Number, percentage and rate (per 100,000 population) of homicide victims, by racialized identity group (total, by racialized identity group; racialized identity group; South Asian; Chinese; Black; Filipino; Arab; Latin American; Southeast Asian; West Asian; Korean; Japanese; other racialized identity group; multiple racialized identity; racialized identity, but racialized identity group is unknown; rest of the population; unknown racialized identity group), gender (all genders; male; female; gender unknown) and region (Canada; Atlantic region; Quebec; Ontario; Prairies region; British Columbia; territories), 2019 to 2023.
This dataset reflects reported incidents of crime (with the exception of murders where data exists for each victim) that occurred in the City of Chicago from 2001 to present, minus the most recent seven days. Data is extracted from the Chicago Police Department's CLEAR (Citizen Law Enforcement Analysis and Reporting) system. In order to protect the privacy of crime victims, addresses are shown at the block level only and specific locations are not identified. Should you have questions about this dataset, you may contact the Research & Development Division of the Chicago Police Department at 312.745.6071 or RandD@chicagopolice.org. Disclaimer: These crimes may be based upon preliminary information supplied to the Police Department by the reporting parties that have not been verified. The preliminary crime classifications may be changed at a later date based upon additional investigation and there is always the possibility of mechanical or human error. Therefore, the Chicago Police Department does not guarantee (either expressed or implied) the accuracy, completeness, timeliness, or correct sequencing of the information and the information should not be used for comparison purposes over time. The Chicago Police Department will not be responsible for any error or omission, or for the use of, or the results obtained from the use of this information. All data visualizations on maps should be considered approximate and attempts to derive specific addresses are strictly prohibited. The Chicago Police Department is not responsible for the content of any off-site pages that are referenced by or that reference this web page other than an official City of Chicago or Chicago Police Department web page. The user specifically acknowledges that the Chicago Police Department is not responsible for any defamatory, offensive, misleading, or illegal conduct of other users, links, or third parties and that the risk of injury from the foregoing rests entirely with the user. The unauthorized use of the words "Chicago Police Department," "Chicago Police," or any colorable imitation of these words or the unauthorized use of the Chicago Police Department logo is unlawful. This web page does not, in any way, authorize such use. Data is updated daily Tuesday through Sunday. The dataset contains more than 65,000 records/rows of data and cannot be viewed in full in Microsoft Excel. Therefore, when downloading the file, select CSV from the Export menu. Open the file in an ASCII text editor, such as Wordpad, to view and search. To access a list of Chicago Police Department - Illinois Uniform Crime Reporting (IUCR) codes, go to http://data.cityofchicago.org/Public-Safety/Chicago-Police-Department-Illinois-Uniform-Crime-R/c7ck-438e
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Police recorded crime figures by Police Force Area and Community Safety Partnership areas (which equate in the majority of instances, to local authorities).
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
When incidents happened, where it took place, the victim’s perception of the incident, and what items were stolen or damaged. Annual data from the Crime Survey for England and Wales (CSEW).
This dataset reflects reported incidents of crime that have occurred in the City of Chicago over the past year, minus the most recent seven days of data. Data is extracted from the Chicago Police Department's CLEAR (Citizen Law Enforcement Analysis and Reporting) system. In order to protect the privacy of crime victims, addresses are shown at the block level only and specific locations are not identified. Should you have questions about this dataset, you may contact the Research & Development Division of the Chicago Police Department at 312.745.6071 or RandD@chicagopolice.org. Disclaimer: These crimes may be based upon preliminary information supplied to the Police Department by the reporting parties that have not been verified. The preliminary crime classifications may be changed at a later date based upon additional investigation and there is always the possibility of mechanical or human error. Therefore, the Chicago Police Department does not guarantee (either expressed or implied) the accuracy, completeness, timeliness, or correct sequencing of the information and the information should not be used for comparison purposes over time. The Chicago Police Department will not be responsible for any error or omission, or for the use of, or the results obtained from the use of this information. All data visualizations on maps should be considered approximate and attempts to derive specific addresses are strictly prohibited.
The Chicago Police Department is not responsible for the content of any off-site pages that are referenced by or that reference this web page other than an official City of Chicago or Chicago Police Department web page. The user specifically acknowledges that the Chicago Police Department is not responsible for any defamatory, offensive, misleading, or illegal conduct of other users, links, or third parties and that the risk of injury from the foregoing rests entirely with the user. Any use of the information for commercial purposes is strictly prohibited. The unauthorized use of the words "Chicago Police Department," "Chicago Police," or any colorable imitation of these words or the unauthorized use of the Chicago Police Department logo is unlawful. This web page does not, in any way, authorize such use. Data is updated daily.
Incident-based crime statistics (actual incidents, rate per 100,000 population, percentage change in rate, unfounded incidents, percent unfounded, total cleared, cleared by charge, cleared otherwise, persons charged, adults charged, youth charged / not charged), by detailed violations (violent, property, traffic, drugs, other Federal Statutes), police services in Ontario, 1998 to 2023.
NOTE: This dataset replaces two previous ones. Please see below.
