99 datasets found
  1. U.S. wealth distribution Q1 2025

    • statista.com
    Updated Jun 18, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2020). U.S. wealth distribution Q1 2025 [Dataset]. https://www.statista.com/statistics/203961/wealth-distribution-for-the-us/
    Explore at:
    Dataset updated
    Jun 18, 2020
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In the first quarter of 2025, almost ********** of the total wealth in the United States was owned by the top 10 percent of earners. In comparison, the lowest ** percent of earners only owned *** percent of the total wealth. Income inequality in the U.S. Despite the idea that the United States is a country where hard work and pulling yourself up by your bootstraps will inevitably lead to success, this is often not the case. In 2024, *** percent of U.S. households had an annual income under 15,000 U.S. dollars. With such a small percentage of people in the United States owning such a vast majority of the country’s wealth, the gap between the rich and poor in America remains stark. The top one percent The United States was the country with the most billionaires in the world in 2025. Elon Musk, with a net worth of *** billion U.S. dollars, was among the richest people in the United States in 2025. Over the past 50 years, the CEO-to-worker compensation ratio has exploded, causing the gap between rich and poor to grow, with some economists theorizing that this gap is the largest it has been since right before the Great Depression.

  2. N

    Median Household Income by Racial Categories in Hope, New York (, in 2023...

    • neilsberg.com
    csv, json
    Updated Mar 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Median Household Income by Racial Categories in Hope, New York (, in 2023 inflation-adjusted dollars) [Dataset]. https://www.neilsberg.com/insights/hope-ny-median-household-income-by-race/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Mar 1, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    New York, Hope
    Variables measured
    Median Household Income for Asian Population, Median Household Income for Black Population, Median Household Income for White Population, Median Household Income for Some other race Population, Median Household Income for Two or more races Population, Median Household Income for American Indian and Alaska Native Population, Median Household Income for Native Hawaiian and Other Pacific Islander Population
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To portray the median household income within each racial category idetified by the US Census Bureau, we conducted an initial analysis and categorization of the data. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). It is important to note that the median household income estimates exclusively represent the identified racial categories and do not incorporate any ethnicity classifications. Households are categorized, and median incomes are reported based on the self-identified race of the head of the household. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the median household income across different racial categories in Hope town. It portrays the median household income of the head of household across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to gain insights into economic disparities and trends and explore the variations in median houshold income for diverse racial categories.

    Key observations

    Based on our analysis of the distribution of Hope town population by race & ethnicity, the population is predominantly White. This particular racial category constitutes the majority, accounting for 92.45% of the total residents in Hope town. Notably, the median household income for White households is $66,908. Interestingly, White is both the largest group and the one with the highest median household income, which stands at $66,908.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Racial categories include:

    • White
    • Black or African American
    • American Indian and Alaska Native
    • Asian
    • Native Hawaiian and Other Pacific Islander
    • Some other race
    • Two or more races (multiracial)

    Variables / Data Columns

    • Race of the head of household: This column presents the self-identified race of the household head, encompassing all relevant racial categories (excluding ethnicity) applicable in Hope town.
    • Median household income: Median household income, adjusting for inflation, presented in 2023-inflation-adjusted dollars

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Hope town median household income by race. You can refer the same here

  3. Billionaires dataset cleaned

    • kaggle.com
    zip
    Updated Feb 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Javier_SAB (2024). Billionaires dataset cleaned [Dataset]. https://www.kaggle.com/datasets/javiersab/billionaires-dataset-cleaned
    Explore at:
    zip(128906 bytes)Available download formats
    Dataset updated
    Feb 24, 2024
    Authors
    Javier_SAB
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Cleaned dataset from the Billionaires Statistic Dataset (2023) that can be found here.

    The code I used to clean and re-structure the data is also here.

    First things first: a big shout-out to Nidula Elgiriyewithana for providing the original data.

    As with it, this dataset contains various information about the world's wealthiest persons in different columns that can be grouped into three different types:

    • Business-related information. These columns contain data about the industry in which the billionaires' operate, their source of wealth, total wealth and position they occupy in the ranking.
    • Personal information. Such as name, age, nationality, country and city of residence.
    • Economic activity information. These columns are related to the country in which the billionaire resides and provide different economic indicators like GDP, education enrollment or Consumer Price Index (CPI).

