This record description is for the EMMIE portion of the unioned query required due to migration of Public Assistance (PA) Recovery records into the Fac-trax database. This dataset contains data on Public Assistance project awards (obligations), including the project obligation date(s); dollar amount of Federal Share Obligated for each project and its obligation date(s); FEMA region; state; disaster declaration number; descriptive cause of the declaration (incident type); entity requesting public assistance (applicant name); and distinct name for the repair, replacement or mitigation work listed for assistance (Project Title). The PA Grant Awards Activities dataset does not collect, maintain, use, or disseminate any Personally Identifiable Information (PII).rnrnAs part of Congressional bill HR 152 - the Sandy Recovery Improvement Act of 2013, FEMA is providing the following information for our stakeholders:rn• Regionrn• Disaster Declaration Numberrn• Disaster Typern• Statern• Applicantrn• Countyrn• Damage Category Codern• Federal Share Obligatedrn• Date ObligatedrnrnFEMA obligates funding for a project directly to the Recipient (State or Tribe). It is the Recipient's responsibility to ensure that the eligible subrecipient (listed in the dataset as Applicant Name) receives the award funding.rnThis dataset lists details about project versions. Versions occur when the scope/cost changes for a project. Versions adjust the cost of the project with positive additions called obligations and subtractions called deobligations. Combined, they reconcile to reflect the Total Federal Share Obligation, but reconciliation occurs over the life of the project, sometimes years after the declaration date. The dataset represents project obligations within a seven-day period prior to the listed date but does not include obligations uploaded on the same day as the publication. Open projects still under pre-obligation processing are not represented.rnFor more information on the Public Assistance process see: https://www.fema.gov/assistance/public/process.rnThis is raw, unedited data from FEMA's Emergency Management Mission Integrated Environment (EMMIE) system and as such is subject to a small percentage of human error. The financial information is derived from EMMIE and not FEMA's official financial systems. Due to differences in reporting periods, status of obligations and application of business rules, this financial information may differ slightly from official publication on public websites such as usaspending.gov. This dataset is not intended to be used for any official federal reporting.rnIf you have media inquiries about this dataset, please email the FEMA News Desk at FEMA-News-Desk@fema.dhs.gov or call (202) 646-3272. For inquiries about FEMA's data and Open Government program, please email the OpenFEMA team at OpenFEMA@fema.dhs.gov.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Non-Hispanic population of Oregon by race. It includes the distribution of the Non-Hispanic population of Oregon across various race categories as identified by the Census Bureau. The dataset can be utilized to understand the Non-Hispanic population distribution of Oregon across relevant racial categories.
Key observations
Of the Non-Hispanic population in Oregon, the largest racial group is White alone with a population of 17,071 (93.71% of the total Non-Hispanic population).
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Oregon Population by Race & Ethnicity. You can refer the same here
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Key Table Information.Table Title.Family Size by Cash Public Assistance Income or Households Receiving Food Stamps/SNAP Benefits in the Past 12 Months.Table ID.ACSDT1Y2024.B19123.Survey/Program.American Community Survey.Year.2024.Dataset.ACS 1-Year Estimates Detailed Tables.Source.U.S. Census Bureau, 2024 American Community Survey, 1-Year Estimates.Dataset Universe.The dataset universe of the American Community Survey (ACS) is the U.S. resident population and housing. For more information about ACS residence rules, see the ACS Design and Methodology Report. Note that each table describes the specific universe of interest for that set of estimates..Methodology.Unit(s) of Observation.American Community Survey (ACS) data are collected from individuals living in housing units and group quarters, and about housing units whether occupied or vacant. For more information about ACS sampling and data collection, see the ACS Design and Methodology Report..Geography Coverage.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year.Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Sampling.The ACS consists of two separate samples: housing unit addresses and group quarters facilities. Independent housing unit address samples are selected for each county or county-equivalent in the U.S. and Puerto Rico, with sampling rates depending on a measure of size for the area. For more information on sampling in the ACS, see the Accuracy of the Data document..Confidentiality.The Census Bureau has modified or suppressed some estimates in ACS data products to protect respondents' confidentiality. Title 13 United States Code, Section 9, prohibits the Census Bureau from publishing results in which an individual's data can be identified. For more information on confidentiality protection in the ACS, see the Accuracy of the Data document..Technical Documentation/Methodology.Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables.Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Weights.ACS estimates are obtained from a raking ratio estimation procedure that results in the assignment of two sets of weights: a weight to each sample person record and a weight to each sample housing unit record. Estimates of person characteristics are based on the person weight. Estimates of family, household, and housing unit characteristics are based on the housing unit weight. For any given geographic area, a characteristic total is estimated by summing the weights assigned to the persons, households, families or housing units possessing the characteristic in the geographic area. For more information on weighting and estimation in the ACS, see the Accuracy of the Data document.Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘US Public Food Assistance’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/jpmiller/publicassistance on 20 November 2021.
--- Dataset description provided by original source is as follows ---
This dataset focuses on public assistance programs in the United States that provide food, namely SNAP and WIC. If you are interested in a broader picture of food security across the world, please see Food Security Indicators for the World 2016-2020.
Initial coverage was for the Special Supplemental Nutrition Program for Women, Infants, and Children Program, or simply WIC. The program allocates Federal and State funds to help low-income women and children up to age five who are at nutritional risk. Funds are used to provide supplemental foods, baby formula, health care, and nutrition education.
