28 datasets found
  1. N

    Dataset for White Earth, ND Census Bureau Racial Data

    • neilsberg.com
    Updated Aug 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Dataset for White Earth, ND Census Bureau Racial Data [Dataset]. https://www.neilsberg.com/research/datasets/1a5ade1f-4181-11ee-9cce-3860777c1fe6/
    Explore at:
    Dataset updated
    Aug 18, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    North Dakota, White Earth
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the White Earth population by race and ethnicity. The dataset can be utilized to understand the racial distribution of White Earth.

    Content

    The dataset will have the following datasets when applicable

    Please note that in case when either of Hispanic or Non-Hispanic population doesnt exist, the respective dataset will not be available (as there will not be a population subset applicable for the same)

    • White Earth, ND Population Breakdown by Race
    • White Earth, ND Non-Hispanic Population Breakdown by Race
    • White Earth, ND Hispanic or Latino Population Distribution by Their Ancestries

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

  2. N

    White Earth, ND Population Breakdown By Race (Excluding Ethnicity) Dataset:...

    • neilsberg.com
    csv, json
    Updated Feb 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). White Earth, ND Population Breakdown By Race (Excluding Ethnicity) Dataset: Population Counts and Percentages for 7 Racial Categories as Identified by the US Census Bureau // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/white-earth-nd-population-by-race/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 21, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    North Dakota, White Earth
    Variables measured
    Asian Population, Black Population, White Population, Some other race Population, Two or more races Population, American Indian and Alaska Native Population, Asian Population as Percent of Total Population, Black Population as Percent of Total Population, White Population as Percent of Total Population, Native Hawaiian and Other Pacific Islander Population, and 4 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the racial categories idetified by the US Census Bureau. It is ensured that the population estimates used in this dataset pertain exclusively to the identified racial categories, and do not rely on any ethnicity classification. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of White Earth by race. It includes the population of White Earth across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of White Earth across relevant racial categories.

    Key observations

    The percent distribution of White Earth population by race (across all racial categories recognized by the U.S. Census Bureau): 98.82% are white and 1.18% are multiracial.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Racial categories include:

    • White
    • Black or African American
    • American Indian and Alaska Native
    • Asian
    • Native Hawaiian and Other Pacific Islander
    • Some other race
    • Two or more races (multiracial)

    Variables / Data Columns

    • Race: This column displays the racial categories (excluding ethnicity) for the White Earth
    • Population: The population of the racial category (excluding ethnicity) in the White Earth is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each race as a proportion of White Earth total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for White Earth Population by Race & Ethnicity. You can refer the same here

  3. s

    Data from: Regional ethnic diversity

    • ethnicity-facts-figures.service.gov.uk
    csv
    Updated Dec 22, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Race Disparity Unit (2022). Regional ethnic diversity [Dataset]. https://www.ethnicity-facts-figures.service.gov.uk/uk-population-by-ethnicity/national-and-regional-populations/regional-ethnic-diversity/latest
    Explore at:
    csv(1 MB), csv(47 KB)Available download formats
    Dataset updated
    Dec 22, 2022
    Dataset authored and provided by
    Race Disparity Unit
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Area covered
    England
    Description

    According to the 2021 Census, London was the most ethnically diverse region in England and Wales – 63.2% of residents identified with an ethnic minority group.

  4. N

    Dataset for Blue Earth County, MN Census Bureau Racial Data

    • neilsberg.com
    Updated Aug 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Dataset for Blue Earth County, MN Census Bureau Racial Data [Dataset]. https://www.neilsberg.com/research/datasets/1a1b6df4-4181-11ee-9cce-3860777c1fe6/
    Explore at:
    Dataset updated
    Aug 18, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Blue Earth County, Minnesota
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Blue Earth County population by race and ethnicity. The dataset can be utilized to understand the racial distribution of Blue Earth County.