Chicago residents who are up to date with COVID-19 vaccines, based on the reported address, race-ethnicity, sex, and age group of the person vaccinated, as provided by the medical provider in the Illinois Comprehensive Automated Immunization Registry Exchange (I-CARE).
“Up to date” refers to individuals who meet the CDC’s updated COVID-19 vaccination criteria based on their age and prior vaccination history. For surveillance purposes, up to date is defined based on the following criteria:
People ages 5 years and older: · Are up to date when they receive 1+ doses of a COVID-19 vaccine during the current season.
Children ages 6 months to 4 years: · Children who have received at least two prior COVID-19 vaccine doses are up to date when they receive one additional dose of COVID-19 vaccine during the current season, regardless of vaccine product. · Children who have received only one prior COVID-19 vaccine dose are up to date when they receive one additional dose of the current season's Moderna COVID-19 vaccine or two additional doses of the current season's Pfizer-BioNTech COVID-19 vaccine. · Children who have never received a COVID-19 vaccination are up to date when they receive either two doses of the current season's Moderna vaccine or three doses of the current season's Pfizer-BioNTech vaccine.
This dataset takes the place of two previous datasets, which cover doses administered from December 15, 2020 through September 13, 2023 and are marked has historical: - https://data.cityofchicago.org/Health-Human-Services/COVID-19-Daily-Vaccinations-Chicago-Residents/2vhs-cf6b - https://data.cityofchicago.org/Health-Human-Services/COVID-19-Vaccinations-by-Age-and-Race-Ethnicity/37ac-bbe3.
Data Notes:
Weekly cumulative totals of people up to date are shown for each combination of race-ethnicity, sex, and age group. Note that race-ethnicity, age, and sex all have an option for “All” so care should be taken when summing rows.
Coverage percentages are calculated based on the cumulative number of people in each race-ethnicity/age/sex population subgroup who are considered up to date as of the week ending date divided by the estimated number of people in that subgroup. Population counts are obtained from the 2020 U.S. Decennial Census. Actual counts may exceed population estimates and lead to coverage estimates that are greater than 100%, especially in smaller demographic groupings with smaller populations. Additionally, the medical provider may report incorrect demographic information for the person receiving the vaccination, which may lead to over- or underestimation of vaccination coverage. All coverage percentages are capped at 99%.
Weekly cumulative counts and coverage percentages are reported from the week ending Saturday, September 16, 2023 onward through the Saturday prior to the dataset being updated.
All data are provisional and subject to change. Information is updated as additional details are received and it is, in fact, very common for recent dates to be incomplete and to be updated as time goes on. At any given time, this dataset reflects data currently known to CDPH.
Numbers in this dataset may differ from other public sources due to when data are reported and how City of Chicago boundaries are defined.
The Chicago Department of Public Health uses the most complete data available to estimate COVID-19 vaccination coverage among Chicagoans, but there are several limitations that impact our estimates. Individuals may receive vaccinations that are not recorded in the Illinois immunization registry, I-CARE, such as those administered in another state, causing underestimation of the number individuals who are up to date. Inconsistencies in records of separate doses administered to the same person, such as slight variations in dates of birth, can result in duplicate records for a person and underestimate the number of people who are up to date.
For all datasets related to COVID-19, see https://data.cityofchicago.org/browse?limitTo=datasets&sortBy=alpha&tags=covid-19.
Data Source: Illinois Comprehensive Automated Immunization Registry Exchange (I-CARE), U.S. Census Bureau 2020 Decennial Census
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Lake Placid Hispanic or Latino population. It includes the distribution of the Hispanic or Latino population, of Lake Placid, by their ancestries, as identified by the Census Bureau. The dataset can be utilized to understand the origin of the Hispanic or Latino population of Lake Placid.
Key observations
Among the Hispanic population in Lake Placid, regardless of the race, the largest group is of Other Hispanic or Latino origin, with a population of 45 (91.84% of the total Hispanic population).
