12 datasets found
  1. Distributional Financial Accounts

    • s.cnmilf.com
    • gimi9.com
    • +1more
    Updated Dec 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Board of Governors of the Federal Reserve System (2024). Distributional Financial Accounts [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/distributional-financial-accounts
    Explore at:
    Dataset updated
    Dec 18, 2024
    Dataset provided by
    Federal Reserve Board of Governors
    Federal Reserve Systemhttp://www.federalreserve.gov/
    Description

    The Distributional Financial Accounts (DFAs) provide a quarterly measure of the distribution of U.S. household wealth since 1989, based on a comprehensive integration of disaggregated household-level wealth data with official aggregate wealth measures. The data set contains the level and share of each balance sheet item on the Financial Accounts' household wealth table (Table B.101.h), for various sub-populations in the United States. In our core data set, aggregate household wealth is allocated to each of four percentile groups of wealth: the top 1 percent, the next 9 percent (i.e., 90th to 99th percentile), the next 40 percent (50th to 90th percentile), and the bottom half (below the 50th percentile). Additionally, the data set contains the level and share of aggregate household wealth by income, age, generation, education, and race. The quarterly frequency makes the data useful for studying the business cycle dynamics of wealth concentration--which are typically difficult to observe in lower-frequency data because peaks and troughs often fall between times of measurement. These data will be updated about 10 or 11 weeks after the end of each quarter, making them a timely measure of the distribution of wealth.

  2. Survey of Consumer Finances

    • federalreserve.gov
    Updated Oct 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Board of Governors of the Federal Reserve Board (2023). Survey of Consumer Finances [Dataset]. http://doi.org/10.17016/8799
    Explore at:
    Dataset updated
    Oct 18, 2023
    Dataset provided by
    Federal Reserve Board of Governors
    Federal Reserve Systemhttp://www.federalreserve.gov/
    Authors
    Board of Governors of the Federal Reserve Board
    Time period covered
    1962 - 2023
    Description

    The Survey of Consumer Finances (SCF) is normally a triennial cross-sectional survey of U.S. families. The survey data include information on families' balance sheets, pensions, income, and demographic characteristics.

  3. Health Inequality Project

    • redivis.com
    application/jsonl +7
    Updated Jan 17, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stanford Center for Population Health Sciences (2020). Health Inequality Project [Dataset]. http://doi.org/10.57761/7wg0-e126
    Explore at:
    parquet, arrow, avro, spss, csv, stata, sas, application/jsonlAvailable download formats
    Dataset updated
    Jan 17, 2020
    Dataset provided by
    Redivis Inc.
    Authors
    Stanford Center for Population Health Sciences
    Time period covered
    Jan 1, 2001 - Dec 31, 2014
    Description

    Abstract

    The Health Inequality Project uses big data to measure differences in life expectancy by income across areas and identify strategies to improve health outcomes for low-income Americans.

    Section 7

    This table reports life expectancy point estimates and standard errors for men and women at age 40 for each percentile of the national income distribution. Both race-adjusted and unadjusted estimates are reported.

    Source

    Section 13

    This table reports life expectancy point estimates and standard errors for men and women at age 40 for each percentile of the national income distribution separately by year. Both race-adjusted and unadjusted estimates are reported.

    Source

    Section 6

    This dataset was created on 2020-01-10 18:53:00.508 by merging multiple datasets together. The source datasets for this version were:

    Commuting Zone Life Expectancy Estimates by year: CZ-level by-year life expectancy estimates for men and women, by income quartile

    Commuting Zone Life Expectancy: Commuting zone (CZ)-level life expectancy estimates for men and women, by income quartile

    Commuting Zone Life Expectancy Trends: CZ-level estimates of trends in life expectancy for men and women, by income quartile

    Commuting Zone Characteristics: CZ-level characteristics

    Commuting Zone Life Expectancy for larger populations: CZ-level life expectancy estimates for men and women, by income ventile

    Section 15

    This table reports life expectancy point estimates and standard errors for men and women at age 40 for each quartile of the national income distribution by state of residence and year. Both race-adjusted and unadjusted estimates are reported.

    Source

    Section 11

    This table reports US mortality rates by gender, age, year and household income percentile. Household incomes are measured two years prior to the mortality rate for mortality rates at ages 40-63, and at age 61 for mortality rates at ages 64-76. The “lag” variable indicates the number of years between measurement of income and mortality.

