63 datasets found
  1. T

    United States Consumer Spending

    • tradingeconomics.com
    • tr.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, United States Consumer Spending [Dataset]. https://tradingeconomics.com/united-states/consumer-spending
    Explore at:
    xml, json, excel, csvAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 31, 1947 - Mar 31, 2025
    Area covered
    United States
    Description

    Consumer Spending in the United States increased to 16291.80 USD Billion in the first quarter of 2025 from 16273.20 USD Billion in the fourth quarter of 2024. This dataset provides the latest reported value for - United States Consumer Spending - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  2. d

    US Consumer Demographics | Homeowners & Renters | Email & Mobile Phone |...

    • datarade.ai
    .json, .csv, .xls
    Updated Oct 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CompCurve (2024). US Consumer Demographics | Homeowners & Renters | Email & Mobile Phone | Bulk & Custom | 255M People [Dataset]. https://datarade.ai/data-products/compcurve-us-consumer-demographics-homeowners-renters-compcurve
    Explore at:
    .json, .csv, .xlsAvailable download formats
    Dataset updated
    Oct 18, 2024
    Dataset authored and provided by
    CompCurve
    Area covered
    United States
    Description

    Knowing who your consumers are is essential for businesses, marketers, and researchers. This detailed demographic file offers an in-depth look at American consumers, packed with insights about personal details, household information, financial status, and lifestyle choices. Let's take a closer look at the data:

    Personal Identifiers and Basic Demographics At the heart of this dataset are the key details that make up a consumer profile:

    Unique IDs (PID, HHID) for individuals and households Full names (First, Middle, Last) and suffixes Gender and age Date of birth Complete location details (address, city, state, ZIP) These identifiers are critical for accurate marketing and form the base for deeper analysis.

    Geospatial Intelligence This file goes beyond just listing addresses by including rich geospatial data like:

    Latitude and longitude Census tract and block details Codes for Metropolitan Statistical Areas (MSA) and Core-Based Statistical Areas (CBSA) County size codes Geocoding accuracy This allows for precise geographic segmentation and localized marketing.

    Housing and Property Data The dataset covers a lot of ground when it comes to housing, providing valuable insights for real estate professionals, lenders, and home service providers:

    Homeownership status Dwelling type (single-family, multi-family, etc.) Property values (market, assessed, and appraised) Year built and square footage Room count, amenities like fireplaces or pools, and building quality This data is crucial for targeting homeowners with products and services like refinancing or home improvement offers.

    Wealth and Financial Data For a deeper dive into consumer wealth, the file includes:

    Estimated household income Wealth scores Credit card usage Mortgage info (loan amounts, rates, terms) Home equity estimates and investment property ownership These indicators are invaluable for financial services, luxury brands, and fundraising organizations looking to reach affluent individuals.

    Lifestyle and Interests One of the most useful features of the dataset is its extensive lifestyle segmentation:

    Hobbies and interests (e.g., gardening, travel, sports) Book preferences, magazine subscriptions Outdoor activities (camping, fishing, hunting) Pet ownership, tech usage, political views, and religious affiliations This data is perfect for crafting personalized marketing campaigns and developing products that align with specific consumer preferences.

    Consumer Behavior and Purchase Habits The file also sheds light on how consumers behave and shop:

    Online and catalog shopping preferences Gift-giving tendencies, presence of children, vehicle ownership Media consumption (TV, radio, internet) Retailers and e-commerce businesses will find this behavioral data especially useful for tailoring their outreach.

    Demographic Clusters and Segmentation Pre-built segments like:

    Household, neighborhood, family, and digital clusters Generational and lifestage groups make it easier to quickly target specific demographics, streamlining the process for market analysis and campaign planning.

    Ethnicity and Language Preferences In today's multicultural market, knowing your audience's cultural background is key. The file includes:

    Ethnicity codes and language preferences Flags for Hispanic/Spanish-speaking households This helps ensure culturally relevant and sensitive communication.

    Education and Occupation Data The dataset also tracks education and career info:

    Education level and occupation codes Home-based business indicators This data is essential for B2B marketers, recruitment agencies, and education-focused campaigns.

    Digital and Social Media Habits With everyone online, digital behavior insights are a must:

    Internet, TV, radio, and magazine usage Social media platform engagement (Facebook, Instagram, LinkedIn) Streaming subscriptions (Netflix, Hulu) This data helps marketers, app developers, and social media managers connect with their audience in the digital space.

    Political and Charitable Tendencies For political campaigns or non-profits, this dataset offers:

    Political affiliations and outlook Charitable donation history Volunteer activities These insights are perfect for cause-related marketing and targeted political outreach.

    Neighborhood Characteristics By incorporating census data, the file provides a bigger picture of the consumer's environment:

    Population density, racial composition, and age distribution Housing occupancy and ownership rates This offers important context for understanding the demographic landscape.

    Predictive Consumer Indexes The dataset includes forward-looking indicators in categories like:

    Fashion, automotive, and beauty products Health, home decor, pet products, sports, and travel These predictive insights help businesses anticipate consumer trends and needs.

    Contact Information Finally, the file includes ke...

  3. T

    United States Real Consumer Spending QoQ

    • tradingeconomics.com
    • ko.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, United States Real Consumer Spending QoQ [Dataset]. https://tradingeconomics.com/united-states/real-consumer-spending
    Explore at:
    xml, json, excel, csvAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jun 30, 1947 - Mar 31, 2025
    Area covered
    United States
    Description

    Real Consumer Spending in the United States decreased to 0.50 percent in the first quarter of 2025 from 4 percent in the fourth quarter of 2024. This dataset includes a chart with historical data for the United States Real Consumer Spending QoQ.