Starting with version 5, the dataset also covers the US Supplemental Nutrition Assistance Program, more commonly known as SNAP. The program is the successor to the Food Stamps program previously in place. The program provides food assistance to low-income families in the form of a debit card. A 2016 study using POS data from SNAP-eligible vendors showed the three most purchased types of food to be meats, sweetened beverages, and vegetables.
Files may include participation data and spending for state programs, and poverty data for each state. Data for WIC covers fiscal years 2013-2016, which is actually October 2012 through September 2016. Data for SNAP covers 2015 to 2020.
My original purpose here is two-fold:
Explore various aspects of US Public Assistance. Show trends over recent years and better understand differences across state agencies. Although the federal government sponsors the program and provides funding, program are administered at the state level and can widely vary. Indian nations (native Americans) also administer their own programs.
Share with the Kaggle Community the joy - and pain - of working with government data. Data is often spread across numerous agency sites and comes in a variety of formats. Often the data is provided in Excel, with the files consisting of multiple tabs. Also, files are formatted as reports and contain aggregated data (sums, averages, etc.) along with base data.
As of March 2nd, I am expanding the purpose to support the M5 Forecasting Challenges here on Kaggle. Store sales are partly driven by participation in Public Assistance programs. Participants typically receive the items free of charge. The store then recovers the sale price from the state agencies administering the program.
The dataset can benefit greatly from additional content. Economics, additional demographics, administrative costs and more. I'd like to eventually explore the money trail from taxes and corporate subsidies, through the government agencies, and on to program participants. All community ideas are welcome!
--- Original source retains full ownership of the source dataset ---
NOTE: This dataset has been retired and marked as historical-only. The recommended dataset to use in its place is https://data.cityofchicago.org/Health-Human-Services/COVID-19-Vaccination-Coverage-Region-HCEZ-/5sc6-ey97.
COVID-19 vaccinations administered to Chicago residents by Healthy Chicago Equity Zones (HCEZ) based on the reported address, race-ethnicity, and age group of the person vaccinated, as provided by the medical provider in the Illinois Comprehensive Automated Immunization Registry Exchange (I-CARE).
Healthy Chicago Equity Zones is an initiative of the Chicago Department of Public Health to organize and support hyperlocal, community-led efforts that promote health and racial equity. Chicago is divided into six HCEZs. Combinations of Chicago’s 77 community areas make up each HCEZ, based on geography. For more information about HCEZs including which community areas are in each zone see: https://data.cityofchicago.org/Health-Human-Services/Healthy-Chicago-Equity-Zones/nk2j-663f
Vaccination Status Definitions:
·People with at least one vaccine dose: Number of people who have received at least one dose of any COVID-19 vaccine, including the single-dose Johnson & Johnson COVID-19 vaccine.
·People with a completed vaccine series: Number of people who have completed a primary COVID-19 vaccine series. Requirements vary depending on age and type of primary vaccine series received.
·People with a bivalent dose: Number of people who received a bivalent (updated) dose of vaccine. Updated, bivalent doses became available in Fall 2022 and were created with the original strain of COVID-19 and newer Omicron variant strains.
Weekly cumulative totals by vaccination status are shown for each combination of race-ethnicity and age group within an HCEZ. Note that each HCEZ has a row where HCEZ is “Citywide” and each HCEZ has a row where age is "All" so care should be taken when summing rows.
Vaccinations are counted based on the date on which they were administered. Weekly cumulative totals are reported from the week ending Saturday, December 19, 2020 onward (after December 15, when vaccines were first administered in Chicago) through the Saturday prior to the dataset being updated.
Population counts are from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-year estimates.
Coverage percentages are calculated based on the cumulative number of people in each population subgroup (age group by race-ethnicity within an HCEZ) who have each vaccination status as of the date, divided by the estimated number of people in that subgroup.
Actual counts may exceed population estimates and lead to >100% coverage, especially in small race-ethnicity subgroups of each age group within an HCEZ. All coverage percentages are capped at 99%.
All data are provisional and subject to change. Information is updated as additional details are received and it is, in fact, very common for recent dates to be incomplete and to be updated as time goes on. At any given time, this dataset reflects data currently known to CDPH.
Numbers in this dataset may differ from other public sources due to when data are reported and how City of Chicago boundaries are defined.
CDPH uses the most complete data available to estimate COVID-19 vaccination coverage among Chicagoans, but there are several limitations that impact its estimates. Data reported in I-CARE only includes doses administered in Illinois and some doses administered outside of Illinois reported historically by Illinois providers. Doses administered by the federal Bureau of Prisons and Department of Defense are also not currently reported in I-CARE. The Veterans Health Administration began reporting doses in I-CARE beginning September 2022. Due to people receiving vaccinations that are not recorded in I-CARE that can be linked to their record, such as someone receiving a vaccine dose in another state, the number of people with a completed series or a booster dose is underesti
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the St. Louis city population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for St. Louis city. The dataset can be utilized to understand the population distribution of St. Louis city by age. For example, using this dataset, we can identify the largest age group in St. Louis city.