    Content

    The dataset will have the following datasets when applicable

    Please note that in case when either of Hispanic or Non-Hispanic population doesnt exist, the respective dataset will not be available (as there will not be a population subset applicable for the same)

    • Blue Earth County, MN Population Breakdown by Race
    • Blue Earth County, MN Non-Hispanic Population Breakdown by Race
    • Blue Earth County, MN Hispanic or Latino Population Distribution by Their Ancestries

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

  5. Distribution of the global population by continent 2024

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Distribution of the global population by continent 2024 [Dataset]. https://www.statista.com/statistics/237584/distribution-of-the-world-population-by-continent/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    In the middle of 2023, about 60 percent of the global population was living in Asia.The total world population amounted to 8.1 billion people on the planet. In other words 4.7 billion people were living in Asia as of 2023. Global populationDue to medical advances, better living conditions and the increase of agricultural productivity, the world population increased rapidly over the past century, and is expected to continue to grow. After reaching eight billion in 2023, the global population is estimated to pass 10 billion by 2060. Africa expected to drive population increase Most of the future population increase is expected to happen in Africa. The countries with the highest population growth rate in 2024 were mostly African countries. While around 1.47 billion people live on the continent as of 2024, this is forecast to grow to 3.9 billion by 2100. This is underlined by the fact that most of the countries wit the highest population growth rate are found in Africa. The growing population, in combination with climate change, puts increasing pressure on the world's resources.

  6. U.S. poverty rate 2024, by race and ethnicity

    • statista.com
    Updated Nov 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). U.S. poverty rate 2024, by race and ethnicity [Dataset]. https://www.statista.com/statistics/200476/us-poverty-rate-by-ethnic-group/
    Explore at:
    Dataset updated
    Nov 5, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    United States
    Description

    In 2024, **** percent of Black people living in the United States were living below the poverty line, compared to *** percent of white people. That year, the overall poverty rate in the U.S. across all races and ethnicities was **** percent. Poverty in the United States The poverty threshold for a single person in the United States was measured at an annual income of ****** U.S. dollars in 2023. Among families of four, the poverty line increases to ****** U.S. dollars a year. Women and children are more likely to suffer from poverty. This is due to the fact that women are more likely than men to stay at home, to care for children. Furthermore, the gender-based wage gap impacts women's earning potential. Poverty data Despite being one of the wealthiest nations in the world, the United States has some of the highest poverty rates among OECD countries. While, the United States poverty rate has fluctuated since 1990, it has trended downwards since 2014. Similarly, the average median household income in the U.S. has mostly increased over the past decade, except for the covid-19 pandemic period. Among U.S. states, Louisiana had the highest poverty rate, which stood at some ** percent in 2024.

  7. Singapore Residents dataset

    • kaggle.com
    zip
    Updated Aug 28, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anuj_sahay (2019). Singapore Residents dataset [Dataset]. https://www.kaggle.com/anujsahay112/singapore-residents-dataset
    Explore at:
    zip(116422 bytes)Available download formats
    Dataset updated
    Aug 28, 2019
    Authors
    Anuj_sahay
    Area covered
    Singapore
    Description

    Context

    This dataset is in context of the real world data science work and how the data analyst and data scientist work.

    Content

    The dataset consists of four columns Year, Level_1(Ethnic group/gender), Level_2(Age group), and population

    Acknowledgements

    I would sincerely thank GeoIQ for sharing this dataset with me along with tasks. Just having a basic knowledge of Pandas and Numpy and other python data science libraries is not enough. How can you execute tasks and how can you preprocess the data before making any prediction is very important. Most of the datasets in Kaggle are clean and well arranged but this dataset thought me how real world data science and analysis works. Every data science beginner must work on this dataset and try to execute the tasks. It would only give them a good exposer to the real data science world.

    Inspiration

    1. Identify the largest Ethnic group in Singapore. Their average population growth over the years and what proportion of the total population do they constitute.
    2. Identify the largest age group in Singapore. Their average population growth over the years and what proportion of the total population do they constitute.
    3. Identify the group (by age, ethnicity and gender) that: a. Has shown the highest growth rate b. Has shown the lowest growth rate c. Has remained the same
    4. Plot a graph for population trends
  8. r

    Data from: The role of culture and racial appearance when majority group...