    Column names

    • position. Ranking of the billionaire measured by their wealth.
    • wealth. The wealth of the billionaire measured in $.
    • industry. Industry in which the billionaire's operates their businesses.
    • full_name. Complete name of the billionaire.
    • age. The age of the billionaire.
    • country_of_residence. Country in which the billionaire resides.
    • city_of_residence. City in which the billionaire resides.
    • source. The source of the billionaire's wealth.
    • citizenship. The country of citizenship of the billionaire.
    • gender. The gender of the billionaire.
    • birth_date. The birth date of the billionaire.
    • last_name. The last name of the billionaire.
    • first_name. The first name of the billionaire.
    • residence_state. State in which the billionaire resides (only for billionaires who reside in the U.S.).
    • residence_region. Region in which the billionaire resides (only for billionaires who reside in the U.S.).
    • birth_year. The birth year of the billionaire.
    • birth_month. The birth month of the billionaire.
    • birth_day. The birth data of the billionaire.
    • cpi_country. Consumer Price Index (CPI) for the billionaire's country.
    • cpi_change_country. CPI change for the billionaire's country.
    • gdp_country. Gross Domestic Product (GDP) in $ for the billionaire's country.
    • g_tertiary_ed_enroll. Enrollment in tertiary education in the billionaire's country.
    • g_primary_ed_enroll. Enrollment in primary education in the billionaire's country.
    • life_expectancy. Life expectancy in the billionaire's country.
    • tax_revenue. Tax revenue in the billionaire's country.
    • tax_rate. Total tax rate in the billionaire's country.
    • country_pop. Population of the billionaire's country.
    • country_lat. Latitude coordinate of the billionaire's country.
    • country_long. Longitude coordinate of the billionaire's country.
    • continent. Continent in which the country of the billionaire's residence is located.

    Potential analyses

    • Analyze which industries contain the biggest groups of billionaires overall and in different countries.
    • Explore number of billionaires and total wealth across countries and continents and display the result in a map.
    • Focus on personal information columns such as age or gender to explore the distribution of billionaires from this perspective.
    • Discover if countries' economic indicators have any impact in the presence of billionaires.
    • The U.S. is the country with most billionaires presented in the dataset and also the only one with attributes in the residence_state and residence_region columns. This makes the American billionaires a good focus for a specific analysis.

    Bonus

    If you want a challenge, you can create a dashboard using tools such as Plotly to dynamically visualize the data using one or different attributes (such as industry, age or country). I did it, leave the link below in case you want to investigate:

    Dashboard notebook here


    If you find this dataset informative or inspirational, a vote is appreciated for others to easily discover value in it 💎💰

  4. American Citizens Annual Income

    • kaggle.com
    zip
    Updated Jul 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmirHossein Mirzaei (2023). American Citizens Annual Income [Dataset]. https://www.kaggle.com/datasets/amirhosseinmirzaie/americancitizenincome
    Explore at:
    zip(342666 bytes)Available download formats
    Dataset updated
    Jul 14, 2023
    Authors
    AmirHossein Mirzaei
    License

    https://cdla.io/sharing-1-0/https://cdla.io/sharing-1-0/

    Area covered
    United States
    Description

    The dataset used in this notebook contains information about individuals' demographics, education, work experience, and other relevant factors. The income column in the dataset serves as the target variable, categorized into two classes: "<=50K" (indicating income less than or equal to 50,000)and ">50K"

    ColumnDescription
    ageAge
    workclassA general term indicating the employment status of an individual.
    fnlwgtFinal weight, representing the number of individuals that this row represents (a representative sample).
    educationHighest level of education achieved by an individual.
    education.numHighest level of education achieved by an individual in numerical form.
    marital.statusMarital status of an individual. Note that Married-civ-spouse refers to a civilian spouse, and Married-AF-spouse refers to a spouse in the Armed Forces.
    occupationGeneral type of occupation of an individual.
    relationshipRelationship of this individual with others, for example, spouse (Husband). Each data point has only one relationship.
    raceRace
    sexBiological sex of an individual.
    capital.gainCapital gains of an individual.
    capital.lossCapital losses of an individual.
    hours.per.weekNumber of hours the individual reported working per week.
    native.countryCountry of origin.
    incomeIncome, less than or equal to $50,000 (<=50K) or more than that (>50K).
  5. N

    Hope, New York median household income breakdown by race betwen 2013 and...

    • neilsberg.com
    csv, json
    Updated Mar 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Hope, New York median household income breakdown by race betwen 2013 and 2023 [Dataset]. https://www.neilsberg.com/insights/hope-ny-median-household-income-by-race/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Mar 1, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    New York, Hope
    Variables measured
    Median Household Income Trends for Asian Population, Median Household Income Trends for Black Population, Median Household Income Trends for White Population, Median Household Income Trends for Some other race Population, Median Household Income Trends for Two or more races Population, Median Household Income Trends for American Indian and Alaska Native Population, Median Household Income Trends for Native Hawaiian and Other Pacific Islander Population
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To portray the median household income within each racial category idetified by the US Census Bureau, we conducted an initial analysis and categorization of the data from 2013 to 2023. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). It is important to note that the median household income estimates exclusively represent the identified racial categories and do not incorporate any ethnicity classifications. Households are categorized, and median incomes are reported based on the self-identified race of the head of the household. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the median household incomes over the past decade across various racial categories identified by the U.S. Census Bureau in Hope town. It portrays the median household income of the head of household across racial categories (excluding ethnicity) as identified by the Census Bureau. It also showcases the annual income trends, between 2013 and 2023, providing insights into the economic shifts within diverse racial communities.The dataset can be utilized to gain insights into income disparities and variations across racial categories, aiding in data analysis and decision-making..