Key observations
The largest age group in St. Louis city, MO was for the group of age 25-29 years with a population of 31,444 (10.38%), according to the 2021 American Community Survey. At the same time, the smallest age group in St. Louis city, MO was the 80-84 years with a population of 3,867 (1.28%). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for St. Louis city Population by Age. You can refer the same here
https://www.icpsr.umich.edu/web/ICPSR/studies/36581/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/36581/terms
USER NOTE: This database no longer contains the most up-to-date information. Some errors and missing data from the previous years have been fixed in the most recent data release in the CCDF Policies Database Series. The most recent release is a cumulative file which includes the most accurate version of this and all past years' data. Please do not use this study's data unless you are attempting to replicate the analysis of someone who specifically used this version of the CCDF Policies Database. For any other type of analysis, please use the most recent release in the CCDF Policies Database Series. The Child Care and Development Fund (CCDF) provides federal money to States and Territories to provide assistance to low-income families receiving or in transition from temporary public assistance, to obtain quality child care so they can work, attend training, or receive education. Within the broad federal parameters, states and territories set the detailed policies. Those details determine whether a particular family will or will not be eligible for subsidies, how much the family will have to pay for the care, how families apply for and retain subsidies, the maximum amounts that child care providers will be reimbursed, and the administrative procedures that providers must follow. Thus, while CCDF is a single program from the perspective of federal law, it is in practice a different program in every state and territory. The CCDF Policies Database project is a comprehensive, up-to-date database of inter-related sources of CCDF policy information that support the needs of a variety of audiences through (1) Analytic Data Files and (2) a Book of Tables. These are made available to researchers, administrators, and policymakers with the goal of addressing important questions concerning the effects of alternative child care subsidy policies and practices on the children and families served, specifically parental employment and self-sufficiency, the availability and quality of care, and children's development. A description of the Data Files and Book of Tables is provided below: 1. Detailed, longitudinal Analytic Data Files of CCDF policy information for all 50 States, the District of Columbia, and United States Territories that capture the policies actually in effect at a point in time, rather than proposals or legislation. They focus on the policies in place at the start of each fiscal year, but also capture changes during that fiscal year. The data are organized into 32 categories with each category of variables separated into its own dataset. The categories span five general areas of policy including: Eligibility Requirements for Families and Children (Datasets 1-5) Family Application, Terms of Authorization, and Redetermination (Datasets 6-13) Family Payments (Datasets 14-18) Policies for Providers, Including Maximum Reimbursement Rates (Datasets 19-27) Overall Administrative and Quality Information Plans (Datasets 28-32) The information in the Data Files is based primarily on the documents that caseworkers use as they work with families and providers (often termed "caseworker manuals"). The caseworker manuals generally provide much more detailed information on eligibility, family payments, and provider-related policies than the documents submitted by states and territories to the federal government. The caseworker manuals also provide ongoing detail for periods in between submission dates. Each dataset contains a series of variables designed to capture the intricacies of the rules covered in the category. The variables include a mix of categorical, numeric, and text variables. Every variable has a corresponding notes field to capture additional details related to that particular variable. In addition, each category has an additional notes field to capture any information regarding the rules that is not already outlined in the category's variables. 2. The Book of Tables is available as seven datasets (Datasets 33-39) and they present key aspects of the differences in CCDF funded programs across all states and territories as of October 1, 2015. The Book of Tables includes variables that are calculated using several variables from the Data Files (Datasets 1-32). The Book of Tables summarizes a subset of the information available in the Data Files, and includes information about eligibility requirements for families; application,
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The Food Assistance Program provides Electronic Benefit Transfer (EBT) cards that can be used to buy groceries at supermarkets, grocery stores and some Farmers Markets. This dataset provides data on the number of households, recipients and cash assistance provided through the Food Assistance Program participation in Iowa by month and county starting in January 2011 and updated monthly.
Beginning January 2017, the method used to identify households is based on the following: 1. If one or more individuals receiving Food Assistance also receives FIP, the household is categorized as FA/FIP. 2. If no one receives FIP, but at least one individual also receives Medical Assistance, the household is categorized as FA/Medical Assistance. 3. If no one receives FIP or Medical Assistance, but at least one individual receives Healthy and Well Kids in Iowa or hawk-i benefits, the household is categorized as FA/hawk-i. 4. If no one receives FIP, Medical Assistance or hawk-i , the household is categorized as FA Only.
Changes have also been made to reflect more accurate identification of individuals. The same categories from above are used in identifying an individual's circumstances. Previously, the household category was assigned to all individuals of the Food Assistance household, regardless of individual status. This change in how individuals are categorized provides a more accurate count of individual categories.
