Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the median household incomes over the past decade across various racial categories identified by the U.S. Census Bureau in Money Creek township. It portrays the median household income of the head of household across racial categories (excluding ethnicity) as identified by the Census Bureau. It also showcases the annual income trends, between 2013 and 2023, providing insights into the economic shifts within diverse racial communities.The dataset can be utilized to gain insights into income disparities and variations across racial categories, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Money Creek township median household income by race. You can refer the same here
In 2023, about 26.9 percent of Asian private households in the U.S. had an annual income of 200,000 U.S. dollars and more. Comparatively, around 13.9 percent of Black households had an annual income under 15,000 U.S. dollars.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the median household income across different racial categories in Money Creek township. It portrays the median household income of the head of household across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to gain insights into economic disparities and trends and explore the variations in median houshold income for diverse racial categories.
Key observations
Based on our analysis of the distribution of Money Creek township population by race & ethnicity, the population is predominantly White. This particular racial category constitutes the majority, accounting for 97.65% of the total residents in Money Creek township. Notably, the median household income for White households is $91,250. Interestingly, White is both the largest group and the one with the highest median household income, which stands at $91,250.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Money Creek township median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Money Creek township by race. It includes the population of Money Creek township across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of Money Creek township across relevant racial categories.
Key observations
The percent distribution of Money Creek township population by race (across all racial categories recognized by the U.S. Census Bureau): 97.65% are white, 0.84% are Black or African American and 1.51% are multiracial.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Money Creek township Population by Race & Ethnicity. You can refer the same here
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Net Worth Held by the Top 0.1% (99.9th to 100th Wealth Percentiles) (WFRBLTP1246) from Q3 1989 to Q1 2025 about net worth, wealth, percentile, Net, and USA.
U.S. citizens with a professional degree had the highest median household income in 2023, at 172,100 U.S. dollars. In comparison, those with less than a 9th grade education made significantly less money, at 35,690 U.S. dollars. Household income The median household income in the United States has fluctuated since 1990, but rose to around 70,000 U.S. dollars in 2021. Maryland had the highest median household income in the United States in 2021. Maryland’s high levels of wealth is due to several reasons, and includes the state's proximity to the nation's capital. Household income and ethnicity The median income of white non-Hispanic households in the United States had been on the rise since 1990, but declining since 2019. While income has also been on the rise, the median income of Hispanic households was much lower than those of white, non-Hispanic private households. However, the median income of Black households is even lower than Hispanic households. Income inequality is a problem without an easy solution in the United States, especially since ethnicity is a contributing factor. Systemic racism contributes to the non-White population suffering from income inequality, which causes the opportunity for growth to stagnate.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Key information about United States Monthly Earnings
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Money Creek township. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Money Creek township, the median income for all workers aged 15 years and older, regardless of work hours, was $42,604 for males and $39,643 for females.
Based on these incomes, we observe a gender gap percentage of approximately 7%, indicating a significant disparity between the median incomes of males and females in Money Creek township. Women, regardless of work hours, still earn 93 cents to each dollar earned by men, highlighting an ongoing gender-based wage gap.
- Full-time workers, aged 15 years and older: In Money Creek township, among full-time, year-round workers aged 15 years and older, males earned a median income of $54,191, while females earned $58,750Surprisingly, within the subset of full-time workers, women earn a higher income than men, earning 1.08 dollars for every dollar earned by men. This suggests that within full-time roles, womens median incomes significantly surpass mens, contrary to broader workforce trends.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Money Creek township median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Money Supply M2 in the United States increased to 21942 USD Billion in May from 21862.40 USD Billion in April of 2025. This dataset provides - United States Money Supply M2 - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Non-Hispanic population of Money Creek township by race. It includes the distribution of the Non-Hispanic population of Money Creek township across various race categories as identified by the Census Bureau. The dataset can be utilized to understand the Non-Hispanic population distribution of Money Creek township across relevant racial categories.
Key observations
With a zero Hispanic population, Money Creek township is 100% Non-Hispanic. Among the Non-Hispanic population, the largest racial group is White alone with a population of 583 (97.65% of the total Non-Hispanic population).