  4. T

    CONSUMER SPENDING by Country in AMERICA

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 27, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). CONSUMER SPENDING by Country in AMERICA [Dataset]. https://tradingeconomics.com/country-list/consumer-spending?continent=america
    Explore at:
    json, excel, csv, xmlAvailable download formats
    Dataset updated
    May 27, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    United States
    Description

    This dataset provides values for CONSUMER SPENDING reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  5. d

    Vision Consumer Demographic Data | B2C Audience Purchase Behavior | US...

    • datarade.ai
    .csv, .xls
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Consumer Edge, Vision Consumer Demographic Data | B2C Audience Purchase Behavior | US Transaction Data | 100M+ Cards, 12K+ Merchants, Industry, Channel [Dataset]. https://datarade.ai/data-products/consumer-edge-vision-demographic-spending-data-b2c-audience-consumer-edge
    Explore at:
    .csv, .xlsAvailable download formats
    Dataset authored and provided by
    Consumer Edge
    Area covered
    United States
    Description

    Demographics Analysis with Consumer Edge Credit & Debit Card Transaction Data

    Consumer Edge is a leader in alternative consumer data for public and private investors and corporate clients. CE Transact Signal is an aggregated transaction feed that includes consumer transaction data on 100M+ credit and debit cards, including 14M+ active monthly users. Capturing online, offline, and 3rd-party consumer spending on public and private companies, data covers 12K+ merchants and deep demographic and geographic breakouts. Track detailed consumer behavior patterns, including retention, purchase frequency, and cross shop in addition to total spend, transactions, and dollars per transaction.

    Consumer Edge’s consumer transaction datasets offer insights into industries across consumer and discretionary spend such as: • Apparel, Accessories, & Footwear • Automotive • Beauty • Commercial – Hardlines • Convenience / Drug / Diet • Department Stores • Discount / Club • Education • Electronics / Software • Financial Services • Full-Service Restaurants • Grocery • Ground Transportation • Health Products & Services • Home & Garden • Insurance • Leisure & Recreation • Limited-Service Restaurants • Luxury • Miscellaneous Services • Online Retail – Broadlines • Other Specialty Retail • Pet Products & Services • Sporting Goods, Hobby, Toy & Game • Telecom & Media • Travel

    This data sample illustrates how Consumer Edge data can be used to compare demographics breakdown (age and income excluded in this free sample view) for one company vs. a competitor for a set period of time (Ex: How do demographics like wealth, ethnicity, children in the household, homeowner status, and political affiliation differ for Walmart vs. Target shopper?).

    Inquire about a CE subscription to perform more complex, near real-time demographics analysis functions on public tickers and private brands like: • Analyze a demographic, like age or income, within a state for a company in 2023 • Compare all of a company’s demographics to all of that company’s competitors through most recent history

    Consumer Edge offers a variety of datasets covering the US and Europe (UK, Austria, France, Germany, Italy, Spain), with subscription options serving a wide range of business needs.

    Use Case: Demographics Analysis

    Problem A global retailer wants to understand company performance by age group.

    Solution Consumer Edge transaction data can be used to analyze shopper transactions by age group to understand: • Overall sales growth by age group over time • Percentage sales growth by age group over time • Sales by age group vs. competitors

    Impact Marketing and Consumer Insights were able to: • Develop weekly reporting KPI's on key demographic drivers of growth for company-wide reporting • Reduce investment in underperforming age groups, both online and offline • Determine retention by age group to refine campaign strategy • Understand how different age groups are performing compared to key competitors

    Corporate researchers and consumer insights teams use CE Vision for:

    Corporate Strategy Use Cases • Ecommerce vs. brick & mortar trends • Real estate opportunities • Economic spending shifts

    Marketing & Consumer Insights • Total addressable market view • Competitive threats & opportunities • Cross-shopping trends for new partnerships • Demo and geo growth drivers • Customer loyalty & retention

    Investor Relations • Shareholder perspective on brand vs. competition • Real-time market intelligence • M&A opportunities

    Most popular use cases for private equity and venture capital firms include: • Deal Sourcing • Live Diligences • Portfolio Monitoring

    Public and private investors can leverage insights from CE’s synthetic data to assess investment opportunities, while consumer insights, marketing, and retailers can gain visibility into transaction data’s potential for competitive analysis, understanding shopper behavior, and capturing market intelligence.

    Most popular use cases among public and private investors include: • Track Key KPIs to Company-Reported Figures • Understanding TAM for Focus Industries • Competitive Analysis • Evaluating Public, Private, and Soon-to-be-Public Companies • Ability to Explore Geographic & Regional Differences • Cross-Shop & Loyalty • Drill Down to SKU Level & Full Purchase Details • Customer lifetime value • Earnings predictions • Uncovering macroeconomic trends • Analyzing market share • Performance benchmarking • Understanding share of wallet • Seeing subscription trends

    Fields Include: • Day • Merchant • Subindustry • Industry • Spend • Transactions • Spend per Transaction (derivable) • Cardholder State • Cardholder CBSA • Cardholder CSA • Age • Income • Wealth • Ethnicity • Political Affiliation • Children in Household • Adults in Household • Homeowner vs. Renter • Business Owner • Retention by First-Shopped Period ...

  6. Consumer Behavior Data | Consumer Goods & Electronics Industry Leaders in...

    • datarade.ai
    Updated Jan 1, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Success.ai (2018). Consumer Behavior Data | Consumer Goods & Electronics Industry Leaders in Asia, US, and Europe | Verified Global Profiles from 700M+ Dataset [Dataset]. https://datarade.ai/data-products/consumer-behavior-data-consumer-goods-electronics-industr-success-ai
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Jan 1, 2018
    Dataset provided by
    Area covered
    United States
    Description

    Success.ai’s Consumer Behavior Data for Consumer Goods & Electronics Industry Leaders in Asia, the US, and Europe offers a robust dataset designed to empower businesses with actionable insights into global consumer trends and professional profiles. Covering executives, product managers, marketers, and other professionals in the consumer goods and electronics sectors, this dataset includes verified contact information, professional histories, and geographic business data.