Timing of when the report is run also changed starting January 2017. Reports were previously ran on the 1st, but changed to the 17th to better capture Food Assistance households that received benefits for the prior month. This may give the impression that caseloads have increased when in reality, under the previous approach, cases were missed.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Michigan Public Policy Survey (MPPS) is a program of state-wide surveys of local government leaders in Michigan. The MPPS is designed to fill an important information gap in the policymaking process. While there are ongoing surveys of the business community and of the citizens of Michigan, before the MPPS there were no ongoing surveys of local government officials that were representative of all general purpose local governments in the state. Therefore, while we knew the policy priorities and views of the state's businesses and citizens, we knew very little about the views of the local officials who are so important to the economies and community life throughout Michigan. The MPPS was launched in 2009 by the Center for Local, State, and Urban Policy (CLOSUP) at the University of Michigan and is conducted in partnership with the Michigan Association of Counties, Michigan Municipal League, and Michigan Townships Association. The associations provide CLOSUP with contact information for the survey's respondents, and consult on survey topics. CLOSUP makes all decisions on survey design, data analysis, and reporting, and receives no funding support from the associations. The surveys investigate local officials' opinions and perspectives on a variety of important public policy issues and solicit factual information about their localities relevant to policymaking. Over time, the program has covered issues such as fiscal, budgetary and operational policy, fiscal health, public sector compensation, workforce development, local-state governmental relations, intergovernmental collaboration, economic development strategies and initiatives such as placemaking and economic gardening, the role of local government in environmental sustainability, energy topics such as hydraulic fracturing ("fracking") and wind power, trust in government, views on state policymaker performance, opinions on the impacts of the Federal Stimulus Program (ARRA), and more. The program will investigate many other issues relevant to local and state policy in the future. A searchable database of every question the MPPS has asked is available on CLOSUP's website. Results of MPPS surveys are currently available as reports, and via online data tables. Out of a commitment to promoting public knowledge of Michigan local governance, the Center for Local, State, and Urban Policy is releasing public use datasets. In order to protect respondent confidentiality, CLOSUP has divided the data collected in each wave of the survey into separate datasets focused on different topics that were covered in the survey. Each dataset contains only variables relevant to that subject, and the datasets cannot be linked together. Variables have also been omitted or recoded to further protect respondent confidentiality. For researchers looking for a more extensive release of the MPPS data, restricted datasets are available through openICPSR's Virtual Data Enclave. Please note: additional waves of MPPS public use datasets are being prepared, and will be available as part of this project as soon as they are completed. For information on accessing MPPS public use and restricted datasets, please visit the MPPS data access page: http://closup.umich.edu/mpps-download-datasets
The U.S. Department of Housing and Urban Development (HUD) periodically receives "custom tabulations" of Census data from the U.S. Census Bureau that are largely not available through standard Census products. These datasets, known as "CHAS" (Comprehensive Housing Affordability Strategy) data, demonstrate the extent of housing problems and housing needs, particularly for low income households.
The primary purpose of CHAS data is to demonstrate the number of households in need of housing assistance. This is estimated by the number of households that have certain housing problems and have income low enough to qualify for HUD’s programs (primarily 30, 50, and 80 percent of median income).
CHAS data provides counts of the numbers of households that fit these HUD-specified characteristics in a variety of geographic areas. In addition to estimating low-income housing needs, CHAS data contributes to a more comprehensive market analysis by documenting issues like lead paint risks, "affordability mismatch," and the interaction of affordability with variables like age of homes, number of bedrooms, and type of building.
This dataset is a special tabulation of the 2016-2020 American Community Survey (ACS) and reflects conditions over that time period. The dataset uses custom HUD Area Median Family Income (HAMFI) figures calculated by HUD PDR staff based on 2016-2020 ACS income data.
CHAS datasets are used by Federal, State, and Local governments to plan how to spend, and distribute HUD program funds. To learn more about the Comprehensive Housing Affordability Strategy (CHAS), visit: https://www.huduser.gov/portal/datasets/cp.html, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. To learn more about the American Community Survey (ACS), and associated datasets visit: https://www.census.gov/programs-surveys/acs Data Dictionary: DD_ACS 5-Year CHAS Estimate Data by Place Date of Coverage: 2016-2020
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the distribution of median household income among distinct age brackets of householders in Mahoning County. Based on the latest 2019-2023 5-Year Estimates from the American Community Survey, it displays how income varies among householders of different ages in Mahoning County. It showcases how household incomes typically rise as the head of the household gets older. The dataset can be utilized to gain insights into age-based household income trends and explore the variations in incomes across households.
Key observations: Insights from 2023
In terms of income distribution across age cohorts, in Mahoning County, householders within the 45 to 64 years age group have the highest median household income at $65,626, followed by those in the 25 to 44 years age group with an income of $62,650. Meanwhile householders within the 65 years and over age group report the second lowest median household income of $46,935. Notably, householders within the under 25 years age group, had the lowest median household income at $30,859.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Age groups classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Mahoning County median household income by age. You can refer the same here
The Grant Programs Directorate strategically and effectively administers and manages FEMA grants to ensure critical and measurable results for customers and stakeholders. The grants represented in this dataset are Preparedness (Non-Disaster or ND) Grants and Assistance to Firefighters Grants (AFG).rnrnND Grants and AFG are awarded and managed differently within the Grants Program Directorate (GPD) and should be treated with discretion.rnrnThe only measure in this dataset is Award Amount. It is an additive measure that can be applied across multiple dimensions to create various views of the data.rnrnAFG awards are assigned to individual Fire Departments. ND Grants are typically assigned to state agencies; however, exceptions do exist such as Port Security Grant Program which is assigned to port areas and not States. It is important to know that when looking at Award Amount by State it does not mean the State actually received that money. In addition, some grant programs may have pass-through requirements where the recipient State is required to sub-grant a minimum amount of the award and only retain a portion of the award.rnrnGrants guidance is described in the Funding Opportunity Announcement (FOA). Each grant program has its own grant guidance containing eligibility requirements, program objectives, and funding restrictions which are published annually. FOAs are public documents and may be found online at www.fema.gov/grants.rnrnFor more information on grants, visit https://www.fema.gov/grants/preparedness and https://www.fema.gov/grants/preparedness/firefighters rnrnIf you have media inquiries about this dataset, please email the FEMA News Desk at FEMA-News-Desk@dhs.gov or call (202) 646-3272. For inquiries about FEMA's data and Open Government program, please email the OpenFEMA team at OpenFEMA@fema.dhs.gov.