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Origin for Hispanic or Latino population include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Lake Placid Population by Race & Ethnicity. You can refer the same here
NOTE: This dataset replaces a previous one. Please see below. Chicago residents who are up to date with COVID-19 vaccines by Healthy Chicago Equity Zone (HCEZ), based on the reported address, race-ethnicity, and age group of the person vaccinated, as provided by the medical provider in the Illinois Comprehensive Automated Immunization Registry Exchange (I-CARE). Healthy Chicago Equity Zones is an initiative of the Chicago Department of Public Health to organize and support hyperlocal, community-led efforts that promote health and racial equity. Chicago is divided into six HCEZs. Combinations of Chicago’s 77 community areas make up each HCEZ, based on geography. For more information about HCEZs including which community areas are in each zone see: https://data.cityofchicago.org/Health-Human-Services/Healthy-Chicago-Equity-Zones/nk2j-663f “Up to date” refers to individuals who meet the CDC’s updated COVID-19 vaccination criteria based on their age and prior vaccination history. For surveillance purposes, up to date is defined based on the following criteria: People ages 5 years and older: ·Are up to date when they receive 1+ doses of a COVID-19 vaccine during the current season. Children ages 6 months to 4 years: · Children who have received at least two prior COVID-19 vaccine doses are up to date when they receive one additional dose of COVID-19 vaccine during the current season, regardless of vaccine product. · Children who have received only one prior COVID-19 vaccine dose are up to date when they receive one additional dose of the current season's Moderna COVID-19 vaccine or two additional doses of the current season's Pfizer-BioNTech COVID-19 vaccine. · Children who have never received a COVID-19 vaccination are up to date when they receive either two doses of the current season's Moderna vaccine or three doses of the current season's Pfizer-BioNTech vaccine. This dataset takes the place of a previous dataset, which cover doses administered from December 15, 2020 through September 13, 2023 and is marked as historical: - https://data.cityofchicago.org/Health-Human-Services/COVID-19-Vaccinations-by-Region-Age-and-Race-Ethni/n7f2-e2kq. Data notes: Weekly cumulative totals of people up to date are shown for each combination of race-ethnicity and age group within an HCEZ. Note that each HCEZ has a row where HCEZ is “Citywide” and each HCEZ has a row where age is "All" and race-ethnicity is “All Race/Ethnicity Groups” so care should be taken when summing rows. Coverage percentages are calculated based on the cumulative number of people in each population subgroup (age group by race-ethnicity within an HCEZ) who are up to date, divided by the estimated number of people in that subgroup. Population counts are from the 2020 U.S. Decennial Census. Actual counts may exceed population estimates and lead to >100% coverage, especially in small race-ethnicity subgroups of each age group within an HCEZ. All coverage percentages are capped at 99%. Summing all race/ethnicity group populations to obtain citywide populations may provide a population count that differs slightly from the citywide population count listed in the dataset. Differences in these estimates are due to how community area populations are calculated. Weekly cumulative counts and coverage percentages are reported from the week ending Saturday, September 16, 2023 onward through the Saturday prior to the dataset being updated. All data are provisional and subject to change. Information is updated as additional details are received and it is, in fact, very common for recent dates to be incomplete and to be updated as time goes on. At any given time, this dataset reflects data currently known to CDPH. Numbers in this dataset may differ from other public sources due to when data are reported and how City of Chicago boundaries are defined. The Chicago Department of Public Health uses the most complete data available to estimate COVID-19 vaccinati
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
NOTE: As of 2/16/2023 this table is no longer being updated. For information on COVID-19 Updated (Bivalent) Booster Coverage, go to https://data.ct.gov/Health-and-Human-Services/COVID-19-Updated-Bivalent-Booster-Coverage-By-Race/8267-bg4w.
Important change as of June 1, 2022
As of June 1, 2022, we will be using 2020 DPH provisional census estimates* to calculate vaccine coverage percentages by age at the state level. 2020 estimates will replace the 2019 estimates that have been used. Caution should be taken when making comparisons of percentages calculated using the 2019 and 2020 census estimates since observed difference may result from the shift in the denominator. The age groups in the state-level data tables will also be changing as a result of the switch to the new denominator.
This table shows the number and percent of people that have initiated COVID-19 vaccination, are fully vaccinated and had additional dose 1 by race / ethnicity and age group.
All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. The age groups in the state-level data tables will also be changing as a result of the switch to the new denominator.
Population size estimates are based on 2019 DPH census estimates until 5/26/2022. From 6/1/2022, 2020 DPH provisional census estimates are used.
In the data shown here, a person who has received at least one dose of COVID-19 vaccine is considered to have initiated vaccination. A person is considered fully vaccinated if he/she has completed a primary vaccination series by receiving 2 doses of the Pfizer, Novavax or Moderna vaccines or 1 dose of the Johnson & Johnson vaccine. The fully vaccinated are a subset of the people who have received at least one dose.
A person who completed a Pfizer, Moderna, Novavax or Johnson & Johnson primary series (as defined above) and then had an additional monovalent dose of COVID-19 vaccine is considered to have had additional dose 1. The additional dose may be Pfizer, Moderna, Novavax or Johnson & Johnson and may be a different type from the primary series. For people who had a primary Pfizer or Moderna series, additional dose 1 was counted starting August 18th, 2021. For people with a Johnson & Johnson primary series additional dose 1 was counted starting October 22nd, 2021. For most people, additional dose 1 is a booster. However, additional dose 1 may represent a supplement to the primary series for a people who is moderately or severely immunosuppressed. Bivalent booster administrations are not included in the additional dose 1 calculations.
The percent with at least one dose many be over-estimated, and the percent fully vaccinated and with additional dose 1 may be under-estimated because of vaccine administration records for individuals that cannot be linked because of differences in how names or date of birth are reported.
Race and ethnicity data may be self-reported or taken from an existing electronic health care record. Reported race and ethnicity information is used to create a single race/ethnicity variable. People with Hispanic ethnicity are classified as Hispanic regardless of reported race. People with a missing ethnicity are classified as non-Hispanic. People with more than one race are classified as multiple races.