    Key observations

    • White: In Hope town, the median household income for the households where the householder is White decreased by $2,569(3.70%), between 2013 and 2023. The median household income, in 2023 inflation-adjusted dollars, was $69,477 in 2013 and $66,908 in 2023.
    • Black or African American: As per the U.S. Census Bureau population data, in Hope town, there are no households where the householder is Black or African American; hence, the median household income for the Black or African American population is not applicable.
    • Refer to the research insights for more key observations on American Indian and Alaska Native, Asian, Native Hawaiian and Other Pacific Islander, Some other race and Two or more races (multiracial) households
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Racial categories include:

    • White
    • Black or African American
    • American Indian and Alaska Native
    • Asian
    • Native Hawaiian and Other Pacific Islander
    • Some other race
    • Two or more races (multiracial)

    Variables / Data Columns

    • Race of the head of household: This column presents the self-identified race of the household head, encompassing all relevant racial categories (excluding ethnicity) applicable in Hope town.
    • 2010: 2010 median household income
    • 2011: 2011 median household income
    • 2012: 2012 median household income
    • 2013: 2013 median household income
    • 2014: 2014 median household income
    • 2015: 2015 median household income
    • 2016: 2016 median household income
    • 2017: 2017 median household income
    • 2018: 2018 median household income
    • 2019: 2019 median household income
    • 2020: 2020 median household income
    • 2021: 2021 median household income
    • 2022: 2022 median household income
    • 2023: 2023 median household income
    • Please note: All incomes have been adjusted for inflation and are presented in 2023-inflation-adjusted dollars.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Hope town median household income by race. You can refer the same here

  6. U

    United States US: Income Share Held by Highest 10%

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, United States US: Income Share Held by Highest 10% [Dataset]. https://www.ceicdata.com/en/united-states/poverty/us-income-share-held-by-highest-10
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 1979 - Dec 1, 2016
    Area covered
    United States
    Description

    United States US: Income Share Held by Highest 10% data was reported at 30.600 % in 2016. This records an increase from the previous number of 30.100 % for 2013. United States US: Income Share Held by Highest 10% data is updated yearly, averaging 30.100 % from Dec 1979 (Median) to 2016, with 11 observations. The data reached an all-time high of 30.600 % in 2016 and a record low of 25.300 % in 1979. United States US: Income Share Held by Highest 10% data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Poverty. Percentage share of income or consumption is the share that accrues to subgroups of population indicated by deciles or quintiles.; ; World Bank, Development Research Group. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are from the Luxembourg Income Study database. For more information and methodology, please see PovcalNet (http://iresearch.worldbank.org/PovcalNet/index.htm).; ; The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than one thousand six hundred household surveys across 164 countries in six regions and 25 other high income countries (industrialized economies). While income distribution data are published for all countries with data available, poverty data are published for low- and middle-income countries and countries eligible to receive loans from the World Bank (such as Chile) and recently graduated countries (such as Estonia) only. See PovcalNet (http://iresearch.worldbank.org/PovcalNet/WhatIsNew.aspx) for definitions of geographical regions and industrialized countries.

  7. Income Inequality

    • data.ca.gov
    • data.chhs.ca.gov
    • +3more
    pdf, xlsx, zip
    Updated Nov 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). Income Inequality [Dataset]. https://data.ca.gov/dataset/income-inequality
    Explore at:
    pdf, xlsx, zipAvailable download formats
    Dataset updated
    Nov 7, 2025
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This table contains data on income inequality. The primary measure is the Gini index – a measure of the extent to which the distribution of income among families/households within a community deviates from a perfectly equal distribution. The index ranges from 0.0, when all families (households) have equal shares of income (implies perfect equality), to 1.0 when one family (household) has all the income and the rest have none (implies perfect inequality). Index data is provided for California and its counties, regions, and large cities/towns. The data is from the U.S. Census Bureau, American Community Survey. The table is part of a series of indicators in the Healthy Communities Data and Indicators Project of the Office of Health Equity. Income is linked to acquiring resources for healthy living. Both household income and the distribution of income across a society independently contribute to the overall health status of a community. On average Western industrialized nations with large disparities in income distribution tend to have poorer health status than similarly advanced nations with a more equitable distribution of income. Approximately 119,200 (5%) of the 2.4 million U.S. deaths in 2000 are attributable to income inequality. The pathways by which income inequality act to increase adverse health outcomes are not known with certainty, but policies that provide for a strong safety net of health and social services have been identified as potential buffers. More information about the data table and a data dictionary can be found in the About/Attachments section.

  8. US Adult Income

    • kaggle.com
    zip
    Updated Jul 14, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    John Olafenwa (2017). US Adult Income [Dataset]. https://www.kaggle.com/forums/f/4741/us-adult-income
    Explore at:
    zip(719385 bytes)Available download formats
    Dataset updated
    Jul 14, 2017
    Authors
    John Olafenwa
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    United States
    Description

    US Adult Census data relating income to social factors such as Age, Education, race etc.