    With access to over 700 million verified global profiles and firmographic data from leading companies, Success.ai ensures your outreach, market analysis, and strategic planning efforts are powered by accurate, continuously updated, and GDPR-compliant data. Backed by our Best Price Guarantee, this solution is ideal for businesses aiming to navigate and lead in these fast-paced industries.

    Why Choose Success.ai’s Consumer Behavior Data?

    1. Verified Contact Data for Precision Engagement

      • Access verified email addresses, phone numbers, and LinkedIn profiles of professionals in the consumer goods and electronics industries.
      • AI-driven validation ensures 99% accuracy, optimizing communication efficiency and minimizing data gaps.
    2. Comprehensive Global Coverage

      • Includes profiles from key markets in Asia, the US, and Europe, covering regions such as China, India, Germany, and the United States.
      • Gain insights into region-specific consumer trends, product preferences, and purchasing behaviors.
    3. Continuously Updated Datasets

      • Real-time updates capture career progressions, company expansions, market shifts, and consumer trend data.
      • Stay aligned with evolving market dynamics and seize emerging opportunities effectively.
    4. Ethical and Compliant

      • Fully adheres to GDPR, CCPA, and other global data privacy regulations, ensuring responsible use and legal compliance for all data-driven campaigns.

    Data Highlights:

    • 700M+ Verified Global Profiles: Connect with industry leaders, marketers, and decision-makers in consumer goods and electronics industries worldwide.
    • Consumer Trend Insights: Gain detailed insights into product preferences, purchasing patterns, and demographic influences.
    • Business Locations: Access geographic data to identify regional markets, operational hubs, and emerging consumer bases.
    • Professional Histories: Understand career trajectories, skills, and expertise of professionals driving innovation and strategy.

    Key Features of the Dataset:

    1. Decision-Maker Profiles in Consumer Goods and Electronics

      • Identify and engage with professionals responsible for product development, marketing strategy, and supply chain optimization.
      • Target individuals making decisions on consumer engagement, distribution, and market entry strategies.
    2. Advanced Filters for Precision Campaigns

      • Filter professionals by industry focus (consumer electronics, FMCG, luxury goods), geographic location, or job function.
      • Tailor campaigns to align with specific industry trends, market demands, and regional preferences.
    3. Consumer Trend Data and Insights

      • Access data on regional product preferences, spending behaviors, and purchasing influences across key global markets.
      • Leverage these insights to shape product development, marketing campaigns, and customer engagement strategies.
    4. AI-Driven Enrichment

      • Profiles enriched with actionable data allow for personalized messaging, highlight unique value propositions, and improve engagement outcomes.

    Strategic Use Cases:

    1. Marketing and Demand Generation

      • Design campaigns tailored to consumer preferences, regional trends, and target demographics in the consumer goods and electronics industries.
      • Leverage verified contact data for multi-channel outreach, including email, social media, and direct marketing.
    2. Market Research and Competitive Analysis

      • Analyze global consumer trends, spending patterns, and product preferences to refine your product portfolio and market positioning.
      • Benchmark against competitors to identify gaps, emerging needs, and growth opportunities in target regions.
    3. Sales and Partnership Development

      • Build relationships with key decision-makers at companies specializing in consumer goods or electronics manufacturing and distribution.
      • Present innovative solutions, supply chain partnerships, or co-marketing opportunities to grow your market share.
    4. Product Development and Innovation

      • Utilize consumer trend insights to inform product design, pricing strategies, and feature prioritization.
      • Develop offerings that align with regional preferences and purchasing behaviors to maximize market impact.

    Why Choose Success.ai?

    1. Best Price Guarantee
      • Access premium-quality consumer behavior data at competitive prices, ensuring maximum ROI for your outreach, research, and ma...
  7. T

    United States Personal Spending

    • tradingeconomics.com
    • es.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated May 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Personal Spending [Dataset]. https://tradingeconomics.com/united-states/personal-spending
    Explore at:
    xml, excel, json, csvAvailable download formats
    Dataset updated
    May 30, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Feb 28, 1959 - May 31, 2025
    Area covered
    United States
    Description

    Personal Spending in the United States decreased 0.10 percent in May of 2025 over the previous month. This dataset provides the latest reported value for - United States Personal Spending - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  8. F

    Personal Consumption Expenditures

    • fred.stlouisfed.org
    json
    Updated Jun 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Personal Consumption Expenditures [Dataset]. https://fred.stlouisfed.org/series/PCE
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jun 27, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    View data of PCE, an index that measures monthly changes in the price of consumer goods and services as a means of analyzing inflation.

  9. Annual Personal Consumption Expenditures for State of Iowa

    • data.iowa.gov
    • datasets.ai
    • +2more
    application/rdfxml +5
    Updated Nov 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, Bureau of Economic Analysis (SAPCE1, SAPCE2, SAEXP1, and SAEXP2)) (2024). Annual Personal Consumption Expenditures for State of Iowa [Dataset]. https://data.iowa.gov/Economic-Statistics/Annual-Personal-Consumption-Expenditures-for-State/xwex-75fk
    Explore at:
    application/rssxml, xml, csv, json, tsv, application/rdfxmlAvailable download formats
    Dataset updated
    Nov 9, 2024
    Dataset provided by
    United States Department of Commercehttp://www.commerce.gov/
    The Bureau of Economic Analysishttp://www.bea.gov/
    Authors
    U.S. Department of Commerce, Bureau of Economic Analysis (SAPCE1, SAPCE2, SAEXP1, and SAEXP2))
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Area covered
    Iowa
    Description

    This dataset provides annual estimates developed by the U.S. Bureau of Economic Analysis on consumer spending in the State of Iowa beginning in 1998. Personal consumption expenditures (PCE) is the value of the goods and services purchased by, or on the behalf of, Iowa residents. PCE is reported in millions of current dollars. Also provided is per capita PCE which is reported in current dollars. The Census Bureau’s annual midyear (July 1) population estimates are used for per capita variables.