A vaccine coverage percentage cannot be calculated for people classified as NH Other race or NH Unknown race since there are not population size estimates for these groups. Data quality assurance activities suggest that in at least some cases NH Other may represent a missing value. Vaccine coverage estimates in specific race/ethnicity groups may be underestimated as result of the classification of records as NH Unknown Race or NH Other Race.
Connecticut COVID-19 Vaccine Program providers are required to report information on all COVID-19 vaccine doses administered to CT WiZ, the Connecticut Immunization Information System. This includes doses given to residents of CT and to residents of other states vaccinated in CT. Data on doses administered to CT residents out-of-state are being added to CT WiZ jurisdiction-by-jurisdiction. Doses administered by some Federal entities (including Department of Defense, Department of Correction, Department of Veteran’s Affairs, Indian Health Service) are not yet reported to CT WiZ. Data reported here reflect the vaccination records reported to CT WiZ. However, once CT residents who have received doses in each jurisdiction are added to CT WiZ, the records for residents of that jurisdiction vaccinated in CT are removed. For example, when CT residents vaccinated in NYC were added, NYC residents vaccinated in CT were removed.
Note: This dataset takes the place of the original "COVID-19 Vaccinations by Race/Ethnicity" dataset (https://data.ct.gov/Health-and-Human-Services/COVID-19-Vaccinations-by-Race-Ethnicity/xkga-ifz3 ), which will not be updated after 5/20/2021 and “COVID-19 Vaccinations by Race / Ethnicity” dataset (https://data.ct.gov/Health-and-Human-Services/COVID-19-Vaccinations-by-Race-Ethnicity/ybkg-w5x2), which will not be updated after 10/20/2021.
The Analysis Of Record for Calibration (AORC) is a gridded record of near-surface weather conditions covering the continental United States and Alaska and their hydrologically contributing areas. It is defined on a latitude/longitude spatial grid with a mesh length of 30 arc seconds (~800 m), and a temporal resolution of one hour. Elements include hourly total precipitation, temperature, specific humidity, terrain-level pressure, downward longwave and shortwave radiation, and west-east and south-north wind components. It spans the period from 1979 across the Continental U.S. (CONUS) and from 1981 across Alaska, to the near-present (at all locations). This suite of eight variables is sufficient to drive most land-surface and hydrologic models and is used as input to the National Water Model (NWM) retrospective simulation. While the native AORC process generates netCDF output, the data is post-processed to create a cloud optimized Zarr formatted equivalent for dissemination using cloud technology and infrastructure.
AORC Version 1.1 dataset creation
The AORC dataset was created after reviewing, identifying, and processing multiple large-scale, observation, and analysis datasets. There are two versions of The Analysis Of Record for Calibration (AORC) data.
The initial AORC Version 1.0 dataset was completed in November 2019 and consisted of a grid with 8 elements at a resolution of 30 arc seconds. The AORC version 1.1 dataset was created to address issues "see Table 1 in Fall et al., 2023" in the version 1.0 CONUS dataset. Full documentation on version 1.1 of the AORC data and the related journal publication are provided below.
The native AORC version 1.1 process creates a dataset that consists of netCDF files with the following dimensions: 1 hour, 4201 latitude values (ranging from 25.0 to 53.0), and 8401 longitude values (ranging from -125.0 to -67).
The data creation runs with a 10-day lag to ensure the inclusion of any corrections to the input Stage IV and NLDAS data.
Note - The full extent of the AORC grid as defined in its data files exceed those cited above; those outermost rows and columns of data grids are filled with missing values and are the remnant of an early set of required AORC extents that have since been adjusted inward.
AORC Version 1.1 Zarr Conversion
The goal for converting the AORC data from netCDF to Zarr was to allow users to quickly and efficiently load/use the data. For example, one year of data takes 28 mins to load via NetCDF while only taking 3.2 seconds to load via Zarr (resulting in a substantial increase in speed). For longer periods of time, the percentage increase in speed using Zarr (vs NetCDF) is even higher. Using Zarr also leads to less memory and CPU utilization.
It was determined that the optimal conversion for the data was 1 year worth of Zarr files with a chunk size of 18MB. The chunking was completed across all 8 variables. The chunks consist of the following dimensions: 144 time, 128 latitude, and 256 longitude. To create the files in the Zarr format, the NetCDF files were rechunked using chunk() and "Xarray". After chunking the files, they were converted to a monthly Zarr file. Then, each monthly Zarr file was combined using "to_zarr" to create a Zarr file that represents a full year
Users wanting more than 1 year of data will be able to utilize Zarr utilities/libraries to combine multiple years up to the span of the full data set.