    The Us Adult income dataset was extracted by Barry Becker from the 1994 US Census Database. The data set consists of anonymous information such as occupation, age, native country, race, capital gain, capital loss, education, work class and more. Each row is labelled as either having a salary greater than ">50K" or "<=50K".

    This Data set is split into two CSV files, named adult-training.txt and adult-test.txt.

    The goal here is to train a binary classifier on the training dataset to predict the column income_bracket which has two possible values ">50K" and "<=50K" and evaluate the accuracy of the classifier with the test dataset.

    Note that the dataset is made up of categorical and continuous features. It also contains missing values The categorical columns are: workclass, education, marital_status, occupation, relationship, race, gender, native_country

    The continuous columns are: age, education_num, capital_gain, capital_loss, hours_per_week

    This Dataset was obtained from the UCI repository, it can be found on

    https://archive.ics.uci.edu/ml/datasets/census+income, http://mlr.cs.umass.edu/ml/machine-learning-databases/adult/

    USAGE This dataset is well suited to developing and testing wide linear classifiers, deep neutral network classifiers and a combination of both. For more info on Combined Deep and Wide Model classifiers, refer to the Research Paper by Google https://arxiv.org/abs/1606.07792

    Refer to this kernel for sample usage : https://www.kaggle.com/johnolafenwa/wage-prediction

    Complete Tutorial is available from http://johnolafenwa.blogspot.com.ng/2017/07/machine-learning-tutorial-1-wage.html?m=1

  9. Health Outcomes and Socioeconomic Factors

    • kaggle.com
    zip
    Updated Dec 3, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2022). Health Outcomes and Socioeconomic Factors [Dataset]. https://www.kaggle.com/datasets/thedevastator/uncovering-trends-in-health-outcomes-and-socioec/code
    Explore at:
    zip(355475 bytes)Available download formats
    Dataset updated
    Dec 3, 2022
    Authors
    The Devastator
    Description

    Health Outcomes and Socioeconomic Factors

    A Study of US County Data

    By Data Exercises [source]

    About this dataset

    This dataset contains a wealth of health-related information and socio-economic data aggregated from multiple sources such as the American Community Survey, clinicaltrials.gov, and cancer.gov, covering a variety of US counties. Your task is to use this collection of data to build an Ordinary Least Squares (OLS) regression model that predicts the target death rate in each county. The model should incorporate variables related to population size, health insurance coverage, educational attainment levels, median incomes and poverty rates. Additionally you will need to assess linearity between your model parameters; measure serial independence among errors; test for heteroskedasticity; evaluate normality in the residual distribution; identify any outliers or missing values and determine how categories variables are handled; compare models through implementation with k=10 cross validation within linear regressions as well as assessing multicollinearity among model parameters. Examine your results by utilizing statistical agreements such as R-squared values and Root Mean Square Error (RMSE) while also interpreting implications uncovered by your analysis based on health outcomes compared to correlates among demographics surrounding those effected most closely by land structure along geographic boundaries throughout the United States

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset provides data on health outcomes, demographics, and socio-economic factors for various US counties from 2010-2016. It can be used to uncover trends in health outcomes and socioeconomic factors across different counties in the US over a six year period.

    The dataset contains a variety of information including statefips (a two digit code that identifies the state), countyfips (a three digit code that identifies the county), avg household size, avg annual count of cancer cases, average deaths per year, target death rate, median household income, population estimate for 2015, poverty percent study per capita binned income as well as demographic information such as median age of male and female population percent married households adults with no high school diploma adults with high school diploma percentage with some college education bachelor's degree holders among adults over 25 years old employed persons 16 and over unemployed persons 16 and over private coverage available private coverage available alone temporary private coverage available public coverage available public coverage available alone percentages of white black Asian other race married households and birth rate.

    Using this dataset you can build a multivariate ordinary least squares regression model to predict “target_deathrate”. You will also need to implement k-fold (k=10) cross validation to best select your model parameters. Model diagnostics should be performed in order to assess linearity serial independence heteroskedasticity normality multicollinearity etc., while outliers missing values or categorical variables will also have an effect your model selection process. Finally it is important to interpret the resulting models within their context based upon all given factors associated with it such as outliers missing values demographic changes etc., before arriving at a meaningful conclusion which may explain trends in health outcomes and socioeconomic factors found within this dataset

    Research Ideas

    • Analysis of factors influencing target deathrates in different US counties.
    • Prediction of the effects of varying poverty levels on health outcomes in different US counties.
    • In-depth analysis of how various socio-economic factors (e.g., median income, educational attainment, etc.) contribute to overall public health outcomes in US counties

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. -...

  10. Survey of Consumer Finances

    • federalreserve.gov
    Updated Oct 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Board of Governors of the Federal Reserve Board (2023). Survey of Consumer Finances [Dataset]. http://doi.org/10.17016/8799
    Explore at:
    Dataset updated
    Oct 18, 2023
    Dataset provided by
    Federal Reserve Systemhttp://www.federalreserve.gov/
    Federal Reserve Board of Governors
    Authors
    Board of Governors of the Federal Reserve Board
    Time period covered
    1962 - 2023
    Description

    The Survey of Consumer Finances (SCF) is normally a triennial cross-sectional survey of U.S. families. The survey data include information on families' balance sheets, pensions, income, and demographic characteristics.