    Observations with 1 or 2 deaths have been masked: all mortality rates that reflect only 1 or 2 deaths have been recoded to reflect 3 deaths

    Source

    Section 3

    This table reports coefficients and standard errors from regressions of life expectancy estimates for men and women at age 40 for each quartile of the national income distribution on calendar year by commuting zone of residence. Only the slope coefficient, representing the average increase or decrease in life expectancy per year, is reported. Trend estimates for both race-adjusted and unadjusted life expectancies are reported. Estimates are reported for the 100 largest CZs (populations greater than 590,000) only.

    Source

    Section 9

    This table reports life expectancy estimates at age 40 for Males and Females for all countries. Source: World Health Organization, accessed at: http://apps.who.int/gho/athena/

    Source

    Section 10

    This table reports life expectancy point estimates and standard errors for men and women at age 40 for each quartile of the national income distribution by county of residence. Both race-adjusted and unadjusted estimates are reported. Estimates are reported for counties with populations larger than 25,000 only

    Source

    Section 2

    This table reports life expectancy point estimates and standard errors for men and women at age 40 for each quartile of the national income distribution by commuting zone of residence and year. Both race-adjusted and unadjusted estimates are reported. Estimates are reported for the 100 largest CZs (populations greater than 590,000) only.

    Source

    Section 8

    This table reports US population and death counts by age, year, and sex from various sources. Counts labelled “dm1” are derived from the Social Security Administration Data Master 1 file. Counts labelled “irs” are derived from tax data. Counts labelled “cdc” are derived from NCHS life tables.

    Source

    Section 12

    This table reports numerous county characteristics, compiled from various sources. These characteristics are described in the county life expectancy table.

    Two variables constructed by the Cen

  4. d

    Replication Data for: Is the United States Still a Land of Opportunity?...

    • dataone.org
    • dataverse.harvard.edu
    Updated Nov 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chetty, Raj; Hendren, Nathaniel; Kline, Patrick; Saez, Emmanuel; Turner, Nicholas (2023). Replication Data for: Is the United States Still a Land of Opportunity? Recent Trends in Intergenerational Mobility [Dataset]. http://doi.org/10.7910/DVN/HM91JN
    Explore at:
    Dataset updated
    Nov 12, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Chetty, Raj; Hendren, Nathaniel; Kline, Patrick; Saez, Emmanuel; Turner, Nicholas
    Area covered
    United States
    Description

    This dataset contains replication files for "Is the United States Still a Land of Opportunity? Recent Trends in Intergenerational Mobility" by Raj Chetty, Nathaniel Hendren, Patrick Kline, Emmanuel Saez, and Nicholas Turner. For more information, see https://opportunityinsights.org/paper/recentintergenerationalmobility/. A summary of the related publication follows. We present new evidence on trends in intergenerational mobility in the U.S. using administrative earnings records. We find that percentile rank-based measures of intergenerational mobility have remained extremely stable for the 1971-1993 birth cohorts. For children born between 1971 and 1986, we measure intergenerational mobility based on the correlation between parent and child income percentile ranks. For more recent cohorts, we measure mobility as the correlation between a child’s probability of attending college and her parents’ income rank. We also calculate transition probabilities, such as a child’s chances of reaching the top quintile of the income distribution starting from the bottom quintile. Based on all of these measures, we find that children entering the labor market today have the same chances of moving up in the income distribution (relative to their parents) as children born in the 1970s. However, because inequality has risen, the consequences of the “birth lottery” – the parents to whom a child is born – are larger today than in the past. The views expressed in this paper are those of the authors and do not necessarily represent the views or policies of the US Treasury Department or the Internal Revenue Service or the National Bureau of Economic Research.

  5. IRA Low-Income Community Bonus Credit Program Layers

    • s.cnmilf.com
    • data.openei.org
    • +1more
    Updated Jan 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of Economic Impact & Diversity US Department of Energy (2025). IRA Low-Income Community Bonus Credit Program Layers [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/ira-low-income-community-bonus-credit-program-layers-3d4e4
    Explore at:
    Dataset updated
    Jan 20, 2025
    Dataset provided by
    United States Department of Energyhttp://energy.gov/
    Description