    Consumption category indicates the goods or services associated with personal consumption. All includes both goods and services.

    Goods include both durable goods and non durable goods. Durable goods include: motor vehicles and parts, furnishings and durable household equipment, recreational goods and vehicles, and other durable goods. Non durable goods include: food and beverages purchased for off-premises consumption, clothing and footwear, gasoline and other energy goods, and other non durable goods.

    Services include household consumption expenditures (for services) and final consumption expenditures of nonprofit institutions serving households (NPISHs). Household consumption expenditures include: housing and utilities, health care, transportation services, recreation services, food services and accommodations, financial services and insurance, and other services. NPISH is the gross output of nonprofit institutions less receipts from sales of goods and services by nonprofit institutions.

  10. T

    United States Michigan Consumer Sentiment

    • tradingeconomics.com
    • es.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jun 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Michigan Consumer Sentiment [Dataset]. https://tradingeconomics.com/united-states/consumer-confidence
    Explore at:
    csv, xml, json, excelAvailable download formats
    Dataset updated
    Jun 27, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Nov 30, 1952 - Jun 30, 2025
    Area covered
    United States
    Description

    Consumer Confidence in the United States increased to 60.70 points in June from 52.20 points in May of 2025. This dataset provides the latest reported value for - United States Consumer Sentiment - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  11. Survey of Consumer Finances (SCF)

    • catalog.data.gov
    • s.cnmilf.com
    Updated Dec 18, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Board of Governors of the Federal Reserve System (2024). Survey of Consumer Finances (SCF) [Dataset]. https://catalog.data.gov/dataset/survey-of-consumer-finances-scf
    Explore at:
    Dataset updated
    Dec 18, 2024
    Dataset provided by
    Federal Reserve Board of Governors
    Federal Reserve Systemhttp://www.federalreserve.gov/
    Description

    The Survey of Consumer Finances (SCF) is normally a triennial cross-sectional survey of U.S. families. The survey data include information on families balance sheets, pensions, income, and demographic characteristics. Information is also included from related surveys of pension providers and the earlier such surveys conducted by the Federal Reserve Board. No other study for the country collects comparable information. Data from the SCF are widely used, from analysis at the Federal Reserve and other branches of government to scholarly work at the major economic research centers.The survey has contained a panel element over two periods. Respondents to the 1983 survey were re-interviewed in 1986 and 1989. Respondents to the 2007 survey were re-interviewed in 2009.The study is sponsored by the Federal Reserve Board in cooperation with the Department of the Treasury. Since 1992, data have been collected by the National Opinion Research Center (NORC) at the University of Chicago.

  12. Supermarket Ordering, Invoicing, and Sales

    • kaggle.com
    Updated Jan 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Supermarket Ordering, Invoicing, and Sales [Dataset]. https://www.kaggle.com/thedevastator/supermarket-ordering-invoicing-and-sales-analysi/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 15, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    The Devastator
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Supermarket Ordering, Invoicing, and Sales Analysis

    Measuring Consumer Behavior and Engagement

    By [source]

    About this dataset

    This data set provides an in-depth look into the ordering, invoicing and sales processes at a supermarket. With information ranging from customers' meal choices to the value of their orders and whether they were converted into sales, this dataset opens up endless possibilities to uncover consumer behavior trends and engagement within the business. From understanding who is exchanging with the company and when, to seeing what types of meals are most popular with consumers, this rich collection of data will allow us to gain priceless insights into consumer actions and habits that can inform strategic decisions. Dive deep into big data now by exploring Invoices.csv, OrderLeads.csv and SalesTeam.csv for invaluable knowledge about your customers!

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset provides an in-depth look into the ordering and invoicing processes of a supermarket, as well as how consumers are engaging with it. This dataset can be used to analyze and gain insights into consumer purchasing behaviors and preferences at the store.

    The first step in analyzing this data set is to familiarize yourself with its content. The dataset contains three CSV files: Invoices.csv, OrderLeads.csv, and SalesTeam.csv have different features like date of meal, participants, Meal Price, Type of meal ,company Name ,Order Value etc .Each file contains a list of columns containing data related to each particular feature like Date ,Date Of Meal Participants etc .

    Once you understand what types of information is included in each table it’ll be easier for you to start drawing conclusions about customer preferences and trends from within the store's data set. You can use mathematical functions or statistical models such as regression analysis or cluster analysis in order to gain even further insight into customers’ behaviors within the store setting. Additionally you could use machine learning algorithms such as K-Nearest Neighbors (KNN) or Support Vector Machines (SVM) if your goal was improving targeting strategy or recognizing patterns between customer purchases over time.

    All these techniques will help you determine what promotional tactics work best when trying to attract customers and promote sales through various marketing campaigns at this supermarket chain They will also help shed light on how customers engage with products within categories across different days/weeks/months according to their own individual purchasing habits which would ultimately contribute towards improved marketing strategies from management side .

    Overall this data set provides immense potential for advancing understanding retail behaviour by allowing us access specific transactions that occurred at a given time frame; ultimately providing us detailed insight into customer behavior trends along with tools such software packages that allow us manipulate these metrics however necessary for entertainment purposes that help us identify strategies designed for greater efficiency when increasing revenue

    Research Ideas

    • Identifying the most profitable customer segment based on order value and converted sales.
    • Leveraging trends in participant size to suggest meal packages for different types of meals.
    • Analyzing the conversion rate of orders over time to optimize promotional strategies and product offerings accordingly

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication No Copyright - You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission. See Other Information.

    Columns

    File: Invoices.csv | Column name | Description | |:-----------------|:-------------------------------------------------------------| | Date | The date the order was placed. (Date) | | Date of Meal | The date the meal was served. (Date) | | Participants | The number of people who participated in the meal. (Integer) | | Meal Price | The cost of the meal. (Float) | | Type of Meal | The...