    • researchdata.edu.au
    Updated Oct 18, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Watt Susan; Alcott Yvette; Yvette Dominique Alcott; Susan Watt; Alcott Yvette; Alcott Yvette (2019). The role of culture and racial appearance when majority group members form impressions of immigrant racial minority groups - Dataset [Dataset]. http://doi.org/10.25952/FQBZ-PT43
    Explore at:
    Dataset updated
    Oct 18, 2019
    Dataset provided by
    University of New England, Australia
    University of New England
    Authors
    Watt Susan; Alcott Yvette; Yvette Dominique Alcott; Susan Watt; Alcott Yvette; Alcott Yvette
    Description

    Historically, ‘race’ has been a common source of information upon which we categorise others and it is often linked to a person’s ethnicity. However, in a world of immigration and globalisation this is problematic, as in modern pluralistic societies ancestry and identity may be increasingly divergent. The present research investigated how host societies form impressions of racial minority immigrant groups and how they categorise new immigrants, as well as generations-deep immigrants. Six separate studies were conducted, drawing on established theories of acculturation, nonverbal accent and stereotyping. Results supported predictions that enculturation can be an immediately salient cue for categorisation, even at zero acquaintance.

  9. N

    Dataset for Black Earth Town, Wisconsin Census Bureau Racial Data

    • neilsberg.com
    Updated Aug 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Dataset for Black Earth Town, Wisconsin Census Bureau Racial Data [Dataset]. https://www.neilsberg.com/research/datasets/1a1b12ea-4181-11ee-9cce-3860777c1fe6/
    Explore at:
    Dataset updated
    Aug 18, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Black Earth, Wisconsin
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Black Earth town population by race and ethnicity. The dataset can be utilized to understand the racial distribution of Black Earth town.

    Content

    The dataset will have the following datasets when applicable

    Please note that in case when either of Hispanic or Non-Hispanic population doesnt exist, the respective dataset will not be available (as there will not be a population subset applicable for the same)

    • Black Earth Town, Wisconsin Population Breakdown by Race
    • Black Earth Town, Wisconsin Non-Hispanic Population Breakdown by Race
    • Black Earth Town, Wisconsin Hispanic or Latino Population Distribution by Their Ancestries

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

  10. s

    Data from: Employment by occupation

    • ethnicity-facts-figures.service.gov.uk
    csv
    Updated Jul 27, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Race Disparity Unit (2022). Employment by occupation [Dataset]. https://www.ethnicity-facts-figures.service.gov.uk/work-pay-and-benefits/employment/employment-by-occupation/latest
    Explore at:
    csv(309 KB)Available download formats
    Dataset updated
    Jul 27, 2022
    Dataset authored and provided by
    Race Disparity Unit
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Area covered
    United Kingdom
    Description

    39.8% of workers from the Indian ethnic group were in 'professional' jobs in 2021 – the highest percentage out of all ethnic groups in this role.

  11. Z

    RRING Global Survey Research Dataset (WP3)

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jun 25, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lorenz, Lars; Jensen, Eric (2021). RRING Global Survey Research Dataset (WP3) [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_4719937
    Explore at:
    Dataset updated
    Jun 25, 2021
    Dataset provided by
    ICoRSA
    Authors
    Lorenz, Lars; Jensen, Eric
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The RRING Work Package 3 (WP3) objective was to clarify how Research Funding Organisations (RFOs) and Research Performing Organisations (RPOs) operated within region-specific research and innovation environments. It explored how they navigated the governance and regulatory frameworks for Responsible Research and Innovation (RRI), as well as offering their perspectives on the entities responsible for RRI-related policy and action in their locales.

    This data set covers the global survey research part, which was designed to contextualise how RPOs and RFOs interacted within the research environment and with non-academic stakeholders. Countries were grouped according to the UNESCO regions of the world and key results per region are listed below. For a detailed analysis and further findings of the work completed under WP3 of the RRING project, please refer to the full deliverable document "State of the Art of RRI in the Five UNESCO World Regions" [link to be inserted].