  11. N

    Fairfax, VA median household income breakdown by race betwen 2013 and 2023

    • neilsberg.com
    csv, json
    Updated Mar 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Fairfax, VA median household income breakdown by race betwen 2013 and 2023 [Dataset]. https://www.neilsberg.com/research/datasets/ed155b24-f665-11ef-a994-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Mar 1, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Fairfax, Virginia
    Variables measured
    Median Household Income Trends for Asian Population, Median Household Income Trends for Black Population, Median Household Income Trends for White Population, Median Household Income Trends for Some other race Population, Median Household Income Trends for Two or more races Population, Median Household Income Trends for American Indian and Alaska Native Population, Median Household Income Trends for Native Hawaiian and Other Pacific Islander Population
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To portray the median household income within each racial category idetified by the US Census Bureau, we conducted an initial analysis and categorization of the data from 2013 to 2023. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). It is important to note that the median household income estimates exclusively represent the identified racial categories and do not incorporate any ethnicity classifications. Households are categorized, and median incomes are reported based on the self-identified race of the head of the household. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the median household incomes over the past decade across various racial categories identified by the U.S. Census Bureau in Fairfax. It portrays the median household income of the head of household across racial categories (excluding ethnicity) as identified by the Census Bureau. It also showcases the annual income trends, between 2013 and 2023, providing insights into the economic shifts within diverse racial communities.The dataset can be utilized to gain insights into income disparities and variations across racial categories, aiding in data analysis and decision-making..

    Key observations

    • White: In Fairfax, the median household income for the households where the householder is White increased by $13,877(9.99%), between 2013 and 2023. The median household income, in 2023 inflation-adjusted dollars, was $138,960 in 2013 and $152,837 in 2023.
    • Black or African American: In Fairfax, the median household income for the households where the householder is Black or African American decreased by $28,850(24.88%), between 2013 and 2023. The median household income, in 2023 inflation-adjusted dollars, was $115,975 in 2013 and $87,125 in 2023.
    • Refer to the research insights for more key observations on American Indian and Alaska Native, Asian, Native Hawaiian and Other Pacific Islander, Some other race and Two or more races (multiracial) households
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Racial categories include:

    • White
    • Black or African American
    • American Indian and Alaska Native
    • Asian
    • Native Hawaiian and Other Pacific Islander
    • Some other race
    • Two or more races (multiracial)

    Variables / Data Columns

    • Race of the head of household: This column presents the self-identified race of the household head, encompassing all relevant racial categories (excluding ethnicity) applicable in Fairfax.
    • 2010: 2010 median household income
    • 2011: 2011 median household income
    • 2012: 2012 median household income
    • 2013: 2013 median household income
    • 2014: 2014 median household income
    • 2015: 2015 median household income
    • 2016: 2016 median household income
    • 2017: 2017 median household income
    • 2018: 2018 median household income
    • 2019: 2019 median household income
    • 2020: 2020 median household income
    • 2021: 2021 median household income
    • 2022: 2022 median household income
    • 2023: 2023 median household income
    • Please note: All incomes have been adjusted for inflation and are presented in 2023-inflation-adjusted dollars.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Fairfax median household income by race. You can refer the same here

  12. N

    Gays, IL median household income breakdown by race betwen 2011 and 2021

    • neilsberg.com
    csv, json
    Updated Jan 3, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Gays, IL median household income breakdown by race betwen 2011 and 2021 [Dataset]. https://www.neilsberg.com/research/datasets/cddab6c4-8924-11ee-9302-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jan 3, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Gays, Illinois, Gays, IL
    Variables measured
    Median Household Income Trends for Asian Population, Median Household Income Trends for Black Population, Median Household Income Trends for White Population, Median Household Income Trends for Some other race Population, Median Household Income Trends for Two or more races Population, Median Household Income Trends for American Indian and Alaska Native Population, Median Household Income Trends for Native Hawaiian and Other Pacific Islander Population
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To portray the median household income within each racial category idetified by the US Census Bureau, we conducted an initial analysis and categorization of the data from 2011 to 2021. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). It is important to note that the median household income estimates exclusively represent the identified racial categories and do not incorporate any ethnicity classifications. Households are categorized, and median incomes are reported based on the self-identified race of the head of the household. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the median household incomes over the past decade across various racial categories identified by the U.S. Census Bureau in Gays. It portrays the median household income of the head of household across racial categories (excluding ethnicity) as identified by the Census Bureau. It also showcases the annual income trends, between 2011 and 2021, providing insights into the economic shifts within diverse racial communities.The dataset can be utilized to gain insights into income disparities and variations across racial categories, aiding in data analysis and decision-making..