    These geospatial data resources and the linked mapping tool below reflect currently available data on three categories of potentially qualifying Low-Income communities: Census tracts that meet the CDFI's New Market Tax Credit Program's threshold for Low Income, thereby are able to apply to Category 1. Census tracts that meet the White House's Climate and Economic Justice Screening Tool's threshold for disadvantage in the 'Energy' category, thereby are able to apply for Additional Selection Criteria Geography. Counties that meet the USDA's threshold for Persistent Poverty, thereby are able to apply for Additional Selection Criteria Geography. Note that Category 2 - Indian Lands are not shown on this map. Note that Persistent Poverty is not calculated for US Territories. Note that CEJST Energy disadvantage is not calculated for US Territories besides Puerto Rico. The excel tool provides the land area percentage of each 2023 census tract meeting each of the above categories. To examine geographic eligibility for a specific address or latitude and longitude, visit the program's mapping tool. Additional information on this tax credit program can be found on the DOE Landing Page for the 48e program at https://www.energy.gov/diversity/low-income-communities-bonus-credit-program or the IRS Landing Page at https://www.irs.gov/credits-deductions/low-income-communities-bonus-credit. Maps last updated: September 1st, 2024 Next map update expected: December 7th, 2024 Disclaimer: The spatial data and mapping tool is intended for geolocation purposes. It should not be relied upon by taxpayers to determine eligibility for the Low-Income Communities Bonus Credit Program. Source Acknowledgements: The New Market Tax Credit (NMTC) Tract layer using data from the 2016-2020 ACS is from the CDFI Information Mapping System (CIMS) and is created by the U.S. Department of Treasury Community Development Financial Institutions Fund. To learn more, visit CDFI Information Mapping System (CIMS) | Community Development Financial Institutions Fund (cdfifund.gov). https://www.cdfifund.gov/mapping-system. Tracts are displayed that meet the threshold for the New Market Tax Credit Program. The 'Energy' Category Tract layer from the Climate and Economic Justice Screening Tool (CEJST) is created by the Council on Environmental Quality (CEQ) within the Executive Office of the President. To learn more, visit https://screeningtool.geoplatform.gov/en/. Tracts are displayed that meet the threshold for the 'Energy' Category of burden. I.e., census tracts that are at or above the 90th percentile for (energy burden OR PM2.5 in the air) AND are at or above the 65th percentile for low income. The Persistent Poverty County layer is created by joining the U.S. Department of Agriculture, Economic Research Service's Poverty Area Official Measures dataset, with relevant county TIGER/Line Shapefiles from the US Census Bureau. To learn more, visit https://www.ers.usda.gov/data-products/poverty-area-measures/. Counties are displayed that meet the thresholds for Persistent Poverty according to 'Official' USDA updates. i.e. areas with a poverty rate of 20.0 percent or more for 4 consecutive time periods, about 10 years apart, spanning approximately 30 years (baseline time period plus 3 evaluation time periods). Until Dec 7th, 2024 both the USDA estimates using 2007-2011 and 2017-2021 ACS 5-year data. On Dec 8th, 2024, only the USDA estimates using 2017-2021 data will be accepted for program eligibility.

  6. f

    Years of Poverty Experienced Between the Ages of 25 to 60. (Standard Errors...

    • figshare.com
    • plos.figshare.com
    xls
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mark R. Rank; Thomas A. Hirschl (2023). Years of Poverty Experienced Between the Ages of 25 to 60. (Standard Errors in Parentheses) [Dataset]. http://doi.org/10.1371/journal.pone.0133513.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Mark R. Rank; Thomas A. Hirschl
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Years of Poverty Experienced Between the Ages of 25 to 60. (Standard Errors in Parentheses)

  7. d

    SB 1000 Populations

    • catalog.data.gov
    • data.ca.gov
    • +2more
    Updated Jul 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Energy Commission (2025). SB 1000 Populations [Dataset]. https://catalog.data.gov/dataset/sb-1000-populations
    Explore at:
    Dataset updated
    Jul 24, 2025
    Dataset provided by
    California Energy Commission
    Description