There are eight variables representing the meteorological conditions
Total Precipitaion (APCP_surface)
Spaceborne Imaging Radar-C (SIR-C) is part of an imaging radar system that was flown on board two Space Shuttle flights (9 - 20 April, 1994 and 30 September - 11 October, 1994). The USGS distributes the C-band (5.8 cm) and L-band (23.5 cm) data. All X-band (3 cm) data is distributed by DLR. There are several types of products that are derived from the SIR-C data: Survey Data is intended as a "quick look" browse for viewing the areas that were imaged by the SIR-C system. The data consists of a strip image of an entire data swath. Resolution is approximately 100 meters, processed to a 50-meter pixel spacing. Files are distributed via File Transfer Protocol (FTP) download. Precision (Standard) Data consists of a frame image of a data segment, which represents a processed subset of the data swath. It contains high-resolution multifrequency and multipolarization data. All precision data is in CEOS format. The following types of precision data products are available: Single-Look Complex (SLC) consists of one single-look file for each scene, per frequency. Each data segment will cover 50 kilometers along the flight track, and is broken into four processing runs (two L band, two C-band). Resolution and polarization will depend on the mode in which the data was collected. Available as calibrated or uncalibrated data. Multi-Look Complex (MLC) is based on an averaging of multiple looks, and consists of one file for each scene per frequency. Each data segment will cover 100 km along the flight track, and is broken into two processing runs (one L band and one C band). Polarization will depend on the modes in which the looks were collected. The data is available in 12.5- or 25-meter pixel spacing. Reformatted Signal Data (RSD) consists of the raw radar signal data only. Each data segment will cover 100 km along the flight track, and the segment will be broken into two processing runs (L-band and C-band). Interferometry Data consists of experimental multitemporal data that covers the same area. Most data takes were collected during repeat passes within the second flight (days 7, 8, 9, and/or 10). In addition, nine data takes were collected during the second flight that were repeat passes of the first flight. Most data takes were also single polarization, although dual and quad polarization data was also collected on some passes. A Digital Elevation Model (DEM) is not included with any of the SIR-C interferometric data. The following types of interferometry products are available: Interferometric Single-Look Complex (iSLC) consists of two or more uncalibrated SLC images that have been processed with the same Doppler centroid to allow interferometric processing. Each frame image covers 50 kilometers along the flight track. The data is available in CEOS format. Raw Interferogram product (RIn) involves the combination of two data takes over the same area to produce an interferogram for each frequency (L-band and C-band). The data is available in TAR format. Reformatted Signal Data (RSD) consists of radar signal data that has been processed from two or more data takes over the same area, but the data has not been combined. Although this is not technically an interferometric product, the RSD can then be used to generate an interferogram. Each frame will cover 100 km along the flight track. The data is available in CEOS format.
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
A. SUMMARY
Please note that the "Data Last Updated" date on this page denotes the most recent DataSF update and does not reflect the most recent update to this dataset. To confirm the completeness of this dataset please contact the District Attorney's office at districtattorney@sfgov.org.
This dataset includes information on all cases presented to the District Attorney’s Office in which the office has taken action to prosecute a case, either by filing new criminal charges or by filing a motion to revoke probation or parole (MTR). This does not include cases in which the San Francisco Adult Probation Department or the state Division of Adult Parole Operations files a motion to revoke.
For cases in which SFDA files a new criminal charge, the most serious offense type is categorized as the most serious offense for which SFDA prosecuted the defendant. For cases in which SFDA files an MTR, the most serious offense is categorized as the most serious offense for which the person was initially prosecuted. This is because a filing of an MTR means that new criminal charges were not filed for the new arresting offense, but rather that the District Attorney’s Office is seeking a new sanction as part of the sentence of a prior criminal conviction. For MTRs, the filing date is based on the date when SFDA filed the MTR for the new arrest.
More information about this dataset can be found under the “Cases Prosecuted” section on the Data Dashboards page
Disclaimer: The San Francisco District Attorney's Office does not guarantee the accuracy, completeness, or timeliness of the information as the data is subject to change as modifications and updates are completed.
B. HOW THE DATASET IS CREATED
When District Attorney’s Office takes action to prosecute a case, relevant data is manually entered into the District Attorney Office's case management system. Data reports are pulled from this system on a semi-regular basis, cleaned, anonymized, and added to Open Data.
C. UPDATE PROCESS
We strive to update this dataset at the beginning of every week. However, the creation of this dataset requires a manual pull from the Office's case management system and is dependent on staff availability.
D. HOW TO USE THIS DATASET
Please review the “Cases Prosecuted” section on the Data Dashboards page for more information about this dataset.