    Key observations

    • White: In Gays, the median household income for the households where the householder is White increased by $10,830(16.70%), between 2011 and 2021. The median household income, in 2022 inflation-adjusted dollars, was $64,834 in 2011 and $75,664 in 2021.
    • Black or African American: As per the U.S. Census Bureau population data, in Gays, there are no households where the householder is Black or African American; hence, the median household income for the Black or African American population is not applicable.
    • Refer to the research insights for more key observations on American Indian and Alaska Native, Asian, Native Hawaiian and Other Pacific Islander, Some other race and Two or more races (multiracial) households

    https://i.neilsberg.com/ch/gays-il-median-household-income-by-race-trends.jpeg" alt="Gays, IL median household income trends across races (2011-2021, in 2022 inflation-adjusted dollars)">

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Racial categories include:

    • White
    • Black or African American
    • American Indian and Alaska Native
    • Asian
    • Native Hawaiian and Other Pacific Islander
    • Some other race
    • Two or more races (multiracial)

    Variables / Data Columns

    • Race of the head of household: This column presents the self-identified race of the household head, encompassing all relevant racial categories (excluding ethnicity) applicable in Gays.
    • 2010: 2010 median household income
    • 2011: 2011 median household income
    • 2012: 2012 median household income
    • 2013: 2013 median household income
    • 2014: 2014 median household income
    • 2015: 2015 median household income
    • 2016: 2016 median household income
    • 2017: 2017 median household income
    • 2018: 2018 median household income
    • 2019: 2019 median household income
    • 2020: 2020 median household income
    • 2021: 2021 median household income
    • 2022: 2022 median household income
    • Please note: 2020 1-Year ACS estimates data was not reported by Census Bureau due to impact on survey collection and analysis during COVID-19, thus for large cities (population 65,000 and above) median household income data is not available.
    • Please note: All incomes have been adjusted for inflation and are presented in 2022-inflation-adjusted dollars.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Gays median household income by race. You can refer the same here

  13. U

    United States US: Income Share Held by Highest 20%

    • ceicdata.com
    Updated Nov 27, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2021). United States US: Income Share Held by Highest 20% [Dataset]. https://www.ceicdata.com/en/united-states/poverty/us-income-share-held-by-highest-20
    Explore at:
    Dataset updated
    Nov 27, 2021
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 1979 - Dec 1, 2016
    Area covered
    United States
    Description

    United States US: Income Share Held by Highest 20% data was reported at 46.900 % in 2016. This records an increase from the previous number of 46.400 % for 2013. United States US: Income Share Held by Highest 20% data is updated yearly, averaging 46.000 % from Dec 1979 (Median) to 2016, with 11 observations. The data reached an all-time high of 46.900 % in 2016 and a record low of 41.200 % in 1979. United States US: Income Share Held by Highest 20% data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Poverty. Percentage share of income or consumption is the share that accrues to subgroups of population indicated by deciles or quintiles. Percentage shares by quintile may not sum to 100 because of rounding.; ; World Bank, Development Research Group. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are from the Luxembourg Income Study database. For more information and methodology, please see PovcalNet (http://iresearch.worldbank.org/PovcalNet/index.htm).; ; The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than one thousand six hundred household surveys across 164 countries in six regions and 25 other high income countries (industrialized economies). While income distribution data are published for all countries with data available, poverty data are published for low- and middle-income countries and countries eligible to receive loans from the World Bank (such as Chile) and recently graduated countries (such as Estonia) only. See PovcalNet (http://iresearch.worldbank.org/PovcalNet/WhatIsNew.aspx) for definitions of geographical regions and industrialized countries.

  14. American Community Survey (ACS) Median Household Income Variables –...

    • performance-data-integration-space-fdot.hub.arcgis.com
    Updated Aug 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florida Department of Transportation (2023). American Community Survey (ACS) Median Household Income Variables – Boundaries [Dataset]. https://performance-data-integration-space-fdot.hub.arcgis.com/datasets/american-community-survey-acs-median-household-income-variables-boundaries
    Explore at:
    Dataset updated
    Aug 10, 2023
    Dataset authored and provided by
    Florida Department of Transportationhttps://www.fdot.gov/
    Area covered
    Earth
    Description

    The Florida Department of Transportation (FDOT or Department) has identified processed, authoritative datasets to support the preliminary spatial analysis of equity considerations. These processed datasets are available at larger geographies, such as the United States Census Bureau tract or county-level; however, additional raw datasets from other sources can be used to identify equity considerations. Most of this raw data is available at the Census block group, parcel, or point-level—but additional processing is required to make suitable for spatial analysis. For more information, contact Dana Reiding with the FDOT Forecasting and Trends Office (FTO). The American Community Survey (ACS) Median Household Income Variables – Boundaries layer is identified to support the equity community indicator of income and poverty. This layer contains the most current release of data from the ACS about median household income by race and by age of householder. These are 5-year estimates shown by tract, county, and state boundaries. The layer is owned and managed by the ESRI Demographics Team. Data Link: https://www.arcgis.com/home/item.html?id=45ede6d6ff7e4cbbbffa60d34227e462 Available Geography Levels: State, County, Tract Owner/Managed By: ESRI Demographics FDOT Point of Contact: Dana Reiding, ManagerForecasting and Trends OfficeFlorida Department of TransportationDana.Reiding@dot.state.fl.us605 Suwannee Street, Tallahassee, Florida 32399850-414-4719