    Definitions:Urban: Contiguous urban census tracts with a population of 50,000 or greater. Urban census tracts are tracts where at least 10 percent of the tract's land areas is designated as urban by the Census Bureau using the 2020 urbanized area criteria.Rural Center: Contiguous urban census tracts with a population of less than 50,000. Urban census tracts are tracts where at least 10 percent of the tract's land area is designated as urban by the Census Bureau using the 2020 urbanized area criteria.Rural: Census tracts where less than 10 percent of the tract's land area is designated as urban by the Census Bureau using the 2020 urbanized area criteria.Disadvantaged Community (DAC): Census tracts that score within the top 25th percentile of the Office of Environmental Health Hazards Assessment’s California Communities Environmental Health Screening Tool (CalEnviroScreen) 4.0 scores, as well as areas of high pollution and low population, such as ports.Low-income Community (LIC): Census tracts with median household incomes at or below 80 percent of the statewide median income or with median household incomes at or below the threshold designated as low income by the Department of Housing and Community Development’s list of state income limits adopted pursuant to Section 50093 of the California Health and Safety Code.Middle-income Community (MIC): Census tracts with median household incomes between 80 to 120 percent of the statewide median income, or with median household incomes between the threshold designated as low- and moderate-income by the Department of Housing and Community Development’s list of state income limits adopted pursuant to section 50093 of the California Health and Safety Code. High-income Community (HIC): Census tracts with median household income at or above 120 percent of the statewide median income or with median household incomes at or above the threshold designated as moderate-income by the Department of Housing and Community Development’s list of state income limits adopted pursuant to section 50093 of the California Health and Safety Code.Data Dictionary:ObjectID1_: Unique IDShape: Geometric form of the featureSTATEFP: State FIPS CodeCOUNTYFP: County FIPS CodeCOUNTY: County NameTract: Census Tract IDPopulation_2019_5YR: Population from the American Community Survey 2019 5-Year EstimatesPop_dens: Census tract designation as Urban, Rural Center, or RuralDAC: Census tract designation as Disadvantaged or not (DAC or Not DAC)Income_Group: Census tract designation as Low-, Middle-, or High-income Community (LIC, MIC, or HIC)Priority_pop: Census tract designation as Low-income and/or Disadvantaged or not (LIC and/or DAC, or Not LIC and/or DAC)Shape_Length: Census tract shape area (square meters)Shape_Area: Census tract shape length (square meters)Data sources:Urban, rural center, and rural designations are from the 2025 Senate Bill (SB) 1000 AssessmentDisadvantaged community designations are from the California Environmental Protection Agency (CalEPA) under Senate Bill (SB) 535Low-income community designations are from the California Air Resources Board under Assembly Bill (AB) 1550. Middle- and high-income designations are from the SB 1000 Assessments.

  8. i

    Richest Zip Codes in New York

    • incomebyzipcode.com
    Updated Dec 18, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cubit Planning, Inc. (2024). Richest Zip Codes in New York [Dataset]. https://www.incomebyzipcode.com/newyork
    Explore at:
    Dataset updated
    Dec 18, 2024
    Dataset authored and provided by
    Cubit Planning, Inc.
    License

    https://www.incomebyzipcode.com/terms#TERMShttps://www.incomebyzipcode.com/terms#TERMS

    Area covered
    New York
    Description

    A dataset listing the richest zip codes in New York per the most current US Census data, including information on rank and average income.

  9. Consumer Expenditure Survey, 2013: Diary Survey Files

    • icpsr.umich.edu
    ascii, delimited +5
    Updated Oct 19, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Department of Labor. Bureau of Labor Statistics (2015). Consumer Expenditure Survey, 2013: Diary Survey Files [Dataset]. http://doi.org/10.3886/ICPSR36275.v1
    Explore at:
    r, spss, stata, excel, sas, delimited, asciiAvailable download formats
    Dataset updated
    Oct 19, 2015
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    United States Department of Labor. Bureau of Labor Statistics
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/36275/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/36275/terms