Counts and rates of children who received an investigation or alternative response from child protective services agencies for the last five federal fiscal years for which data are available.
To view more National Child Abuse and Neglect Data System (NCANDS) findings, click link to summary page below: https://healthdata.gov/stories/s/kaeg-w7jc
Child Tax Credit (CTC) provides support to families for the children (up to the 31 August after their 16th birthdays) and the "qualifying" young people (those in full-time non-advanced education until their 20th birthdays) for which they are responsible. It is paid in addition to Child Benefit. Some out of work families with children do not receive CTC but instead receive the equivalent amount via child and related allowances in Income Support or income-based Jobseeker's Allowance (IS/JSA). These families are included in the figures, generally together with out of work families receiving CTC. In due course, they will be "migrated" to tax credits. Working Tax Credit (WTC) tops up the earnings of families on low or moderate incomes. People working for at least 16 hours a week can claim it if they (a) are responsible for at least one child or qualifying young person, (b) have a disability which puts them at a disadvantage in getting a job or (c) in the first year of work, having returned to work aged at least 50 after a period of at least six months receiving out-of-work benefits. Other adults qualify if they are aged at least 25 and work for at least 30 hours a week. Ward data available in the Ward profiles. https://www.gov.uk/government/collections/personal-tax-credits-statistics
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the distribution of median household income among distinct age brackets of householders in Benton County. Based on the latest 2019-2023 5-Year Estimates from the American Community Survey, it displays how income varies among householders of different ages in Benton County. It showcases how household incomes typically rise as the head of the household gets older. The dataset can be utilized to gain insights into age-based household income trends and explore the variations in incomes across households.
Key observations: Insights from 2023
In terms of income distribution across age cohorts, in Benton County, householders within the 45 to 64 years age group have the highest median household income at $106,226, followed by those in the 25 to 44 years age group with an income of $81,650. Meanwhile householders within the 65 years and over age group report the second lowest median household income of $75,366. Notably, householders within the under 25 years age group, had the lowest median household income at $25,083.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Age groups classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Benton County median household income by age. You can refer the same here
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
US Forest Service Forest Inventory and Analysis National Program.
The Forest Inventory and Analysis (FIA) Program of the U.S. Forest Service provides the information needed to assess America's forests.
As the Nation's continuous forest census, our program projects how forests are likely to appear 10 to 50 years from now. This enables us to evaluate whether current forest management practices are sustainable in the long run and to assess whether current policies will allow the next generation to enjoy America's forests as we do today.
FIA reports on status and trends in forest area and location; in the species, size, and health of trees; in total tree growth, mortality, and removals by harvest; in wood production and utilization rates by various products; and in forest land ownership.
The Forest Service has significantly enhanced the FIA program by changing from a periodic survey to an annual survey, by increasing our capacity to analyze and publish data, and by expanding the scope of our data collection to include soil, under story vegetation, tree crown conditions, coarse woody debris, and lichen community composition on a subsample of our plots. The FIA program has also expanded to include the sampling of urban trees on all land use types in select cities.
For more details, see: https://www.fia.fs.fed.us/library/database-documentation/current/ver70/FIADB%20User%20Guide%20P2_7-0_ntc.final.pdf
Fork this kernel to get started with this dataset.
FIA is managed by the Research and Development organization within the USDA Forest Service in cooperation with State and Private Forestry and National Forest Systems. FIA traces it's origin back to the McSweeney - McNary Forest Research Act of 1928 (P.L. 70-466). This law initiated the first inventories starting in 1930.
Banner Photo by @rmorton3 from Unplash.
Estimating timberland and forest land acres by state.
https://cloud.google.com/blog/big-data/2017/10/images/4728824346443776/forest-data-4.png" alt="enter image description here">
https://cloud.google.com/blog/big-data/2017/10/images/4728824346443776/forest-data-4.png
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
A dataset of all the meta-data for all of the datasets available through the data.gov.uk service. This is provided as a zipped CSV or JSON file. It is published nightly.
Updates: 27 Sep 2017: we've moved all the previous dumps to an S3 bucket at https://dgu-ckan-metadata-dumps.s3-eu-west-1.amazonaws.com/ - This link is now listed here as a data file.
From 13/10/16 we added .v2.jsonl dump, which is set to replace the .json dump (which will be discontinued after a 3 month transition). This is produced using 'ckanapi dump'. It provides an enhanced version of each dataset ('validated', or what you get from package_show in CKAN API v3 - the old json was the unvalidated version). This now includes full details of the organization the dataset is in, rather than just the owner_id. Plus it includes the results of the archival & qa for each dataset and resource, showing whether the link is broken, detected format and stars of openness. It also benefits from being json lines http://jsonlines.org/ format, so you don't need to load the whole thing into memory to parse the json - just a line at a time.