  15. n

    Luxembourg Income Study

    • neuinfo.org
    • rrid.site
    • +2more
    Updated Aug 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Luxembourg Income Study [Dataset]. http://identifiers.org/RRID:SCR_008732
    Explore at:
    Dataset updated
    Aug 9, 2024
    Description

    A cross-national data archive located in Luxembourg that contains two primary databases: the Luxembourg Income Study Database (LIS Database) includes income microdata from a large number of countries at multiple points in time. The newer Luxembourg Wealth Study Database(LWS Database) includes wealth microdata from a smaller selection of countries. Both databases include labor market and demographic data as well. Our mission is to enable, facilitate, promote, and conduct cross-national comparative research on socio-economic outcomes and on the institutional factors that shape those outcomes. Since its beginning in 1983, the LIS has grown into a cooperative research project with a membership that includes countries in Europe, North America, and Australia. The database now contains information for more than 30 countries with datasets that span up to three decades. The LIS databank has a total of over 140 datasets covering the period 1968 to 2005. The primary objectives of the LIS are as follows: * Test the feasibility for creating a database containing social and economic data collected in household surveys from different countries; * Provide a method which allows researchers to use the data under restrictions required by the countries providing the data; * Create a system that allows research requests to be received from and returned to users at remote locations; and * Promote comparative research on the social and economic status of various populations and subgroups in different countries. Data Availability: The dataset is accessed globally via electronic mail networks. Extensive documentation concerning technical aspects of the survey data, variables list, and the social institutions of income provision in member countries are also available to users through the project Website. * Dates of Study: 1968-present * Study Features: International * Sample Size: 30+ Countries Link: * ICPSR: http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/00150

  16. a

    2019-2023 American Community Survey (ACS) 5-year Race by Income by County

    • hub.arcgis.com
    • rlisdiscovery.oregonmetro.gov
    • +1more
    Updated Feb 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Metro (2025). 2019-2023 American Community Survey (ACS) 5-year Race by Income by County [Dataset]. https://hub.arcgis.com/datasets/drcMetro::2019-2023-american-community-survey-acs-5-year-race-by-income-by-county?uiVersion=content-views
    Explore at:
    Dataset updated
    Feb 6, 2025
    Dataset authored and provided by
    Metro
    Area covered
    Description

    County-level race and ethnicity estimates for populations for whom poverty status has been determined, cross-tabulated with income estimates for populations with income below poverty level. Race and ethnicity estimates include the following categories: White alone, Black or African American alone, American Indian or Alaska Native alone, Native Hawaiian or Other Pacific Islander alone, Some Other Race alone, Two or More Races, White alone and Not Hispanic or Latino, Hispanic or Latino, and people of color. Estimates are accompanied by margins of error, coefficients of variation, and percentages. Geometry source: 2020 Census. Attribute source: 2019-2023 American Community Survey 5-year estimates, tables B17001, B17001A, B17001B, B17001C, B17001D, B17001E, B17001F, B17001G, B17001H, and B17001I. Date of last data update: 2024-01-11 This is official RLIS data. Contact Person: Joe Gordon joe.gordon@oregonmetro.gov 503-797-1587 RLIS Metadata Viewer: https://gis.oregonmetro.gov/rlis-metadata/#/details/3845 RLIS Terms of Use: https://rlisdiscovery.oregonmetro.gov/pages/terms-of-use

  17. T

    United States Disposable Personal Income

    • tradingeconomics.com
    • ar.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, United States Disposable Personal Income [Dataset]. https://tradingeconomics.com/united-states/disposable-personal-income
    Explore at:
    json, xml, excel, csvAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1959 - Aug 31, 2025
    Area covered
    United States
    Description

    Disposable Personal Income in the United States increased to 23033.50 USD Billion in August from 22947.50 USD Billion in July of 2025. This dataset provides - United States Disposable Personal Income - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  18. Census Income dataset

    • kaggle.com
    zip
    Updated Oct 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    tawfik elmetwally (2023). Census Income dataset [Dataset]. https://www.kaggle.com/datasets/tawfikelmetwally/census-income-dataset
    Explore at:
    zip(707150 bytes)Available download formats
    Dataset updated
    Oct 28, 2023
    Authors
    tawfik elmetwally
    Description

    This intermediate level data set was extracted from the census bureau database. There are 48842 instances of data set, mix of continuous and discrete (train=32561, test=16281).

    The data set has 15 attribute which include age, sex, education level and other relevant details of a person. The data set will help to improve your skills in Exploratory Data Analysis, Data Wrangling, Data Visualization and Classification Models.