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Money Creek township Population by Race & Ethnicity. You can refer the same here
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Expenditures: Total Average Annual Expenditures by Race: White, Asian, and All Other Races, Not Including Black or African American (CXUTOTALEXPLB0902M) from 1984 to 2023 about asian, white, average, expenditures, and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Corporate Profits in the United States increased to 3266.20 USD Billion in the second quarter of 2025 from 3203.60 USD Billion in the first quarter of 2025. This dataset provides the latest reported value for - United States Corporate Profits - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
About 50.4 percent of the household income of private households in the U.S. were earned by the highest quintile in 2023, which are the upper 20 percent of the workers. In contrast to that, in the same year, only 3.5 percent of the household income was earned by the lowest quintile. This relation between the quintiles is indicative of the level of income inequality in the United States. Income inequalityIncome inequality is a big topic for public discussion in the United States. About 65 percent of U.S. Americans think that the gap between the rich and the poor has gotten larger in the past ten years. This impression is backed up by U.S. census data showing that the Gini-coefficient for income distribution in the United States has been increasing constantly over the past decades for individuals and households. The Gini coefficient for individual earnings of full-time, year round workers has increased between 1990 and 2020 from 0.36 to 0.42, for example. This indicates an increase in concentration of income. In general, the Gini coefficient is calculated by looking at average income rates. A score of zero would reflect perfect income equality and a score of one indicates a society where one person would have all the money and all other people have nothing. Income distribution is also affected by region. The state of New York had the widest gap between rich and poor people in the United States, with a Gini coefficient of 0.51, as of 2019. In global comparison, South Africa led the ranking of the 20 countries with the biggest inequality in income distribution in 2018. South Africa had a score of 63 points, based on the Gini coefficient. On the other hand, the Gini coefficient stood at 16.6 in Azerbaijan, indicating that income is widely spread among the population and not concentrated on a few rich individuals or families. Slovenia led the ranking of the 20 countries with the greatest income distribution equality in 2018.
Open Data Commons Attribution License (ODC-By) v1.0https://www.opendatacommons.org/licenses/by/1.0/
License information was derived automatically
The market for contemporary authors’ archives in the United States began when research libraries needed to cheaply provide sources for the swelling number of students and faculty following World War II. Soon, the demand for contemporary authors’ archives developed into a multimillion-dollar trade. Writers and their families enjoyed their new opportunity to make money, as did the book dealers and literary agents with the foresight to pivot their businesses to serve living authors. For a while, library directors and curators across the American Midwest and West relished their new-found opportunity increase their prestige by building collections that could compete on equal footing against British and Ivy League holdings. But as the twentieth century progressed, and public interest around celebrity writers grew more frenzied, even the most well-funded institutions found acquiring contemporary literary archives had become cost prohibitive. Researchers began to question how papers came to be housed in locales disconnected from authors’ professional and personal lives. Placing Papers: The American Literary Archives Market is the first book to chart how the market for writers’ papers became overheated to explore what happens when tourists, rather than scholars, become the designated audience for literary archives.
GDP per capita (current US$) is an economic indicator that measures the average economic output per person in a country. It is calculated by dividing the total Gross Domestic Product (GDP) of a country by its population, both measured in current US dollars. GDP per capita provides a useful metric for comparing the economic well-being and living standards between different countries.
There are various sources where you can find GDP per capita data, including international organizations, government agencies, and financial institutions. Some prominent sources for GDP per capita data include:
World Bank: The World Bank provides comprehensive data on GDP per capita for countries around the world. They maintain the World Development Indicators (WDI) database, which includes GDP per capita figures for different years.
International Monetary Fund (IMF): The IMF also offers GDP per capita data through their World Economic Outlook (WEO) database. It provides economic indicators and forecasts, including GDP per capita figures for various countries.
National Statistical Agencies: Many countries have their own national statistical agencies that publish GDP per capita data. These agencies collect and analyze economic data, including GDP and population figures, to calculate GDP per capita.
Central Banks: In some cases, central banks may also provide GDP per capita data for their respective countries. They often publish economic indicators and reports that include GDP per capita figures.
When using GDP per capita data, it's important to note that it represents an average measure and does not necessarily reflect the distribution of wealth within a country. Additionally, GDP per capita figures are often adjusted for inflation to provide real GDP per capita, which accounts for changes in the purchasing power of money over time.
To access the most up-to-date and accurate GDP per capita data, it is recommended to refer to reputable sources mentioned above or consult the official websites of international organizations, government agencies, or central banks that specialize in economic data and analysis.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Israel number dataset provides millions of powerful contacts for SMS marketing. Also, our List To Data has verified leads from many trusted sources. Further, you can get all active contacts from our site for any business to communicate with new clients. This Israel number dataset creates significant opportunities for boosting company sales. Most importantly, this Israel number dataset is highly effective for business promotion through cold calls and text messages. This telemarketing number lead gives instant feedback from the clients and expands contracts. For this, we deliver the number directory to you in CSV or Excel format. In addition, anyone can handle it in any CRM software without any trouble. Israel phone data is a very helpful contact library for SMS and telemarketing. Besides, the cold-calling database plays a vital role in direct business plans. Most importantly, we prioritize security and strictly adhere to all GDPR rules. So, anyone can purchase this without any worry from List To Data. Even, you can make your business more famous by increasing productivity. Moreover, the Israel phone data helps in many ways to earn more money from this country. Likewise, this country is very wealthy in all those sectors, so anyone can buy our database package now. Our website is the perfect place to obtain all genuine client mobile contact numbers. In general, our skilled team is ready to assist you 24/7 in supplying your necessary leads. Israel phone number list makes your business more profitable in a couple of months. This country has the nominal GDP (US$530 billion) and the most extensive by purchasing power parity (US$560 trillion). As a result, it creates a great chance to gain more from here. As such agriculture, services, industry, and trade, are the main sources of income in Israel. Above all, you can get their mobile numbers from us for cold calls or SMS marketing. In addition, this Israel phone number list is far better for your business activities nationwide. Mainly, you can do the marketing with this enormous group of people. Frankly, it will increase your deals rapidly and develop the company’s wealth. In the end, as a businessman, everyone takes your required sales leads from our website at a reasonable cost.