E. Related DATASETS
District Attorney Actions Taken on Arrests Presented District Attorney Case Resolutions
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
The National Indicative Aggregated Fire Extent Dataset has been developed rapidly to support the immediate needs of the Department of Climate Change, Energy, the Environment and Water (DCCEEW, previously DAWE) in:quantifying the potential impacts of the 2019/20 bushfires on wildlife, plants and ecological communities; and,identifying appropriate response and recovery actions.The intent was to derive a reliable, agreed, fit for purpose and repeatable national dataset of burnt areas across Australia for the 2019/20 bushfire season.The NIAFED was first published on 13 February 2020 and was updated several times during 2020 to reflect updates to fire extent datasets from state and territory agencies. Most changes across these versions, after February (end of summer), reflect refinements on previous extent mapping, rather than new burnt areas. Fire analyses and decision making within the department after June 2020 has been based on the GEEBAM dataset. The GEEBAM dataset reports on fire severity within the NIAFED v20200225 extent envelope and includes some areas determined to be unburnt within NIAFED areas.NOTE: previous versions of this dataset are available on request to geospatial@dcceew.gov.auThe dataset takes the national Emergency Management Spatial Information Network Australia (EMSINA) data service, which is the official fire extent currently used by the Commonwealth and adds supplementary data from other sources to form a cumulative national view of fire extent. This EMSINA data service shows the current active fire incidents, and the Department map shows the total fire extent from 1 July 2019 to the 22 June 2020.EMSINA have been instrumental in providing advice on access to data and where to make contact in the early stages of developing the National Indicative Aggregated Fire Extent Dataset.This dataset is released on behalf of the Commonwealth Government and endorsed by the National Burnt Area Dataset Working Group, convened by the National Bushfire Recovery Agency.Known Issues:The dataset has a number of known issues, both in its conceptual design and in the quality of its inputs. These are outlined below and should be taken into account in interpreting the data and developing any derived analyses.The list of known issues below is not comprehensive: it is anticipated that further issues will be identified in the future, and the Department welcomes feedback on this. We will seek as far as possible to continuously improve the dataset in future versions.In addition, the 2019/20 bushfire season is ongoing and it can be expected that the fire extent will increase.Future versions of the dataset will therefore document and distinguish between changes arising from methodological improvement, as distinct from changes to the actual fire extent.The dataset draws data together from multiple different sources, including from state and territory agencies responsible for emergency and natural resource management, and from the Northern Australian Fire Information website. The variety of mapping methods means that conceptually the dataset lacks national coherency. The limitations associated with the input datasets are carried through to this dataset. Users are advised to refer to the input datasets’ documentation to better understand limitations.The dataset is intentionally precautionary and the rulesets for its creation elect to accept the risk of overstating the size of particular burnt areas. If and when there are overlapping polygons for an area, the internal boundaries have been dissolved.The dataset shows only the outline of burnt areas and lacks information on fire severity in these areas, which may often include areas within them that are completely unburnt. For the intended purpose this may limit the usability of the data, particularly informing on local environmental impacts and response. This issue will be given priority, either for future versions of the dataset or for development of a separate, but related, fire severity product.This continental dataset includes large burnt areas, particularly in northern Australia, which can be considered part of the natural landscape dynamics. For the intended purpose of informing on fire of potential environmental impact, some interpretation and filtering may be required. There are a variety of ways to do this, including by limiting the analysis to southern Australia, as was done for recent Wildlife and Threatened Species Bushfire Recovery Expert Panel’s preliminary analysis of 13 January 2020. For that preliminary analysis area, boundaries from the Interim Biogeographic Regionalisation of Australia version 7 were used by the Department to delineate an area of southern Australia encompassing the emergency bushfire areas of the southern summer. The Department will work in consultation with the expert panel and other relevant bodies in the future on alternative approaches to defining, spatially or otherwise, fire of potential environmental impact.The dataset cannot be used to reliably recreate what the national burnt area extent was at a given date prior to the date of release. Reasons for this include that information on the date/time on individual fires may or may not have been provided in the input datasets, and then lost as part of the dissolve process discussed in issue 2 above.With fires still burning extents are not yet refined.Fire extents are downloaded daily, and datasets are aggregated. This results in an overlap of polygon extents and raises the issue that refined extents are disregarded at this early stage.The Northern Australian Fire Information (NAFI) dataset is only current to 19 June 2020.
The OMI observations provide the following capabilities and features: A mapping of ozone columns at 13 km x 24 km and profiles at 13 km x 48 km A measurement of key air quality components: NO2, SO2, BrO, HCHO, and aerosol The ability to distinguish between aerosol types, such as smoke, dust and sulfates The ability to measure aerosol absorption capacity in terms of aerosol absorption optical depth or single scattering albedo A measurement of cloud pressure and coverage A mapping of the global distribution and trends in UV-B radiation. The OMI data are available in the following four levels: Level 0, Level 1B, Level 2, and Level 3. Level 0 products are raw sensor counts. Level 0 data are packaged into two-hour 'chunks' of observations in the life of the spacecraft (and the OMI aboard it) irrespective of orbital boundaries. They contain orbital swath data. Level 1B processing takes Level 0 data and calibrates, geo-locates and packages the data into orbits. They contain orbital swath data. Level 2 products contain orbital swath data. Level 3 products contain global data that are composited over time (daily or monthly) or over space for small equal angle (latitude longitude) grids covering the whole globe.