    Time period covered
    2013
    Area covered
    United States
    Description

    The Consumer Expenditure Survey (CE) program provides a continuous and comprehensive flow of data on the buying habits of American consumers, including data on their expenditures, income, and consumer unit (families and single consumers) characteristics. These data are used widely in economic research and analysis, and in support of revisions of the Consumer Price Index. The CE program is comprised of two separate components (each with its own survey questionnaire and independent sample), the Diary Survey and the quarterly Interview Survey (ICPSR 36237). This data collection contains the Diary Survey component, which was designed to obtain data on frequently purchased smaller items, including food, housing, apparel and services, transportation, entertainment, and out-of-pocket health care costs. Each consumer unit (CU) recorded its expenditures in a diary for two consecutive 1-week periods. Although the diary was designed to collect information on expenditures that could not be easily recalled over time, respondents were asked to report all expenses (except overnight travel) that the CU incurred during the survey week. The 2013 Diary Survey release contains five sets of data files (FMLD, MEMD, EXPD, DTBD, DTID), and one processing file (DSTUB). The FMLD, MEMD, EXPD, DTBD, and DTID files are organized by the quarter of the calendar year in which the data were collected. There are four quarterly datasets for each of these files. The FMLD files contain CU characteristics, income, and summary level expenditures; the MEMD files contain member characteristics and income data; the EXPD files contain detailed weekly expenditures at the Universal Classification Code (UCC) level; the DTBD files contain the CU's reported annual income values or the mean of the five imputed income values in the multiple imputation method; and the DTID files contain the five imputed income values. Please note that the summary level expenditure and income information on the FMLD files permit the data user to link consumer spending, by general expenditure category, and household characteristics and demographics on one set of files. The DSTUB file provides the aggregation scheme used in the published consumer expenditure tables. The DSTUB file is further explained in Section III.F.6. "Processing Files" of the Diary Survey Users' Guide. A second documentation guide, the "Users' Guide to Income Imputation," includes information on how to appropriately use the imputed income data. Demographic and family characteristics data include age, sex, race, marital status, and CU relationships for each CU member. Income information was also collected, such as wage, salary, unemployment compensation, child support, and alimony, as well as information on the employment of each CU member age 14 and over. The unpublished integrated CE data tables produced by the BLS are available to download through NADAC (click on "Other" in the Dataset(s) section). The tables show average and percentile expenditures for detailed items, as well as the standard error and coefficient of variation (CV) for each spending estimate. The BLS unpublished integrated CE data tables are provided as an easy-to-use tool for obtaining spending estimates. However, users are cautioned to read the BLS explanatory letter accompanying the tables. The letter explains that estimates of average expenditures on detailed spending items (such as leisure and art-related categories) may be unreliable due to so few reports of expenditures for those items.

  10. H

    Replication data for: Fiscal Policy and Economic Inequality in the U.S....

    • dataverse.harvard.edu
    • datamed.org
    Updated May 19, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Thomas Hayes; Xavier Medina Vidal (2015). Replication data for: Fiscal Policy and Economic Inequality in the U.S. States: Taxing and Spending from 1976 to 2006 [Dataset]. http://doi.org/10.7910/DVN/29770
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 19, 2015
    Dataset provided by
    Harvard Dataverse
    Authors
    Thomas Hayes; Xavier Medina Vidal
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    1976 - 2006
    Area covered
    United States
    Description

    To what extent can state governments influence economic inequality? How do state fiscal policies of redistribution affect families in different economic situations? Using a large database of state fiscal policymaking tools (taxing and spending) between 1976 and 2006 we examine the effect of these tools on state level inequality as well as the average incomes of families in different economic groups. We find that state taxing and spending efforts can influence these indicators of economic inequality, though these fiscal policy tools can have differential effects. Spending on unemployment compensation and cash assistance as well as revenue from taxes on corporations are found to reduce state level inequality. We also find unemployment compensation to positively benefit the bottom 10th percentile of income earners, while the inheritance tax helps all income groups. Corporate tax revenue is associated with higher middle class incomes, while income tax revenue benefits both middle and upper incomes. Sales tax revenue positively benefits wealthy earners. Higher property tax revenue is associated with decreased income for all groups. These results suggest that state governments can affect redistribution through fiscal policies by affecting both state level inequality as well as the economic fortunes of different income groups.