  13. d

    US Consumer Demographic Data - 269M+ Consumer Records - Programmatic Ads and...

    • datarade.ai
    Updated Jun 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Giant Partners (2025). US Consumer Demographic Data - 269M+ Consumer Records - Programmatic Ads and Email Marketing Automation [Dataset]. https://datarade.ai/data-products/us-consumer-demographic-data-269m-consumer-records-progr-giant-partners
    Explore at:
    Dataset updated
    Jun 27, 2025
    Dataset authored and provided by
    Giant Partners
    Area covered
    United States of America
    Description

    Premium B2C Consumer Database - 269+ Million US Records

    Supercharge your B2C marketing campaigns with comprehensive consumer database, featuring over 269 million verified US consumer records. Our 20+ year data expertise delivers higher quality and more extensive coverage than competitors.

    Core Database Statistics

    Consumer Records: Over 269 million

    Email Addresses: Over 160 million (verified and deliverable)

    Phone Numbers: Over 76 million (mobile and landline)

    Mailing Addresses: Over 116,000,000 (NCOA processed)

    Geographic Coverage: Complete US (all 50 states)

    Compliance Status: CCPA compliant with consent management

    Targeting Categories Available

    Demographics: Age ranges, education levels, occupation types, household composition, marital status, presence of children, income brackets, and gender (where legally permitted)

    Geographic: Nationwide, state-level, MSA (Metropolitan Service Area), zip code radius, city, county, and SCF range targeting options

    Property & Dwelling: Home ownership status, estimated home value, years in residence, property type (single-family, condo, apartment), and dwelling characteristics

    Financial Indicators: Income levels, investment activity, mortgage information, credit indicators, and wealth markers for premium audience targeting

    Lifestyle & Interests: Purchase history, donation patterns, political preferences, health interests, recreational activities, and hobby-based targeting

    Behavioral Data: Shopping preferences, brand affinities, online activity patterns, and purchase timing behaviors

    Multi-Channel Campaign Applications

    Deploy across all major marketing channels:

    Email marketing and automation

    Social media advertising

    Search and display advertising (Google, YouTube)

    Direct mail and print campaigns

    Telemarketing and SMS campaigns

    Programmatic advertising platforms

    Data Quality & Sources

    Our consumer data aggregates from multiple verified sources:

    Public records and government databases

    Opt-in subscription services and registrations

    Purchase transaction data from retail partners

    Survey participation and research studies

    Online behavioral data (privacy compliant)

    Technical Delivery Options

    File Formats: CSV, Excel, JSON, XML formats available

    Delivery Methods: Secure FTP, API integration, direct download

    Processing: Real-time NCOA, email validation, phone verification

    Custom Selections: 1,000+ selectable demographic and behavioral attributes

    Minimum Orders: Flexible based on targeting complexity

    Unique Value Propositions

    Dual Spouse Targeting: Reach both household decision-makers for maximum impact

    Cross-Platform Integration: Seamless deployment to major ad platforms

    Real-Time Updates: Monthly data refreshes ensure maximum accuracy

    Advanced Segmentation: Combine multiple targeting criteria for precision campaigns

    Compliance Management: Built-in opt-out and suppression list management

    Ideal Customer Profiles

    E-commerce retailers seeking customer acquisition

    Financial services companies targeting specific demographics

    Healthcare organizations with compliant marketing needs

    Automotive dealers and service providers

    Home improvement and real estate professionals

    Insurance companies and agents

    Subscription services and SaaS providers

    Performance Optimization Features

    Lookalike Modeling: Create audiences similar to your best customers

    Predictive Scoring: Identify high-value prospects using AI algorithms

    Campaign Attribution: Track performance across multiple touchpoints

    A/B Testing Support: Split audiences for campaign optimization

    Suppression Management: Automatic opt-out and DNC compliance

    Pricing & Volume Options

    Flexible pricing structures accommodate businesses of all sizes:

    Pay-per-record for small campaigns

    Volume discounts for large deployments

    Subscription models for ongoing campaigns

    Custom enterprise pricing for high-volume users

    Data Compliance & Privacy

    VIA.tools maintains industry-leading compliance standards:

    CCPA (California Consumer Privacy Act) compliant

    CAN-SPAM Act adherence for email marketing

    TCPA compliance for phone and SMS campaigns

    Regular privacy audits and data governance reviews

    Transparent opt-out and data deletion processes

    Getting Started

    Our data specialists work with you to:

    1. Define your target audience criteria

    2. Recommend optimal data selections

    3. Provide sample data for testing

    4. Configure delivery methods and formats

    5. Implement ongoing campaign optimization

    Why We Lead the Industry

    With over two decades of data industry experience, we combine extensive database coverage with advanced targeting capabilities. Our commitment to data quality, compliance, and customer success has made us the preferred choice for businesses seeking superior B2C marketing performance.

    Contact our team to discuss your specific ta...

  14. g

    Archival Version

    • datasearch.gesis.org
    Updated Apr 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States. Bureau of Labor Statistics (2019). Archival Version [Dataset]. http://doi.org/10.3886/ICPSR36170
    Explore at:
    Dataset updated
    Apr 29, 2019
    Dataset provided by
    da|ra (Registration agency for social science and economic data)
    Authors
    United States. Bureau of Labor Statistics
    Description

    The Consumer Expenditure Survey (CE) program consists of two surveys: the quarterly Interview survey and the annual Diary survey. Combined, these two surveys provide information on the buying habits of American consumers, including data on their expenditures, income, and consumer unit (families and single consumers) characteristics. The survey data are collected for the U.S. Bureau of Labor Statistics (BLS) by the U.S. Census Bureau. The CE collects all on all spending components including food, housing, apparel and services, transportation, entertainment, and out-of-pocket health care costs.