In 2023, the real median household income for householders aged 15 to 24 was at 54,930 U.S. dollars. The highest median household income was found amongst those aged between 45 and 54. Household median income for the United States since 1990 can be accessed here.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Jordan number dataset provides millions of powerful contacts for direct marketing. Our List To Data unit carefully gathers these leads from multiple trusted sources. Further, you can get all confirmed contact numbers from our site for any business to communicate with new clients. This Jordan number dataset creates significant opportunities for boosting company sales. Likewise, this Jordan number dataset is highly effective for business promotion through cold calls and text messages. That marketing lead gives instant feedback from the consumers and expands contracts. Despite this, we deliver the number directory to you in CSV or Excel form. In addition, anyone can operate it in any CRM software without any trouble. Jordan phone data is a very helpful contact library for SMS and telemarketing. Besides, the cold-calling database plays a vital role in direct business plans. Even, we prioritize security and strictly adhere to all the GDPR statutes. Most importantly, anyone can purchase this without any doubt from List To Data. In fact, you can make your business more famous by increasing productivity. Moreover, the Jordan phone data helps in many ways to earn more money from this country. This country is very wealthy in all those sectors, so you can accept our data package now. This website is the perfect place to collect all authentic client mobile contact numbers. As such, our skilled team is ready to assist you 24/7 in supplying your necessary leads. Jordan phone number list makes your business more profitable in a couple of months. This country has the nominal GDP (US$53 billion) and the most extensive by purchasing power parity (US$140 trillion). In other words, it creates a big possibility to earn more from here. As such agriculture, services, industry, and trade, are the main sources of income in Jordan. Accordingly, you can get their mobile numbers from us for direct calls or SMS marketing. In addition, this Jordan phone number list is far better for your business activities nationwide. Especially, you can do the marketing with this enormous group of people. Actually, it will increase your deals rapidly and expand the company’s wealth. Definitely, as a businessman, you take your needed sales leads from our website at an affordable cost.
https://www.icpsr.umich.edu/web/ICPSR/studies/6398/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/6398/terms
This data collection provides statistics gathered from a variety of federal agencies and national associations. Demographic, economic, and governmental data from both the federal government and private agencies are presented to enable multiarea comparisons as well as single-area profiles. Current estimates and benchmark census results are included. Data are available for five types of geographic coverage: (1) Metro Areas data cover 249 metropolitan statistical areas (MSAs), 17 consolidated metropolitan statistical areas (CMSAs), 54 primary metropolitan statistical areas (PSMAs), and 16 New England county metropolitan areas (NECMAs). Metro Areas data include the following general subjects: area and population, households, vital statistics, health, education, crime, housing, money income, personal income, civilian labor force, employment, construction, commercial office space, manufacturing, wholesale and retail trade, service industries, banking, federal funds and grants, and government employment. There are 14 parts for Metro Areas. (2) State Metro/Nonmetro data cover the United States, the 50 states, the District of Columbia, and the metropolitan and nonmetropolitan portions of these areas. State Metro/Nonmetro data include most of the subjects listed for Metro Areas. There are six parts for State Metro/Nonmetro. (3) Metro Counties data cover 336 metropolitan areas and their component counties and include topics identical to those presented in the State Metro/Nonmetro data. Six parts are supplied for Metro Counties. (4) Metro Central Cities data cover 336 metropolitan areas and their 522 central cities and 336 outside central cities portions. Metro Central Cities variables are limited to 13 items, which include area and population, money income, civilian labor force, and retail trade. There is one part for Metro Central Cities. (5) States data cover the United States, the 50 states, the District of Columbia, and census regions and divisions. States data include the same items as the Metro Areas data, plus information on social welfare programs, geography and environment, domestic travel and parks, gross state product, poverty, wealth holders, business, research and development, agriculture, forestry and fisheries, minerals and mining, transportation, communications, energy, state government, federal government, and elections. There are 101 parts for States.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Net Worth Held by the Bottom 50% (1st to 50th Wealth Percentiles) (WFRBLB50107) from Q3 1989 to Q1 2025 about net worth, wealth, percentile, Net, and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the median household incomes over the past decade across various racial categories identified by the U.S. Census Bureau in Money Creek township. It portrays the median household income of the head of household across racial categories (excluding ethnicity) as identified by the Census Bureau. It also showcases the annual income trends, between 2013 and 2023, providing insights into the economic shifts within diverse racial communities.The dataset can be utilized to gain insights into income disparities and variations across racial categories, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Money Creek township median household income by race. You can refer the same here