On 12/1/2015 the organizations of the CSV was changed:
Before this date, each dataset was one line, and resources added as numbered columns. Since a dataset may have up to 300 resources, it ends up with 1025 columns, which is wider than many versions of Excel and Libreoffice will open. And the uncompressed size of 170Mb is more than most will deal with too. It is suggested you load it into a database, ahandle it with a python or ruby script, or use tools such as Refine or Google Fusion Tables.
After this date, the datasets are provided in one CSV and resources in another. On occasions that you want to join them, you can join them using the (dataset) "Name" column. These are now manageable in spreadsheet software.
You can also use the standard CKAN API if you want to search or get a small section of the data. Please respect the traffic limits in the API: http://data.gov.uk/terms-and-conditions
List of the data tables as part of the Immigration system statistics Home Office release. Summary and detailed data tables covering the immigration system, including out-of-country and in-country visas, asylum, detention, and returns.
If you have any feedback, please email MigrationStatsEnquiries@homeoffice.gov.uk.
The Microsoft Excel .xlsx files may not be suitable for users of assistive technology.
If you use assistive technology (such as a screen reader) and need a version of these documents in a more accessible format, please email MigrationStatsEnquiries@homeoffice.gov.uk
Please tell us what format you need. It will help us if you say what assistive technology you use.
Immigration system statistics, year ending June 2025
Immigration system statistics quarterly release
Immigration system statistics user guide
Publishing detailed data tables in migration statistics
Policy and legislative changes affecting migration to the UK: timeline
Immigration statistics data archives
https://assets.publishing.service.gov.uk/media/689efececc5ef8b4c5fc448c/passenger-arrivals-summary-jun-2025-tables.ods">Passenger arrivals summary tables, year ending June 2025 (ODS, 31.3 KB)
‘Passengers refused entry at the border summary tables’ and ‘Passengers refused entry at the border detailed datasets’ have been discontinued. The latest published versions of these tables are from February 2025 and are available in the ‘Passenger refusals – release discontinued’ section. A similar data series, ‘Refused entry at port and subsequently departed’, is available within the Returns detailed and summary tables.
https://assets.publishing.service.gov.uk/media/689efd8307f2cc15c93572d8/electronic-travel-authorisation-datasets-jun-2025.xlsx">Electronic travel authorisation detailed datasets, year ending June 2025 (MS Excel Spreadsheet, 57.1 KB)
ETA_D01: Applications for electronic travel authorisations, by nationality
ETA_D02: Outcomes of applications for electronic travel authorisations, by nationality
https://assets.publishing.service.gov.uk/media/68b08043b430435c669c17a2/visas-summary-jun-2025-tables.ods">Entry clearance visas summary tables, year ending June 2025 (ODS, 56.1 KB)
https://assets.publishing.service.gov.uk/media/689efda51fedc616bb133a38/entry-clearance-visa-outcomes-datasets-jun-2025.xlsx">Entry clearance visa applications and outcomes detailed datasets, year ending June 2025 (MS Excel Spreadsheet, 29.6 MB)
Vis_D01: Entry clearance visa applications, by nationality and visa type
Vis_D02: Outcomes of entry clearance visa applications, by nationality, visa type, and outcome
Additional data relating to in country and overseas Visa applications can be fo
On 1 April 2025 responsibility for fire and rescue transferred from the Home Office to the Ministry of Housing, Communities and Local Government.
This information covers fires, false alarms and other incidents attended by fire crews, and the statistics include the numbers of incidents, fires, fatalities and casualties as well as information on response times to fires. The Ministry of Housing, Communities and Local Government (MHCLG) also collect information on the workforce, fire prevention work, health and safety and firefighter pensions. All data tables on fire statistics are below.
MHCLG has responsibility for fire services in England. The vast majority of data tables produced by the Ministry of Housing, Communities and Local Government are for England but some (0101, 0103, 0201, 0501, 1401) tables are for Great Britain split by nation. In the past the Department for Communities and Local Government (who previously had responsibility for fire services in England) produced data tables for Great Britain and at times the UK. Similar information for devolved administrations are available at https://www.firescotland.gov.uk/about/statistics/">Scotland: Fire and Rescue Statistics, https://statswales.gov.wales/Catalogue/Community-Safety-and-Social-Inclusion/Community-Safety">Wales: Community safety and https://www.nifrs.org/home/about-us/publications/">Northern Ireland: Fire and Rescue Statistics.
If you use assistive technology (for example, a screen reader) and need a version of any of these documents in a more accessible format, please email alternativeformats@communities.gov.uk. Please tell us what format you need. It will help us if you say what assistive technology you use.