    European and North American States

    ‘Diverse and inclusive': Respondents were most attitudinally supportive of the importance of ensuring ethical principles were applied in R&I (92%), followed by diverse perspectives (88%), and gender equality (79%). Including ethnic minorities was the area which garnered the least attitudinal support (71%). Respondents took the most practical steps towards engaging with diverse perspectives (63%), and the least towards inclusion of ethnic minorities (24%).

    ‘Anticipative and reflective’: Respondents widely agreed (82%) with the importance of ensuring R&I work does not cause concerns for society, but only 37% confirmed they had taken practical steps to ensure this.

    ‘Open and transparent’: Vast majorities of respondents agreed on the importance of keeping R&I methods open and transparent (94%), with 65% also confirming they take practical steps to do this. An equally high number agreed on the importance of making the results of R&I work accessible to as wide a public as possible (94%), and 68% confirmed this through their reported actions. This indicated the smallest value-action gap of all RRI measures for respondents from European and North American countries. Attitudinal agreement on the importance of making data freely available to the public was lower (83%), as was the practical action aspect for this measure (45%).

    ‘Responsive and adaptive to change’: Most respondents agreed (89%) that it was important to ensure their work addresses societal needs, and 62% confirmed that they take practical steps towards this aim.

    Latin American and Caribbean States

    ‘Diverse and inclusive': Respondents were most attitudinally supportive of the importance of gender equality in R&I (86%), followed by ensuring ethical principles are applied (85%), and diverse perspectives incorporated (83%). Including ethnic minorities was the area which garnered the least attitudinal support (77%). Respondents took the most practical steps towards ensuring ethical principles guide their work (50%), and the least towards including ethnic minorities (25%), but the smallest value action gap was found for gender equality.

    ‘Anticipative and reflective’: Respondents agreed (79%) that it is important to ensure R&I work does not cause concerns for society, but only 29% confirmed they had taken practical steps to ensure this.

    ‘Open and transparent’: The majority of respondents agreed on the importance of keeping R&I methods open and transparent (89%), with 45% indicating they had taken practical action. A majority also agreed on the importance of making the results of R&I work accessible to as wide a public as possible (88%), and 44% backed this up with practical action. Attitudinal agreement on the importance of making data freely available to the public was slightly lower (81%), as was the practical action aspect for this measure (35%).

    ‘Responsive and adaptive to change’: Most respondents agreed (84%) that it was important to ensure their work addresses societal needs, and 49% confirmed that they take practical steps towards this aim.

    Asian and Pacific States

    ‘Diverse and inclusive': Respondents were most attitudinally supportive of the importance of ensuring ethical principles were applied in R&I (90%), followed by diverse perspectives (89%), and gender equality (86%). Including ethnic minorities was the area which garnered the least attitudinal support (76%). Respondents took the most practical steps towards engaging with diverse perspectives (65%), and the least towards including ethnic minorities (30%).

    ‘Anticipative and reflective’: Respondents widely agreed (78%) with the importance of ensuring R&I work does not cause concerns for society, and 42% confirmed they had taken practical steps to ensure this.

    ‘Open and transparent’: The majority of respondents agreed on the importance of keeping R&I methods open and transparent (91%), with 58% indicating they take practical steps to do this. A majority also agreed on the importance of making the results of R&I work accessible to as wide a public as possible (89%), and 64% backed this up with practical action. Attitudinal agreement on the importance of making data freely available to the public was lower (79%), as was the practical action aspect for this measure (40%).

    ‘Responsive and adaptive to change’: Most respondents agreed (92%) that it was important to ensure their work addresses societal needs, and 69% confirmed that they take practical steps towards this aim. This was the RRI measure with the smallest valueaction gap for respondents from the Asian and Pacific region.

    Arab States

    ‘Diverse and inclusive': Respondents were most attitudinally supportive of the importance of ensuring ethical principles were applied in R&I (93%), followed by diverse perspectives (81%), and gender equality (85%). Including ethnic minorities was the area which garnered the least attitudinal support (74%). Respondents took the most practical steps towards engaging with diverse perspectives (66%), which equated to one of two equally small value-action gaps for respondents from Arab states, and the least practical steps towards inclusion of ethnic minorities (22%).

