groups. As such, farm population totals for other classifications (e.g. regions) will not be in-line with results using the main FBS weights, nor will any results produced for variables derived from the rest of the FBS (e.g. farm business income). Accuracy and reliability of the results We show 95% confidence intervals against the results. These show the range of values that may apply to the figures. They mean that we are 95% confident that this range contains the true value. They are calculated as the standard errors (se) multiplied by 1.96 to give the 95% confidence interval. The standard errors only give an indication of the sampling error. They do not reflect any other sources of survey errors, such as non-response bias. For the Farm Business Survey, the confidence limits shown are appropriate for comparing groups within the same year only; they should not be used for comparing with previous years since they do not allow for the fact that many of the same farms will have contributed to the Farm Business Survey in both years. Availability of results This release contains headline results for each section. The full set of results can be found at: https://www.gov.uk/government/organisations/department-for-environment-food-rural-affairs/series/farm-business-survey#publications Defra statistical notices can be viewed on the on the statistics pages of the Defra website at https://www.gov.uk/government/organisations/department-for-environment-food-rural-affairs/about/statistics. This site also shows details of future publications, with pre-announced dates. Data Uses Data from the Farm Business Survey (FBS) are provided to the EU as part of the Farm Accountancy Data Network (FADN). The data have been used to help inform policy decisions (e.g. Reform of Pillar 1 and Pillar 2 of Common Agricultural Policy) and to help monitor and evaluate current policies relating to agriculture in England (and the EU). It is also widely used by the industry for benchmarking and informs wider research into the economic performance of the agricultural industry. User engagement As part of our ongoing commitment to compliance with the Code of Practice for Official Statistics http://www.statisticsauthority.gov.uk/assessment/code-of-practice/index.html, we wish to strengthen our engagement with users of these statistics and better understand the use made of them and the types of decisions that they inform. Consequently, we invite users to make themselves known, to advise us of the use they do, or might, make of these statistics, and what their wishes are in terms of engagement. Feedback on this notice and enquiries about these statistics are also welcome. Definitions Household income of the principal farmer Principal farmer’s household income has the following components: (1) The share of farm business income (FBI) (including income from farm diversification) attributable to the principal farmer and their spouse. (2) Principal farmer’s and spouse’s off farm income from employment and self-employment, investment income, pensions and social payments. (3) Income of other household members. The share of farm business income and all employment and self-employment incomes, investment income and pension income are recorded as gross of income tax payments and National Insurance contributions, but after pension contributions. In addition, no deduction is made for council tax. Household A household is defined as a single person or group of people living at the same address as their only or main residence, who either share one meal a day together or share the living accommodation. A household must contain at least one person who received drawings from the farm business or who took a share of the profit from the business. Drawings Drawings represent the monies which the farmer takes from the business for their own personal use. The percentage of total drawings going to each household is collected and is used to calculate the total share of farm business income for the principal farmer’s household. Mean Mean household income of individuals is the ”average”, found by adding up the weighted household incomes for each individual farm in the population for analysis and dividing the result by the corresponding weighted number of farms. In this report average is usually taken to refer to the mean. Percentiles These are the values which divide the population for analysis, when ranked by an output variable (e.g. household income or net worth), into 100 equal-sized groups. E.g. twenty five per cent of the population would have incomes below the 25th percentile. Median Median household income divides the population, when ranked by an output variable, into two equal sized groups. The median of the whole population is the same as the 50th percentile. The term is also used for the midpoint of the subsets of the income distribution Quartiles Quartiles are values which divide the population, when ranked by an output variable, into four equal-sized groups. The lowest quartile is the same as the 25th percentile. The divisions of a population split by quartiles are referred to as quarters in this publication. Quintiles Quintiles are values which divide the population, when ranked by an output variable, into five equal-sized groups. The divisions of a population split by quintiles are referred to as fifths in this publication. Assets Assets include milk and livestock quotas, as well as land, buildings (including the farm house), breeding livestock, and machinery and equipment. For tenanted farmers,
Facebook
Twitterhttps://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.7910/DVN/HM91JNhttps://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.7910/DVN/HM91JN
This dataset contains replication files for "Is the United States Still a Land of Opportunity? Recent Trends in Intergenerational Mobility" by Raj Chetty, Nathaniel Hendren, Patrick Kline, Emmanuel Saez, and Nicholas Turner. For more information, see https://opportunityinsights.org/paper/recentintergenerationalmobility/. A summary of the related publication follows. We present new evidence on trends in intergenerational mobility in the U.S. using administrative earnings records. We find that percentile rank-based measures of intergenerational mobility have remained extremely stable for the 1971-1993 birth cohorts. For children born between 1971 and 1986, we measure intergenerational mobility based on the correlation between parent and child income percentile ranks. For more recent cohorts, we measure mobility as the correlation between a child’s probability of attending college and her parents’ income rank. We also calculate transition probabilities, such as a child’s chances of reaching the top quintile of the income distribution starting from the bottom quintile. Based on all of these measures, we find that children entering the labor market today have the same chances of moving up in the income distribution (relative to their parents) as children born in the 1970s. However, because inequality has risen, the consequences of the “birth lottery” – the parents to whom a child is born – are larger today than in the past. The views expressed in this paper are those of the authors and do not necessarily represent the views or policies of the US Treasury Department or the Internal Revenue Service or the National Bureau of Economic Research.