    The CE features several arts-related spending categories, including the following items:

    Spending on Admissions

    Plays, theater, opera, and concerts; Movies, parks, and museums;

    Spending on Reading

    Newspapers and magazines; Books; Digital book readers;

    Spending on Other Arts-Related Items

    Musical instruments; Photographic equipment; Audio-visual equipment; Toys, games, arts and crafts;

    The CE is important because it is the only Federal survey to provide information on the complete range of consumers' expenditures and incomes, as well as the characteristics of those consumers. It is used by economic policymakers examining the impact of policy changes on economic groups, by the Census Bureau as the source of thresholds for the Supplemental Poverty Measure, by businesses and academic researchers studying consumers' spending habits and trends, by other Federal agencies, and, perhaps most importantly, to regularly revise the Consumer Price Index market basket of goods and services and their relative importance.

    The most recent data tables are for 2017, and were made available on September 11, 2018. The unpublished integrated CE data tables produced by the BLS are available to download through NADAC (click on "Excel" in the Dataset(s) section). Also, see Featured CE Tables and Economic News Releases sections on the CE home page for current data tables and news release. The 2017 public-use microdata is the most recent and was released on September 11, 2018.

  15. d

    Data from: What We Eat In America (WWEIA) Database

    • catalog.data.gov
    • cloud.csiss.gmu.edu
    • +2more
    Updated Apr 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agricultural Research Service (2025). What We Eat In America (WWEIA) Database [Dataset]. https://catalog.data.gov/dataset/what-we-eat-in-america-wweia-database-f7f35
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    Agricultural Research Service
    Area covered
    United States
    Description

    What We Eat in America (WWEIA) is the dietary intake interview component of the National Health and Nutrition Examination Survey (NHANES). WWEIA is conducted as a partnership between the U.S. Department of Agriculture (USDA) and the U.S. Department of Health and Human Services (DHHS). Two days of 24-hour dietary recall data are collected through an initial in-person interview, and a second interview conducted over the telephone within three to 10 days. Participants are given three-dimensional models (measuring cups and spoons, a ruler, and two household spoons) and/or USDA's Food Model Booklet (containing drawings of various sizes of glasses, mugs, bowls, mounds, circles, and other measures) to estimate food amounts. WWEIA data are collected using USDA's dietary data collection instrument, the Automated Multiple-Pass Method (AMPM). The AMPM is a fully computerized method for collecting 24-hour dietary recalls either in-person or by telephone. For each 2-year data release cycle, the following dietary intake data files are available: Individual Foods File - Contains one record per food for each survey participant. Foods are identified by USDA food codes. Each record contains information about when and where the food was consumed, whether the food was eaten in combination with other foods, amount eaten, and amounts of nutrients provided by the food. Total Nutrient Intakes File - Contains one record per day for each survey participant. Each record contains daily totals of food energy and nutrient intakes, daily intake of water, intake day of week, total number foods reported, and whether intake was usual, much more than usual or much less than usual. The Day 1 file also includes salt use in cooking and at the table; whether on a diet to lose weight or for other health-related reason and type of diet; and frequency of fish and shellfish consumption (examinees one year or older, Day 1 file only). DHHS is responsible for the sample design and data collection, and USDA is responsible for the survey’s dietary data collection methodology, maintenance of the databases used to code and process the data, and data review and processing. USDA also funds the collection and processing of Day 2 dietary intake data, which are used to develop variance estimates and calculate usual nutrient intakes. Resources in this dataset:Resource Title: What We Eat In America (WWEIA) main web page. File Name: Web Page, url: https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/wweianhanes-overview/ Contains data tables, research articles, documentation data sets and more information about the WWEIA program. (Link updated 05/13/2020)

  16. d

    International Cigarette Consumption Database v1.3

    • search.dataone.org
    • borealisdata.ca
    Updated Dec 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Poirier, Mathieu JP; Guindon, G Emmanuel; Sritharan, Lathika; Hoffman, Steven J (2023). International Cigarette Consumption Database v1.3 [Dataset]. http://doi.org/10.5683/SP2/AOVUW7
    Explore at:
    Dataset updated
    Dec 28, 2023
    Dataset provided by
    Borealis
    Authors
    Poirier, Mathieu JP; Guindon, G Emmanuel; Sritharan, Lathika; Hoffman, Steven J
    Time period covered
    Jan 1, 1970 - Jan 1, 2015
    Description