  11. 2013 to 2016 Picture of Subsidized Housing Data

    • dev.datalumos.org
    • test.datalumos.org
    • +1more
    delimited
    Updated Aug 10, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Housing and Urban Development (2017). 2013 to 2016 Picture of Subsidized Housing Data [Dataset]. http://doi.org/10.3886/E100906V1
    Explore at:
    delimitedAvailable download formats
    Dataset updated
    Aug 10, 2017
    Dataset provided by
    United States Department of Housing and Urban Developmenthttp://www.hud.gov/
    Authors
    U.S. Department of Housing and Urban Development
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description
    Since passage of the U.S. Housing Act of 1937, the federal government has provided housing assistance to low-income renters. Most of these housing subsidies were provided under programs administered by the U.S. Department of Housing and Urban Development (HUD) or predecessor agencies. All programs covered in this report provide subsidies that reduce rents for low-income tenants who meet program eligibility requirements. Generally, households pay rent equal to 30 percent of their incomes, after deductions, while the federal government pays the remainder of rent or rental costs. To qualify for a subsidy, an applicant’s income must initially fall below a certain income limit. These income limits are HUD-determined, location specific, and vary by household size. Applicants for housing assistance are usually placed on a waiting list until a subsidized unit becomes available.Assistance provided under HUD programs falls into three categories: public housing, tenant-based, and privately owned, project-based.In public housing, local housing agencies receive allocations of HUD funding to build, operate or make improvements to housing. The housing is owned by the local agencies. Public housing is a form of project-based subsidy because households may receive assistance only if they agree to live at a particular public housing project.Currently, tenant based assistance is the most prevalent form of housing assistance provided. Historically, tenant based assistance began with the Section 8 certificate and voucher programs, which were created in 1974 and 1983, respectively. These programs were replaced by the Housing Choice Voucher program, under legislation enacted in 1998. Tenant based programs allow participants to find and lease housing in the private market. Local public housing agencies (PHAs) and some state agencies serving as PHAs enter into contracts with HUD to administer the programs. The PHAs then enter into contracts with private landlords. The housing must meet housing quality standards and other program requirements. The subsidies are used to supplement the rent paid by low-income households. Under tenant-based programs, assisted households may move and take their subsidy with them. The primary difference between certificates and vouchers is that under certificates, there was a maximum rent which the unit may not exceed. By contrast, vouchers have no specific maximum rent; the low-income household must pay any excess over the payment standard, an amount that is determined locally and that is based on the Fair Market Rent. HUD calculates the Fair Market Rent based on the 40th percentile of the gross rents paid by recent movers for non-luxury units meeting certain quality standards.The third major type of HUD rental assistance is a collection of programs generally referred to as multifamily assisted, or, privately-owned, project-based housing. These types of housing assistance fall under a collection of programs created during the last four decades. What these programs have in common is that they provide rental housing that is owned by private landlords who enter into contracts with HUD in order to receive housing subsidies. The subsidies pay the difference between tenant rent and total rental costs. The subsidy arrangement is termed project-based because the assisted household may not take the subsidy and move to another location. The single largest project-based program was the Section 8 program, which was created in 1974. This program allowed for new construction and substantial rehabilitation that was delivered through a wide variety of financing mechanisms. An important variant of project-based Section 8 was the Loan Management Set Aside (LMSA) program, which was provided in projects financed under Federal Housing Administration (FHA) programs that were not originally intended to provide deep subsidy rental assistance. Projects receiving these LMSA “piggyback” subsidies were developed under the Section 236 program, the Section 221(d)(3) Below Market Interest Rate (BMIR) program, and others that were unassisted when originally developed.Picture of Subsidized Households does not cover other housing

  12. i

    Richest Zip Codes in Puerto Rico

    • incomebyzipcode.com
    Updated Dec 18, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cubit Planning, Inc. (2024). Richest Zip Codes in Puerto Rico [Dataset]. https://www.incomebyzipcode.com/puertorico
    Explore at:
    Dataset updated
    Dec 18, 2024
    Dataset authored and provided by
    Cubit Planning, Inc.
    License

    https://www.incomebyzipcode.com/terms#TERMShttps://www.incomebyzipcode.com/terms#TERMS

    Area covered
    Puerto Rico
    Description

    A dataset listing the richest zip codes in Puerto Rico per the most current US Census data, including information on rank and average income.

  13. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Board of Governors of the Federal Reserve System (2024). Distributional Financial Accounts [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/distributional-financial-accounts
Organization logoOrganization logo

Distributional Financial Accounts

Explore at:
Dataset updated
Dec 18, 2024
Dataset provided by
Federal Reserve Board of Governors
Federal Reserve Systemhttp://www.federalreserve.gov/
Description

The Distributional Financial Accounts (DFAs) provide a quarterly measure of the distribution of U.S. household wealth since 1989, based on a comprehensive integration of disaggregated household-level wealth data with official aggregate wealth measures. The data set contains the level and share of each balance sheet item on the Financial Accounts' household wealth table (Table B.101.h), for various sub-populations in the United States. In our core data set, aggregate household wealth is allocated to each of four percentile groups of wealth: the top 1 percent, the next 9 percent (i.e., 90th to 99th percentile), the next 40 percent (50th to 90th percentile), and the bottom half (below the 50th percentile). Additionally, the data set contains the level and share of aggregate household wealth by income, age, generation, education, and race. The quarterly frequency makes the data useful for studying the business cycle dynamics of wealth concentration--which are typically difficult to observe in lower-frequency data because peaks and troughs often fall between times of measurement. These data will be updated about 10 or 11 weeks after the end of each quarter, making them a timely measure of the distribution of wealth.

Search
Clear search
Close search
Google apps
Main menu