    ‘Anticipative and reflective’: A high proportion of respondents (85%) agreed that it is important to ensure R&I work does not cause concerns for society. However, only 38% confirmed they had taken practical steps to ensure this.

    ‘Open and transparent’: The majority of respondents agreed on the importance of keeping R&I methods open and transparent (89%), with 59% also confirming they take practical steps to do this. A majority also agreed on the importance of making the results of R&I work accessible to as wide a public as possible (90%), and 66% backed this up with practical action. Ensuring public accessibility of research results was the second of two measures with equally small value-action gaps. Attitudinal agreement on the importance of making data freely available to the public was much lower (78%), which also reflected the practical action aspect for this measure (49%).

    ‘Responsive and adaptive to change’: Most respondents agreed (96%) that it was important to ensure their work addresses societal needs, and 68% confirmed that they take practical steps to achieve this.

    African States

    ‘Diverse and inclusive': Respondents were most attitudinally supportive of the importance of ensuring engagement with diverse perspectives and expertise in R&I (91%), followed by ensuring ethical principles are applied (90%), and gender equality (89%). Including ethnic minorities was the area which garnered the least attitudinal support (74%). Respondents took the most practical steps towards ensuring ethical principles guide their work (57%), and the least towards including ethnic minorities (32%).

    ‘Anticipative and reflective’: The majority of respondents (85%) agreed that it is important to ensure R&I work does not cause concerns for society, with 59% confirming that they take practical steps to ensure this.

    ‘Open and transparent’: A high proportion of respondents agreed on the importance of keeping R&I methods open and transparent (90%), with 54% also confirming they take practical steps to do this. A majority also agreed on the importance of making the results of R&I work accessible to as wide a public as possible (86%), and 56% backed this up with practical action. Attitudinal agreement on the importance of making data freely available to the public was significantly lower (73%), as was the practical action aspect for this measure (38%).

    ‘Responsive and adaptive to change’: Respondents mostly agreed (92%) that it was important to ensure their work addresses societal needs, and 64% confirmed that they take practical steps towards this aim. This was the RRI measure with the smallest valueaction gap for respondents from African states.

    Note: Please refer to the "RRING WP3 - Survey Data Documentation" document for detailed instructions on how to use this dataset.

  12. World population by age and region 2024

    • statista.com
    • wvfg.org
    • +2more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, World population by age and region 2024 [Dataset]. https://www.statista.com/statistics/265759/world-population-by-age-and-region/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    Globally, about 25 percent of the population is under 15 years of age and 10 percent is over 65 years of age. Africa has the youngest population worldwide. In Sub-Saharan Africa, more than 40 percent of the population is below 15 years, and only three percent are above 65, indicating the low life expectancy in several of the countries. In Europe, on the other hand, a higher share of the population is above 65 years than the population under 15 years. Fertility rates The high share of children and youth in Africa is connected to the high fertility rates on the continent. For instance, South Sudan and Niger have the highest population growth rates globally. However, about 50 percent of the world’s population live in countries with low fertility, where women have less than 2.1 children. Some countries in Europe, like Latvia and Lithuania, have experienced a population decline of one percent, and in the Cook Islands, it is even above two percent. In Europe, the majority of the population was previously working-aged adults with few dependents, but this trend is expected to reverse soon, and it is predicted that by 2050, the older population will outnumber the young in many developed countries. Growing global population As of 2025, there are 8.1 billion people living on the planet, and this is expected to reach more than nine billion before 2040. Moreover, the global population is expected to reach 10 billions around 2060, before slowing and then even falling slightly by 2100. As the population growth rates indicate, a significant share of the population increase will happen in Africa.

  13. N

    Dataset for Globe, AZ Census Bureau Racial Data

    • neilsberg.com
    Updated Aug 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Dataset for Globe, AZ Census Bureau Racial Data [Dataset]. https://www.neilsberg.com/research/datasets/1a2e8290-4181-11ee-9cce-3860777c1fe6/
    Explore at:
    Dataset updated
    Aug 18, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Globe, Arizona
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Globe population by race and ethnicity. The dataset can be utilized to understand the racial distribution of Globe.