    This database contains tobacco consumption data from 1970-2015 collected through a systematic search coupled with consultation with country and subject-matter experts. Data quality appraisal was conducted by at least two research team members in duplicate, with greater weight given to official government sources. All data was standardized into units of cigarettes consumed and a detailed accounting of data quality and sourcing was prepared. Data was found for 82 of 214 countries for which searches for national cigarette consumption data were conducted, representing over 95% of global cigarette consumption and 85% of the world’s population. Cigarette consumption fell in most countries over the past three decades but trends in country specific consumption were highly variable. For example, China consumed 2.5 million metric tonnes (MMT) of cigarettes in 2013, more than Russia (0.36 MMT), the United States (0.28 MMT), Indonesia (0.28 MMT), Japan (0.20 MMT), and the next 35 highest consuming countries combined. The US and Japan achieved reductions of more than 0.1 MMT from a decade earlier, whereas Russian consumption plateaued, and Chinese and Indonesian consumption increased by 0.75 MMT and 0.1 MMT, respectively. These data generally concord with modelled country level data from the Institute for Health Metrics and Evaluation and have the additional advantage of not smoothing year-over-year discontinuities that are necessary for robust quasi-experimental impact evaluations. Before this study, publicly available data on cigarette consumption have been limited—either inappropriate for quasi-experimental impact evaluations (modelled data), held privately by companies (proprietary data), or widely dispersed across many national statistical agencies and research organisations (disaggregated data). This new dataset confirms that cigarette consumption has decreased in most countries over the past three decades, but that secular country specific consumption trends are highly variable. The findings underscore the need for more robust processes in data reporting, ideally built into international legal instruments or other mandated processes. To monitor the impact of the WHO Framework Convention on Tobacco Control and other tobacco control interventions, data on national tobacco production, trade, and sales should be routinely collected and openly reported. The first use of this database for a quasi-experimental impact evaluation of the WHO Framework Convention on Tobacco Control is: Hoffman SJ, Poirier MJP, Katwyk SRV, Baral P, Sritharan L. Impact of the WHO Framework Convention on Tobacco Control on global cigarette consumption: quasi-experimental evaluations using interrupted time series analysis and in-sample forecast event modelling. BMJ. 2019 Jun 19;365:l2287. doi: https://doi.org/10.1136/bmj.l2287 Another use of this database was to systematically code and classify longitudinal cigarette consumption trajectories in European countries since 1970 in: Poirier MJ, Lin G, Watson LK, Hoffman SJ. Classifying European cigarette consumption trajectories from 1970 to 2015. Tobacco Control. 2022 Jan. DOI: 10.1136/tobaccocontrol-2021-056627. Statement of Contributions: Conceived the study: GEG, SJH Identified multi-country datasets: GEG, MP Extracted data from multi-country datasets: MP Quality assessment of data: MP, GEG Selection of data for final analysis: MP, GEG Data cleaning and management: MP, GL Internet searches: MP (English, French, Spanish, Portuguese), GEG (English, French), MYS (Chinese), SKA (Persian), SFK (Arabic); AG, EG, BL, MM, YM, NN, EN, HR, KV, CW, and JW (English), GL (English) Identification of key informants: GEG, GP Project Management: LS, JM, MP, SJH, GEG Contacts with Statistical Agencies: MP, GEG, MYS, SKA, SFK, GP, BL, MM, YM, NN, HR, KV, JW, GL Contacts with key informants: GEG, MP, GP, MYS, GP Funding: GEG, SJH SJH: Hoffman, SJ; JM: Mammone J; SRVK: Rogers Van Katwyk, S; LS: Sritharan, L; MT: Tran, M; SAK: Al-Khateeb, S; AG: Grjibovski, A.; EG: Gunn, E; SKA: Kamali-Anaraki, S; BL: Li, B; MM: Mahendren, M; YM: Mansoor, Y; NN: Natt, N; EN: Nwokoro, E; HR: Randhawa, H; MYS: Yunju Song, M; KV: Vercammen, K; CW: Wang, C; JW: Woo, J; MJPP: Poirier, MJP; GEG: Guindon, EG; GP: Paraje, G; GL Gigi Lin Key informants who provided data: Corne van Walbeek (South Africa, Jamaica) Frank Chaloupka (US) Ayda Yurekli (Turkey) Dardo Curti (Uruguay) Bungon Ritthiphakdee (Thailand) Jakub Lobaszewski (Poland) Guillermo Paraje (Chile, Argentina) Key informants who provided useful insights: Carlos Manuel Guerrero López (Mexico) Muhammad Jami Husain (Bangladesh) Nigar Nargis (Bangladesh) Rijo M John (India) Evan Blecher (Nigeria, Indonesia, Philippines, South Africa) Yagya Karki (Nepal) Anne CK Quah (Malaysia) Nery Suarez Lugo (Cuba) Agencies providing assistance: Irani... Visit https://dataone.org/datasets/sha256%3Aaa1b4aae69c3399c96bfbf946da54abd8f7642332d12ccd150c42ad400e9699b for complete metadata about this dataset.

  17. T

    US Retail Sales

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jun 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). US Retail Sales [Dataset]. https://tradingeconomics.com/united-states/retail-sales
    Explore at:
    csv, xml, excel, jsonAvailable download formats
    Dataset updated
    Jun 17, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Feb 29, 1992 - May 31, 2025
    Area covered
    United States
    Description

    Retail Sales in the United States decreased 0.90 percent in May of 2025 over the previous month. This dataset provides - U.S. December Retail Sales Increased More Than Forecast - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  18. o

    Shopee Mobile App Ratings Dataset

    • opendatabay.com
    .undefined
    Updated Jul 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Datasimple (2025). Shopee Mobile App Ratings Dataset [Dataset]. https://www.opendatabay.com/data/consumer/d5fa3d0d-8802-40cd-9e29-d477075f54e2
    Explore at:
    .undefinedAvailable download formats
    Dataset updated
    Jul 3, 2025
    Dataset authored and provided by
    Datasimple
    Area covered
    Reviews & Ratings
    Description

    This dataset contains customer reviews and ratings for the Shopee mobile application from the Google Play Store. Shopee Pte. Ltd. is a Singaporean multinational technology company specialising in e-commerce, operating as a subsidiary of Sea Limited. Launched in 2015 in Singapore, Shopee has since expanded globally and, as of 2021, is recognised as the largest e-commerce platform in Southeast Asia, attracting 343 million monthly visitors. It facilitates online purchasing and selling for consumers and sellers across East Asia and Latin America. This dataset is designed to offer a clear understanding of public perception and sentiment towards the Shopee app over an extended period.

    Columns

    • Index: A unique identifier for each review.
    • review_text: The full text of the user's review.
    • review_rating: The rating given by the user, on a scale of 1 to 5.
    • author_id: A unique identifier for the author of the review.
    • author_name: The display name of the review's author.
    • author_app_version: The version of the Shopee application used by the author at the time of the review.
    • review_datetime_utc: The date and time (in UTC) when the review was posted.
    • review_likes: The number of likes received by the review.

    Distribution

    The dataset is typically provided in a CSV file format and is structured as tabular data. It contains approximately 782,000 records. Specific file size details are not available.