    Feel free to explore the data set with multiple supervised and unsupervised learning techniques. The Following description gives more details on this data set:

    • age: the age of an individual.
    • workclass: The type of work or employment of an individual. It can have the following categories:
      • Private: Working in the private sector.
      • Self-emp-not-inc: Self-employed individuals who are not incorporated.
      • Self-emp-inc: Self-employed individuals who are incorporated.
      • Federal-gov: Working for the federal government.
      • Local-gov: Working for the local government.
      • State-gov: Working for the state government.
      • Without-pay: Not working and without pay.
      • Never-worked: Never worked before.
    • Final Weight: The weights on the CPS files are controlled to independent estimates of the civilian noninstitutional population of the US. These are prepared monthly for us by Population Division here at the Census Bureau. We use 3 sets of controls.

    These are: 1. A single cell estimate of the population 16+ for each state. 2. Controls for Hispanic Origin by age and sex. 3. Controls by Race, age and sex.

    We use all three sets of controls in our weighting program and "rake" through them 6 times so that by the end we come back to all the controls we used.

    People with similar demographic characteristics should have similar weights. There is one important caveat to remember about this statement. That is that since the CPS sample is actually a collection of 51 state samples, each with its own probability of selection, the statement only applies within state.

    • education: The highest level of education completed.
    • education-num: The number of years of education completed.
    • marital-status: The marital status.
    • occupation: Type of work performed by an individual.
    • relationship: The relationship status.
    • race: The race of an individual.
    • sex: The gender of an individual.
    • capital-gain: The amount of capital gain (financial profit).
    • capital-loss: The amount of capital loss an individual has incurred.
    • hours-per-week: The number of hours works per week.
    • native-country: The country of origin or the native country.
    • income: The income level of an individual and serves as the target variable. It indicates whether the income is greater than $50,000 or less than or equal to $50,000, denoted as (>50K, <=50K).
  19. ACS Median Household Income Variables - Centroids

    • hub.arcgis.com
    • places-lincolninstitute.hub.arcgis.com
    • +2more
    Updated Oct 22, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Median Household Income Variables - Centroids [Dataset]. https://hub.arcgis.com/maps/cab3fe0ee8304888a47a58355a472904
    Explore at:
    Dataset updated
    Oct 22, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows median household income by race and by age of householder. This is shown by tract, county, and state centroids. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Median income and income source is based on income in past 12 months of survey. This layer is symbolized to show median household income. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B19013B, B19013C, B19013D, B19013E, B19013F, B19013G, B19013H, B19013I, B19049, B19053Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  20. N

    Income Distribution by Quintile: Mean Household Income in Davidson County,...

    • neilsberg.com
    csv, json
    Updated Mar 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Income Distribution by Quintile: Mean Household Income in Davidson County, TN // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/davidson-county-tn-median-household-income/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Mar 3, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Davidson County, Tennessee
    Variables measured
    Income Level, Mean Household Income
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It delineates income distributions across income quintiles (mentioned above) following an initial analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the mean household income for each of the five quintiles in Davidson County, TN, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.

    Key observations

    • Income disparities: The mean income of the lowest quintile (20% of households with the lowest income) is 17,291, while the mean income for the highest quintile (20% of households with the highest income) is 291,524. This indicates that the top earners earn 17 times compared to the lowest earners.
    • *Top 5%: * The mean household income for the wealthiest population (top 5%) is 555,716, which is 190.62% higher compared to the highest quintile, and 3213.90% higher compared to the lowest quintile.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income Levels:

    • Lowest Quintile
    • Second Quintile
    • Third Quintile
    • Fourth Quintile
    • Highest Quintile
    • Top 5 Percent

    Variables / Data Columns

    • Income Level: This column showcases the income levels (As mentioned above).
    • Mean Household Income: Mean household income, in 2023 inflation-adjusted dollars for the specific income level.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Davidson County median household income. You can refer the same here

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2020). U.S. wealth distribution Q1 2025 [Dataset]. https://www.statista.com/statistics/203961/wealth-distribution-for-the-us/
Organization logo

U.S. wealth distribution Q1 2025

Explore at:
Dataset updated
Jun 18, 2020
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
United States
Description

In the first quarter of 2025, almost ********** of the total wealth in the United States was owned by the top 10 percent of earners. In comparison, the lowest ** percent of earners only owned *** percent of the total wealth. Income inequality in the U.S. Despite the idea that the United States is a country where hard work and pulling yourself up by your bootstraps will inevitably lead to success, this is often not the case. In 2024, *** percent of U.S. households had an annual income under 15,000 U.S. dollars. With such a small percentage of people in the United States owning such a vast majority of the country’s wealth, the gap between the rich and poor in America remains stark. The top one percent The United States was the country with the most billionaires in the world in 2025. Elon Musk, with a net worth of *** billion U.S. dollars, was among the richest people in the United States in 2025. Over the past 50 years, the CEO-to-worker compensation ratio has exploded, causing the gap between rich and poor to grow, with some economists theorizing that this gap is the largest it has been since right before the Great Depression.

Search
Clear search
Close search
Google apps
Main menu