Facebook
TwitterThese geospatial data resources and the linked mapping tool below reflect currently available data on three categories of potentially qualifying Low-Income communities: Census tracts that meet the CDFI's New Market Tax Credit Program's threshold for Low Income, thereby are able to apply to Category 1. Census tracts that meet the White House's Climate and Economic Justice Screening Tool's threshold for disadvantage in the 'Energy' category, thereby are able to apply for Additional Selection Criteria Geography. Counties that meet the USDA's threshold for Persistent Poverty, thereby are able to apply for Additional Selection Criteria Geography. Note that Category 2 - Indian Lands are not shown on this map. Note that Persistent Poverty is not calculated for US Territories. Note that CEJST Energy disadvantage is not calculated for US Territories besides Puerto Rico. The excel tool provides the land area percentage of each 2023 census tract meeting each of the above categories. To examine geographic eligibility for a specific address or latitude and longitude, visit the program's mapping tool. Additional information on this tax credit program can be found on the DOE Landing Page for the 48e program at https://www.energy.gov/diversity/low-income-communities-bonus-credit-program or the IRS Landing Page at https://www.irs.gov/credits-deductions/low-income-communities-bonus-credit. Maps last updated: September 1st, 2024 Next map update expected: December 7th, 2024 Disclaimer: The spatial data and mapping tool is intended for geolocation purposes. It should not be relied upon by taxpayers to determine eligibility for the Low-Income Communities Bonus Credit Program. Source Acknowledgements: The New Market Tax Credit (NMTC) Tract layer using data from the 2016-2020 ACS is from the CDFI Information Mapping System (CIMS) and is created by the U.S. Department of Treasury Community Development Financial Institutions Fund. To learn more, visit CDFI Information Mapping System (CIMS) | Community Development Financial Institutions Fund (cdfifund.gov). https://www.cdfifund.gov/mapping-system. Tracts are displayed that meet the threshold for the New Market Tax Credit Program. The 'Energy' Category Tract layer from the Climate and Economic Justice Screening Tool (CEJST) is created by the Council on Environmental Quality (CEQ) within the Executive Office of the President. To learn more, visit https://screeningtool.geoplatform.gov/en/. Tracts are displayed that meet the threshold for the 'Energy' Category of burden. I.e., census tracts that are at or above the 90th percentile for (energy burden OR PM2.5 in the air) AND are at or above the 65th percentile for low income. The Persistent Poverty County layer is created by joining the U.S. Department of Agriculture, Economic Research Service's Poverty Area Official Measures dataset, with relevant county TIGER/Line Shapefiles from the US Census Bureau. To learn more, visit https://www.ers.usda.gov/data-products/poverty-area-measures/. Counties are displayed that meet the thresholds for Persistent Poverty according to 'Official' USDA updates. i.e. areas with a poverty rate of 20.0 percent or more for 4 consecutive time periods, about 10 years apart, spanning approximately 30 years (baseline time period plus 3 evaluation time periods). Until Dec 7th, 2024 both the USDA estimates using 2007-2011 and 2017-2021 ACS 5-year data. On Dec 8th, 2024, only the USDA estimates using 2017-2021 data will be accepted for program eligibility.
Facebook
Twitterhttps://www.incomebyzipcode.com/terms#TERMShttps://www.incomebyzipcode.com/terms#TERMS
A dataset listing the richest zip codes in New York per the most current US Census data, including information on rank and average income.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the mean household income for each of the five quintiles in China, Maine, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income Levels:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for China town median household income. You can refer the same here