https://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.htmlhttps://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.html
Replication pack, FSE2018 submission #164: ------------------------------------------
**Working title:** Ecosystem-Level Factors Affecting the Survival of Open-Source Projects: A Case Study of the PyPI Ecosystem **Note:** link to data artifacts is already included in the paper. Link to the code will be included in the Camera Ready version as well. Content description =================== - **ghd-0.1.0.zip** - the code archive. This code produces the dataset files described below - **settings.py** - settings template for the code archive. - **dataset_minimal_Jan_2018.zip** - the minimally sufficient version of the dataset. This dataset only includes stats aggregated by the ecosystem (PyPI) - **dataset_full_Jan_2018.tgz** - full version of the dataset, including project-level statistics. It is ~34Gb unpacked. This dataset still doesn't include PyPI packages themselves, which take around 2TB. - **build_model.r, helpers.r** - R files to process the survival data (`survival_data.csv` in **dataset_minimal_Jan_2018.zip**, `common.cache/survival_data.pypi_2008_2017-12_6.csv` in **dataset_full_Jan_2018.tgz**) - **Interview protocol.pdf** - approximate protocol used for semistructured interviews. - LICENSE - text of GPL v3, under which this dataset is published - INSTALL.md - replication guide (~2 pages)
Replication guide ================= Step 0 - prerequisites ---------------------- - Unix-compatible OS (Linux or OS X) - Python interpreter (2.7 was used; Python 3 compatibility is highly likely) - R 3.4 or higher (3.4.4 was used, 3.2 is known to be incompatible) Depending on detalization level (see Step 2 for more details): - up to 2Tb of disk space (see Step 2 detalization levels) - at least 16Gb of RAM (64 preferable) - few hours to few month of processing time Step 1 - software ---------------- - unpack **ghd-0.1.0.zip**, or clone from gitlab: git clone https://gitlab.com/user2589/ghd.git git checkout 0.1.0 `cd` into the extracted folder. All commands below assume it as a current directory. - copy `settings.py` into the extracted folder. Edit the file: * set `DATASET_PATH` to some newly created folder path * add at least one GitHub API token to `SCRAPER_GITHUB_API_TOKENS` - install docker. For Ubuntu Linux, the command is `sudo apt-get install docker-compose` - install libarchive and headers: `sudo apt-get install libarchive-dev` - (optional) to replicate on NPM, install yajl: `sudo apt-get install yajl-tools` Without this dependency, you might get an error on the next step, but it's safe to ignore. - install Python libraries: `pip install --user -r requirements.txt` . - disable all APIs except GitHub (Bitbucket and Gitlab support were not yet implemented when this study was in progress): edit `scraper/init.py`, comment out everything except GitHub support in `PROVIDERS`. Step 2 - obtaining the dataset ----------------------------- The ultimate goal of this step is to get output of the Python function `common.utils.survival_data()` and save it into a CSV file: # copy and paste into a Python console from common import utils survival_data = utils.survival_data('pypi', '2008', smoothing=6) survival_data.to_csv('survival_data.csv') Since full replication will take several months, here are some ways to speedup the process: ####Option 2.a, difficulty level: easiest Just use the precomputed data. Step 1 is not necessary under this scenario. - extract **dataset_minimal_Jan_2018.zip** - get `survival_data.csv`, go to the next step ####Option 2.b, difficulty level: easy Use precomputed longitudinal feature values to build the final table. The whole process will take 15..30 minutes. - create a folder `
Area exposed to one or more hazards represented on the hazard map used for risk analysis of the RPP. The hazard map is the result of the study of hazards, the objective of which is to assess the intensity of each hazard at any point in the study area. The evaluation method is specific to each hazard type. It leads to the delimitation of a set of areas on the study perimeter constituting a zoning graduated according to the level of the hazard. The allocation of a hazard level at a given point in the territory takes into account the probability of occurrence of the dangerous phenomenon and its degree of intensity. For multi-random PPRNs, each zone is usually identified on the hazard map by a code for each hazard to which it is exposed.
All hazard areas shown on the hazard map are included. Areas protected by protective structures must be represented (possibly in a specific way) as they are always considered subject to hazard (case of breakage or inadequacy of the structure). Hazard zones can be described as developed data to the extent that they result from a synthesis using multiple sources of calculated, modelled or observed hazard data. These source data are not concerned by this class of objects but by another standard dealing with the knowledge of hazards. Some areas within the study area are considered “no or insignificant hazard zones”. These are the areas where the hazard has been studied and is nil. These areas are not included in the object class and do not have to be represented as hazard zones. However, in the case of natural RPPs, regulatory zoning may classify certain areas not exposed to hazard as prescribing areas (see definition of the PPR class).
Area exposed to one or more hazards represented on the hazard map used for risk analysis of the RPP. The hazard map is the result of the study of hazards, the objective of which is to assess the intensity of each hazard at any point in the study area. The evaluation method is specific to each hazard type. It leads to the delimitation of a set of areas on the study perimeter constituting a zoning graduated according to the level of the hazard. The allocation of a hazard level at a given point in the territory takes into account the probability of occurrence of the dangerous phenomenon and its degree of intensity. For multi-random PPRNs, each zone is usually identified on the hazard map by a code for each hazard to which it is exposed. All hazard areas shown on the hazard map are included. Areas protected by protective structures must be represented (possibly in a specific way) as they are always considered to be subject to hazard (cases of breakage or inadequacy of the structure).The hazard zones may be classified as data compiled in so far as they result from a synthesis using several sources of calculated, modelled or observed hazard data. These source data are not concerned by this class of objects but by another standard dealing with the knowledge of hazards. Some areas within the study area are considered “no or insignificant hazard zones”. These are the areas where the hazard has been studied and is nil. These areas are not included in the object class and do not have to be represented as hazard zones. However, in the case of natural RPPs, regulatory zoning may classify certain areas not exposed to hazard as prescribing areas (see definition of the PPR class).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset contains measurements of radio-frequency electromagnetic emissions from a home-built sender module for BB84 quantum key distribution. The goal of these measurements was to evaluate information leakage through this side-channel. This dataset supplements our publication and allows to reproduce our results together with the source code hosted at GitHub (and also on Zenodo via integration with GitHub).