    Content

    The dataset will have the following datasets when applicable

    Please note that in case when either of Hispanic or Non-Hispanic population doesnt exist, the respective dataset will not be available (as there will not be a population subset applicable for the same)

    • Globe, AZ Population Breakdown by Race
    • Globe, AZ Non-Hispanic Population Breakdown by Race
    • Globe, AZ Hispanic or Latino Population Distribution by Their Ancestries

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

  14. Data from: College Completion Dataset

    • kaggle.com
    zip
    Updated Dec 6, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2022). College Completion Dataset [Dataset]. https://www.kaggle.com/datasets/thedevastator/boost-student-success-with-college-completion-da
    Explore at:
    zip(14103943 bytes)Available download formats
    Dataset updated
    Dec 6, 2022
    Authors
    The Devastator
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    College Completion Dataset

    Graduation Rates, Race, Efficiency Measures and More

    By Jonathan Ortiz [source]

    About this dataset

    This College Completion dataset provides an invaluable insight into the success and progress of college students in the United States. It contains graduation rates, race and other data to offer a comprehensive view of college completion in America. The data is sourced from two primary sources – the National Center for Education Statistics (NCES)’ Integrated Postsecondary Education System (IPEDS) and Voluntary System of Accountability’s Student Success and Progress rate.

    At four-year institutions, the graduation figures come from IPEDS for first-time, full-time degree seeking students at the undergraduate level, who entered college six years earlier at four-year institutions or three years earlier at two-year institutions. Furthermore, colleges report how many students completed their program within 100 percent and 150 percent of normal time which corresponds with graduation within four years or six year respectively. Students reported as being of two or more races are included in totals but not shown separately

    When analyzing race and ethnicity data NCES have classified student demographics since 2009 into seven categories; White non-Hispanic; Black non Hispanic; American Indian/ Alaskan native ; Asian/ Pacific Islander ; Unknown race or ethnicity ; Non resident with two new categorize Native Hawaiian or Other Pacific Islander combined with Asian plus students belonging to several races. Also worth noting is that different classifications for graduate data stemming from 2008 could be due to variations in time frame examined & groupings used by particular colleges – those who can’t be identified from National Student Clearinghouse records won’t be subjected to penalty by these locations .

    When it comes down to efficiency measures parameters like “Awards per 100 Full Time Undergraduate Students which includes all undergraduate completions reported by a particular institution including associate degrees & certificates less than 4 year programme will assist us here while we also take into consideration measures like expenditure categories , Pell grant percentage , endowment values , average student aid amounts & full time faculty members contributing outstandingly towards instructional research / public service initiatives .

    When trying to quantify outcomes back up Median Estimated SAT score metric helps us when it is derived either on 25th percentile basis / 75th percentile basis with all these factors further qualified by identifying required criteria meeting 90% threshold when incoming students are considered for relevance . Last but not least , Average Student Aid equalizes amount granted by institution dividing same over total sum received against what was allotted that particular year .

    All this analysis gives an opportunity get a holistic overview about performance , potential deficits &

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset contains data on student success, graduation rates, race and gender demographics, an efficiency measure to compare colleges across states and more. It is a great source of information to help you better understand college completion and student success in the United States.

    In this guide we’ll explain how to use the data so that you can find out the best colleges for students with certain characteristics or focus on your target completion rate. We’ll also provide some useful tips for getting the most out of this dataset when seeking guidance on which institutions offer the highest graduation rates or have a good reputation for success in terms of completing programs within normal timeframes.

    Before getting into specifics about interpreting this dataset, it is important that you understand that each row represents information about a particular institution – such as its state affiliation, level (two-year vs four-year), control (public vs private), name and website. Each column contains various demographic information such as rate of awarding degrees compared to other institutions in its sector; race/ethnicity Makeup; full-time faculty percentage; median SAT score among first-time students; awards/grants comparison versus national average/state average - all applicable depending on institution location — and more!

    When using this dataset, our suggestion is that you begin by forming a hypothesis or research question concerning student completion at a given school based upon observable characteristics like financ...

  15. E

    Diversity in Tech Statistics 2024 – By Countries, Companies And Demographic...