Fire statistics guidance
Fire statistics incident level datasets
https://assets.publishing.service.gov.uk/media/686d2aa22557debd867cbe14/FIRE0101.xlsx">FIRE0101: Incidents attended by fire and rescue services by nation and population (MS Excel Spreadsheet, 153 KB) Previous FIRE0101 tables
https://assets.publishing.service.gov.uk/media/686d2ab52557debd867cbe15/FIRE0102.xlsx">FIRE0102: Incidents attended by fire and rescue services in England, by incident type and fire and rescue authority (MS Excel Spreadsheet, 2.19 MB) Previous FIRE0102 tables
https://assets.publishing.service.gov.uk/media/686d2aca10d550c668de3c69/FIRE0103.xlsx">FIRE0103: Fires attended by fire and rescue services by nation and population (MS Excel Spreadsheet, 201 KB) Previous FIRE0103 tables
https://assets.publishing.service.gov.uk/media/686d2ad92557debd867cbe16/FIRE0104.xlsx">FIRE0104: Fire false alarms by reason for false alarm, England (MS Excel Spreadsheet, 492 KB) Previous FIRE0104 tables
https://assets.publishing.service.gov.uk/media/686d2af42cfe301b5fb6789f/FIRE0201.xlsx">FIRE0201: Dwelling fires attended by fire and rescue services by motive, population and nation (MS Excel Spreadsheet, 192 KB) Previous FIRE0201 tables
<span class="gem
A detailed explanation of how this dataset was put together, including data sources and methodologies, follows below.Please see the "Terms of Use" section below for the Data DictionaryDATA ACQUISITION AND CLEANING PROCESSThis dataset was built from 5 separate datasets queried during the months of April and May 2023 from the Census Microdata System (link below):https://data.census.gov/mdat/#/All datasets include information on Property Value (VALP) by: Educational Attainment (SCHL), Gender (SEX), a specified race or ethnicity (RAC or HISP), and are grouped by Public Use Microdata Areas (PUMAS). PUMAS are geographic areas created by the Census bureau; they are weighted by land area and population to facilitate data analysis. Data also Included totals for the state of New Mexico, so 19 total geographies are represented. Datasets were downloaded separately by race and ethnicity because this was the only way to obtain the VALP, SCHL, and SEX variables intersectionally with race or ethnicity data. Datasets were downloaded separately by race and ethnicity because this was the only way to obtain the VALP, SCHL, and SEX variables intersectionally with race or ethnicity data. Cleaning each dataset started with recoding the SCHL and HISP variables - details on recoding can be found below.After recoding, each dataset was transposed so that PUMAS were rows and SCHL, VALP, SEX, and Race or Ethnicity variables were the columns.Median values were calculated in every case that recoding was necessary. As a result, all Property Values in this dataset reflect median values.At times the ACS data downloaded with zeros instead of the 'null' values in initial query results. The VALP variable also included a "-1" variable to reflect N/A values (details in variable notes). Both zeros and "-1" values were removed before calculating median values, both to keep the data true to the original query and to generate accurate median values.Recoding the SCHL variable resulted in 5 rows for each PUMA, reflecting the different levels of educational attainment in each region. Columns grouped variables by race or ethnicity and gender. Cell values were property values.All 5 datasets were joined after recoding and cleaning the data. Original datasets all include 95 rows with 5 separate Educational Attainment variables for each PUMA, including New Mexico State totals.Because 1 row was needed for each PUMA in order to map this data, the data was split by Educational Attainment (SCHL), resulting in 110 columns reflecting median property values for each race or ethnicity by gender and level of educational attainment.A short, unique 2 to 5 letter alias was created for each PUMA area in anticipation of needing a unique identifier to join the data with. GIS AND MAPPING PROCESSA PUMA shapefile was downloaded from the ACS site. The Shapefile can be downloaded here: https://tigerweb.geo.census.gov/arcgis/rest/services/TIGERweb/PUMA_TAD_TAZ_UGA_ZCTA/MapServerThe DBF from the PUMA shapefile was exported to Excel; this shapefile data included needed geographic information for mapping such as: GEOID, PUMACE. The UIDs created for each PUMA were added to the shapefile data; the PUMA shapfile data and ACS data were then joined on UID in JMP.The data table was joined to the shapefile in ARC GiIS, based on PUMA region (specifically GEOID text).The resulting shapefile was exported as a GDB (geodatabase) in order to keep 'Null' values in the data. GDBs are capable of including a rule allowing null values where shapefiles are not. This GDB was uploaded to NMCDCs Arc Gis platform. SYSTEMS USEDMS Excel was used for data cleaning, recoding, and deriving values. Recoding was done directly in the Microdata system when possible - but because the system is was in beta at the time of use some features were not functional at times.JMP was used to transpose, join, and split data. ARC GIS Desktop was used to create the shapefile uploaded to NMCDC's online platform. VARIABLE AND RECODING NOTESTIMEFRAME: Data was queried for the 5 year period of 2015 to 2019 because ACS changed its definiton for and methods of collecting data on race and ethinicity in 2020. The change resulted in greater aggregation and les granular data on variables from 2020 onward.Note: All Race Data reflects that respondants identified as the specified race alone or in combination with one or more other races.VARIABLE:ACS VARIABLE DEFINITIONACS VARIABLE NOTESDETAILS OR URL FOR RAW DATA DOWNLOADRACBLKBlack or African American ACS Query: RACBLK, SCHL, SEX, VALP 2019 5yrRACAIANAmerican Indian and Alaska Native ACS Query: RACAIAN, SCHL, SEX, VALP 2019 5yrRACASNAsian ACS Query: RACASN, SCHL, SEX, VALP 2019 5yrRACWHTWhite ACS Query: RACWHT, SCHL, SEX, VALP 2019 5yrHISPHispanic Origin ACS Query: HISP ORG, SCHL, SEX, VALP 2019 5yrHISP RECODE: 24 original separate variablesThe Hispanic Origin (HISP) variable originally included 24 subcategories reflecting Mexican, Central American, South American, and Caribbean Latino, and Spanish identities from each Latin American counry. 