The measurements are performed using a magnetic near-field probe, an amplifier and an oscilloscope. The dataset contains raw measured data in the file format output by the oscilloscope. Use our source code to make use of it. Detailed descriptions of measurement procedure can be found in our paper and in the metadata JSON files found within the dataset.
Commented list of datasets
This file lists the datasets that were analyzed and reported on in the paper. The datasets in the list refer to directories here. Note that most of the datasets contain additional files with metadata, which detail where and how the measurements were performed. The mentioned Jupyter notebooks refer to the source code repository https://github.com/XQP-Munich/EmissionSecurityQKD (not included in this dataset). Most of those notebooks output JSON files storing results. The processed JSON files are also included in the source code repository.
In naming of datasets,
Datasets collected with near-field probe for Rev1 electronics
Datasets collected with near-field probe for Rev2 electronics
Other datasets
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset consists of feature vectors belonging to 12,330 sessions. The dataset was formed so that each session would belong to a different user in a 1-year period to avoid any tendency to a specific campaign, special day, user profile, or period. Of the 12,330 sessions in the dataset, 84.5% (10,422) were negative class samples that did not end with shopping, and the rest (1908) were positive class samples ending with shopping.The dataset consists of 10 numerical and 8 categorical attributes. The 'Revenue' attribute can be used as the class label.The dataset contains 18 columns, each representing specific attributes of online shopping behavior:Administrative and Administrative_Duration: Number of pages visited and time spent on administrative pages.Informational and Informational_Duration: Number of pages visited and time spent on informational pages.ProductRelated and ProductRelated_Duration: Number of pages visited and time spent on product-related pages.BounceRates and ExitRates: Metrics indicating user behavior during the session.PageValues: Value of the page based on e-commerce metrics.SpecialDay: Likelihood of shopping based on special days.Month: Month of the session.OperatingSystems, Browser, Region, TrafficType: Technical and geographical attributes.VisitorType: Categorizes users as returning, new, or others.Weekend: Indicates if the session occurred on a weekend.Revenue: Target variable indicating whether a transaction was completed (True or False).The original dataset has been picked up from the UCI Machine Learning Repository, the link to which is as follows :https://archive.ics.uci.edu/dataset/468/online+shoppers+purchasing+intention+datasetAdditional Variable InformationThe dataset consists of 10 numerical and 8 categorical attributes. The 'Revenue' attribute can be used as the class label. "Administrative", "Administrative Duration", "Informational", "Informational Duration", "Product Related" and "Product Related Duration" represent the number of different types of pages visited by the visitor in that session and total time spent in each of these page categories. The values of these features are derived from the URL information of the pages visited by the user and updated in real time when a user takes an action, e.g. moving from one page to another. The "Bounce Rate", "Exit Rate" and "Page Value" features represent the metrics measured by "Google Analytics" for each page in the e-commerce site. The value of "Bounce Rate" feature for a web page refers to the percentage of visitors who enter the site from that page and then leave ("bounce") without triggering any other requests to the analytics server during that session. The value of "Exit Rate" feature for a specific web page is calculated as for all pageviews to the page, the percentage that were the last in the session. The "Page Value" feature represents the average value for a web page that a user visited before completing an e-commerce transaction. The "Special Day" feature indicates the closeness of the site visiting time to a specific special day (e.g. Mother’s Day, Valentine's Day) in which the sessions are more likely to be finalized with transaction. The value of this attribute is determined by considering the dynamics of e-commerce such as the duration between the order date and delivery date. For example, for Valentina’s day, this value takes a nonzero value between February 2 and February 12, zero before and after this date unless it is close to another special day, and its maximum value of 1 on February 8. The dataset also includes operating system, browser, region, traffic type, visitor type as returning or new visitor, a Boolean value indicating whether the date of the visit is weekend, and month of the year.
Number, percentage and rate (per 100,000 population) of homicide victims, by racialized identity group (total, by racialized identity group; racialized identity group; South Asian; Chinese; Black; Filipino; Arab; Latin American; Southeast Asian; West Asian; Korean; Japanese; other racialized identity group; multiple racialized identity; racialized identity, but racialized identity group is unknown; rest of the population; unknown racialized identity group), gender (all genders; male; female; gender unknown) and region (Canada; Atlantic region; Quebec; Ontario; Prairies region; British Columbia; territories), 2019 to 2023.