    • enterpriseappstoday.com
    Updated Mar 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    EnterpriseAppsToday (2024). Diversity in Tech Statistics 2024 – By Countries, Companies And Demographic (Age, Gender, Race, Education) [Dataset]. https://www.enterpriseappstoday.com/stats/diversity-in-tech-statistics.html
    Explore at:
    Dataset updated
    Mar 1, 2024
    Dataset authored and provided by
    EnterpriseAppsToday
    License

    https://www.enterpriseappstoday.com/privacy-policyhttps://www.enterpriseappstoday.com/privacy-policy

    Time period covered
    2022 - 2032
    Area covered
    Global
    Description

    Diversity in Tech Statistics: In today's tech-driven world, discussions about diversity in the technology sector have gained significant traction. Recent statistics shed light on the disparities and opportunities within this industry. According to data from various sources, including reports from leading tech companies and diversity advocacy groups, the lack of diversity remains a prominent issue. For example, studies reveal that only 25% of computing jobs in the United States are held by women, while Black and Hispanic individuals make up just 9% of the tech workforce combined. Additionally, research indicates that LGBTQ+ individuals are underrepresented in tech, with only 2.3% of tech workers identifying as LGBTQ+. Despite these challenges, there are promising signs of progress. Companies are increasingly recognizing the importance of diversity and inclusion initiatives, with some allocating significant resources to address these issues. For instance, tech giants like Google and Microsoft have committed millions of USD to diversity programs aimed at recruiting and retaining underrepresented talent. As discussions surrounding diversity in tech continue to evolve, understanding the statistical landscape is crucial in fostering meaningful change and creating a more inclusive industry for all. Editor’s Choice In 2021, 7.9% of the US labor force was employed in technology. Women hold only 26.7% of tech employment, while men hold 73.3% of these positions. White Americans hold 62.5% of the positions in the US tech sector. Asian Americans account for 20% of jobs, Latinx Americans 8%, and Black Americans 7%. 83.3% of tech executives in the US are white. Black Americans comprised 14% of the population in 2019 but held only 7% of tech employment. For the same position, at the same business, and with the same experience, women in tech are typically paid 3% less than men. The high-tech sector employs more men (64% against 52%), Asian Americans (14% compared to 5.8%), and white people (68.5% versus 63.5%) compared to other industries. The tech industry is urged to prioritize inclusion when hiring, mentoring, and retaining employees to bridge the digital skills gap. Black professionals only account for 4% of all tech workers despite being 13% of the US workforce. Hispanic professionals hold just 8% of all STEM jobs despite being 17% of the national workforce. Only 22% of workers in tech are ethnic minorities. Gender diversity in tech is low, with just 26% of jobs in computer-related sectors occupied by women. Companies with diverse teams have higher profitability, with those in the top quartile for gender diversity being 25% more likely to have above-average profitability. Every month, the tech industry adds about 9,600 jobs to the U.S. economy. Between May 2009 and May 2015, over 800,000 net STEM jobs were added to the U.S. economy. STEM jobs are expected to grow by another 8.9% between 2015 and 2024. The percentage of black and Hispanic employees at major tech companies is very low, making up just one to three percent of the tech workforce. Tech hiring relies heavily on poaching and incentives, creating an unsustainable ecosystem ripe for disruption. Recruiters have a significant role in disrupting the hiring process to support diversity and inclusion. You May Also Like To Read Outsourcing Statistics Digital Transformation Statistics Internet of Things Statistics Computer Vision Statistics

  16. Formula 1 World Championship History (1950-2024)

    • kaggle.com
    zip
    Updated Sep 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Muhammad Ehsan (2024). Formula 1 World Championship History (1950-2024) [Dataset]. https://www.kaggle.com/datasets/muhammadehsan02/formula-1-world-championship-history-1950-2024/code
    Explore at:
    zip(6437759 bytes)Available download formats
    Dataset updated
    Sep 3, 2024
    Authors
    Muhammad Ehsan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    World
    Description

    The Formula 1 World Championship History (1950-2024) dataset offers a comprehensive exploration of Formula 1 racing, spanning over seven decades of competition. This dataset is designed to be a valuable resource for those interested in the evolution of Formula 1, covering every aspect of the sport from its inception in 1950 through the latest 2024 season.