7 recoded VariablesThese 24 variables were recoded (grouped) into 7 simpler categories for data analysis: Not Spanish/Hispanic/Latino, Mexican, Caribbean Latino, Central American, South American, Spaniard, All other Spanish/Hispanic/Latino Female. Not Spanish/Hispanic/Latino was not really used in the final dataset as the race datasets provided that information.SCHLEducational Attainment25 original separate variablesThe Educational Attainment (SCHL) variable originally included 25 subcategories reflecting the education levels of adults (over 18) surveyed by the ACS. These include: Kindergarten, Grades 1 through 12 separately, 12th grade with no diploma, Highschool Diploma, GED or credential, less than 1 year of college, more than 1 year of college with no degree, Associate's Degree, Bachelor's Degree, Master's Degree, Professional Degree, and Doctorate Degree.SCHL RECODE: 5 recoded variablesThese 25 variables were recoded (grouped) into 5 simpler categories for data analysis: No High School Diploma, High School Diploma or GED, Some College, Bachelor's Degree, and Advanced or Professional DegreeSEXGender2 variables1 - Male, 2 - FemaleVALPProperty Value1 variableValues were rounded and top-coded by ACS for anonymity. The "-1" variable is defined as N/A (GQ/ Vacant lots except 'for sale only' and 'sold, not occupied' / not owned or being bought.) This variable reflects the median value of property owned by individuals of each race, ethnicity, gender, and educational attainment category.PUMAPublic Use Microdata Area18 PUMAsPUMAs in New Mexico can be viewed here:https://nmcdc.maps.arcgis.com/apps/mapviewer/index.html?webmap=d9fed35f558948ea9051efe9aa529eafData includes 19 total regions: 18 Pumas and NM State TotalsNOTES AND RESOURCESThe following resources and documentation were used to navigate the ACS PUMS system and to answer questions about variables:Census Microdata API User Guide:https://www.census.gov/data/developers/guidance/microdata-api-user-guide.Additional_Concepts.html#list-tab-1433961450Accessing PUMS Data:https://www.census.gov/programs-surveys/acs/microdata/access.htmlHow to use PUMS on data.census.govhttps://www.census.gov/programs-surveys/acs/microdata/mdat.html2019 PUMS Documentation:https://www.census.gov/programs-surveys/acs/microdata/documentation.2019.html#list-tab-13709392012014 to 2018 ACS PUMS Data Dictionary:https://www2.census.gov/programs-surveys/acs/tech_docs/pums/data_dict/PUMS_Data_Dictionary_2014-2018.pdf2019 PUMS Tiger/Line Shapefileshttps://www.census.gov/cgi-bin/geo/shapefiles/index.php?year=2019&layergroup=Public+Use+Microdata+Areas Note 1: NMCDC attemepted to contact analysts with the ACS system to clarify questions about variables, but did not receive a timely response. Documentation was then consulted.Note 2: All relevant documentation was reviewed and seems to imply that all survey questions were answered by adults, age 18 or over. Youth who have inherited property could potentially be reflected in this data.Dataset and feature service created in May 2023 by Renee Haley, Data Specialist, NMCDC.
This record description is for the EMMIE portion of the unioned query required due to migration of Public Assistance (PA) Recovery records into the Fac-trax database. This dataset contains data on Public Assistance project awards (obligations), including the project obligation date(s); dollar amount of Federal Share Obligated for each project and its obligation date(s); FEMA region; state; disaster declaration number; descriptive cause of the declaration (incident type); entity requesting public assistance (applicant name); and distinct name for the repair, replacement or mitigation work listed for assistance (Project Title). The PA Grant Awards Activities dataset does not collect, maintain, use, or disseminate any Personally Identifiable Information (PII).rnrnAs part of Congressional bill HR 152 - the Sandy Recovery Improvement Act of 2013, FEMA is providing the following information for our stakeholders:rn• Regionrn• Disaster Declaration Numberrn• Disaster Typern• Statern• Applicantrn• Countyrn• Damage Category Codern• Federal Share Obligatedrn• Date ObligatedrnrnFEMA obligates funding for a project directly to the Recipient (State or Tribe). It is the Recipient's responsibility to ensure that the eligible subrecipient (listed in the dataset as Applicant Name) receives the award funding.rnThis dataset lists details about project versions. Versions occur when the scope/cost changes for a project. Versions adjust the cost of the project with positive additions called obligations and subtractions called deobligations. Combined, they reconcile to reflect the Total Federal Share Obligation, but reconciliation occurs over the life of the project, sometimes years after the declaration date. The dataset represents project obligations within a seven-day period prior to the listed date but does not include obligations uploaded on the same day as the publication. Open projects still under pre-obligation processing are not represented.rnFor more information on the Public Assistance process see: https://www.fema.gov/assistance/public/process.rnThis is raw, unedited data from FEMA's Emergency Management Mission Integrated Environment (EMMIE) system and as such is subject to a small percentage of human error. The financial information is derived from EMMIE and not FEMA's official financial systems. Due to differences in reporting periods, status of obligations and application of business rules, this financial information may differ slightly from official publication on public websites such as usaspending.gov. This dataset is not intended to be used for any official federal reporting.rnIf you have media inquiries about this dataset, please email the FEMA News Desk at FEMA-News-Desk@fema.dhs.gov or call (202) 646-3272. For inquiries about FEMA's data and Open Government program, please email the OpenFEMA team at OpenFEMA@fema.dhs.gov.