    Usage

    This dataset is invaluable for gaining insight into public opinion regarding the Shopee app over time. It can be used for various analytical purposes, including: * Extracting sentiments and identifying evolving trends in user feedback. * Determining which versions of the app elicited the most positive or negative feedback. * Applying topic modelling techniques to pinpoint specific pain points or common issues reported by users, and many more analytical applications.

    Coverage

    The dataset primarily covers app reviews from the Google Play Store for the Shopee application. While Shopee operates globally across Southeast Asia, East Asia, and Latin America, the dataset title suggests a focus on reviews from Singaporean users. The time range for the reviews spans from 22 June 2015 to 13 November 2023. The data reflects feedback from mobile app users who submitted reviews during this period.

    License

    CC-BY-SA

    Who Can Use It

    This dataset is suitable for a wide range of users, including: * Data Analysts and Market Researchers to understand consumer behaviour and sentiment. * Product Managers and App Developers for identifying user needs, improving app features, and addressing pain points. * Businesses and E-commerce Platforms seeking competitive analysis or insights into customer satisfaction in the online retail sector. * Academics and Students for research in natural language processing (NLP), sentiment analysis, and consumer studies.

    Dataset Name Suggestions

    • Shopee Google Play App Reviews
    • Singapore Shopee App User Feedback
    • Shopee Mobile App Ratings Dataset
    • Google Play Shopee Review Analysis
    • Shopee E-commerce App Reviews

    Attributes

    Original Data Source: 🇸🇬 Shopee App Reviews from Google Store

  19. D

    Consumer Airfare Report: Table 1a - All U.S. Airport Pair Markets

    • data.transportation.gov
    • data.virginia.gov
    • +2more
    application/rdfxml +5
    Updated Apr 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Transportation Office of the Assistant Secretary for Aviation and International Affairs (2025). Consumer Airfare Report: Table 1a - All U.S. Airport Pair Markets [Dataset]. https://data.transportation.gov/Aviation/Consumer-Airfare-Report-Table-1a-All-U-S-Airport-P/tfrh-tu9e
    Explore at:
    csv, tsv, application/rssxml, xml, json, application/rdfxmlAvailable download formats
    Dataset updated
    Apr 7, 2025
    Dataset authored and provided by
    Department of Transportation Office of the Assistant Secretary for Aviation and International Affairs
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Description

    Available only on the web, provides information for airport pair markets rather than city pair markets. This table only lists airport markets where the origin or destination airport is an airport that has other commercial airports in the same city. Midway Airport (MDW) and O'Hare (ORD) are examples of this. All records are aggregated as directionless markets. The combination of Airport_1 and Airport_2 define the airport pair market. All traffic traveling in both directions is added together.

    https://www.transportation.gov/policy/aviation-policy/competition-data-analysis/research-reports

  20. d

    B2C Contact Data | 230M US Contact Data Set | Consumer Data | Email Address...

    • datarade.ai
    .csv, .xls
    Updated Feb 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Allforce (2024). B2C Contact Data | 230M US Contact Data Set | Consumer Data | Email Address Data | Phone Number Data [Dataset]. https://datarade.ai/data-products/b2c-continuum-from-solution-publishing-230m-us-b2c-contact-solution-publishing
    Explore at:
    .csv, .xlsAvailable download formats
    Dataset updated
    Feb 18, 2024
    Dataset authored and provided by
    Allforce
    Area covered
    United States of America
    Description

    Solution Publishing by Allforce unlocks the full potential of consumer marketing engineered to enhance your consumer marketing efforts, providing a robust foundation for personalized and effective campaigns.

    Key Features of the Product:

    Extensive B2C Contact Information: Access comprehensive contact details for over 230 million US consumers. This extensive database covers a wide demographic, offering numerous opportunities for targeted outreach.

    Multifaceted Contact Options: Equipped with data fields including Email, Postal Addresses, Phone Numbers, and Mobile Phones.

    Demographic Insights: Detailed demographic data including Age, Income, Gender, Household Income, Net Worth, Marital Status, Children, Homeowner, Job Details and more allows for precision targeting, ensuring your marketing messages resonate with the right audience.

    Mobile Advertising IDs (MAIDs): With MAIDs available, engage in precise mobile device targeting, enhancing your mobile marketing strategies and connecting with consumers on their most personal devices.

    Benefits: Precision Targeting: Leverage detailed demographic information to tailor your marketing strategies, ensuring high relevance and engagement.

    Enhanced Consumer Reach: With a plethora of contact options at your disposal, reach consumers across multiple touch points, increasing the effectiveness of your outreach efforts.

    Tailored Messaging: Use detailed consumer insights to craft messages that speak directly to the interests and needs of your target audience, boosting conversion rates.

    Strategic Marketing Campaigns: Empower your marketing teams with data that supports strategic planning and execution, enabling campaigns that are both impactful and efficient.

    Data-Driven Consumer Insights: Harness the power of a comprehensive B2C database to inform your marketing decisions, driving strategies that are informed by real-world consumer data.

    Solution Publishing by Allforce is more than just a data product—it's a vital tool that transforms the landscape of consumer engagement, allowing businesses to connect with their audience more effectively and personally.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
TRADING ECONOMICS, United States Consumer Spending [Dataset]. https://tradingeconomics.com/united-states/consumer-spending

United States Consumer Spending

United States Consumer Spending - Historical Dataset (1947-03-31/2025-03-31)

Explore at:
13 scholarly articles cite this dataset (View in Google Scholar)
xml, json, excel, csvAvailable download formats
Dataset authored and provided by
TRADING ECONOMICS
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Mar 31, 1947 - Mar 31, 2025
Area covered
United States
Description

Consumer Spending in the United States increased to 16291.80 USD Billion in the first quarter of 2025 from 16273.20 USD Billion in the fourth quarter of 2024. This dataset provides the latest reported value for - United States Consumer Spending - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

Search
Clear search
Close search
Google apps
Main menu