    Context

    Formula 1, also known as F1, represents the pinnacle of single-seater auto racing. Governed by the Fédération Internationale de l'Automobile (FIA), it has grown into a globally recognized sport, drawing millions of fans around the world. The sport is known for its high-speed races, strategic depth, and the relentless pursuit of excellence both on the track and in the design and engineering of the cars.

    This dataset captures the rich history of Formula 1 by providing detailed information on races, drivers, constructors (teams), circuits, and more. Whether you're a motorsport enthusiast, data analyst, or historian, this dataset is an excellent tool for deep diving into the data and uncovering insights about the sport.

    Contents of the Dataset

    The dataset is organized into multiple CSV files, each offering detailed data on different aspects of Formula 1:

    1) Track_Information.csv: Contains details about the circuits where races have been held, including their location, length, and unique characteristics.

    2) Team_Details.csv: Provides information about the constructors, including their history, achievements, and performance across different seasons.

    3) Constructor_Performance.csv: Details the performance of constructors in individual races, showing how teams have evolved over the years.

    4) Constructor_Rankings.csv: Offers annual standings of constructors, highlighting the competitive dynamics within the sport.

    5) Driver_Details.csv: Includes comprehensive information about the drivers, such as their personal details, career statistics, and achievements.

    6) Driver_Rankings.csv: Displays the yearly standings of drivers, showcasing who topped the charts and how tight the championship battles were.

    7) Race_Schedule.csv: Lists all the races held from 1950 to 2024, along with details such as the date, location, and race name.

    8) Race_Results.csv: Provides detailed results of each race, including finishing positions, points earned, and other key metrics.

    9) Lap_Timings.csv: Contains data on lap times recorded by drivers during races, giving insights into their performance consistency.

    10) Pit_Stop_Records.csv: Offers information on pit stops made during races, including timing and strategy, which often impact the outcome of the race.

    11) Qualifying_Results.csv: Details the results of qualifying sessions, which determine the starting grid for each race.

    12) Sprint_Race_Results.csv: Includes data on sprint races, shorter races introduced to decide starting positions for the main race.

    13) Season_Summaries.csv: Summarizes each season, including the number of races, champions, and key moments.

    14) Race_Status.csv: Contains codes and descriptions related to the status of cars during a race, such as if a car finished, retired, or was disqualified.

    Data Source

    The dataset is sourced from the Ergast Motor Racing Data API, a trusted and frequently updated source for Formula 1 data. The API has been reliably providing data over the years, ensuring the dataset is accurate and up-to-date. Each file in this dataset has been carefully compiled to offer a thorough overview of Formula 1’s history, making it an essential resource for anyone interested in the sport.

    Potential Use Cases

    This dataset is versatile and can be used for a wide range of applications, including:

    1) Historical Analysis: Study the changes and trends in Formula 1 over the years, including the evolution of teams, drivers, and circuits.

    2) Performance Trends: Analyze trends in driver and constructor performances, and identify key factors contributing to success in Formula 1.

    3) Race Strategy Insights: Investigate the impact of different strategies, such as pit stops and qualifying positions, on race outcomes and championships.

    4) Data Visualization: Create compelling visualizations to illustrate the history and key events in Formula 1, such as championship rivalries, race victories, and more.

    5) Fan Engagement: Engage with Formula 1 fans by providing them with in-depth data-driven insights about their favorite teams, drivers, and races.

    The Formula 1 World Championship History (1950-2024) dataset is a rich and detailed resource that offers extensive insights into one of the world’s most popular motorsports. Whether you are looking to conduct in-depth analysis, create visualizations, or simply explore the history of Formula 1, this dataset is an excellent starting point. ...

  17. N

    Dataset for White Earth Township, Minnesota Census Bureau Racial Data

    • neilsberg.com
    Updated Aug 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Dataset for White Earth Township, Minnesota Census Bureau Racial Data [Dataset]. https://www.neilsberg.com/research/datasets/1a5ade94-4181-11ee-9cce-3860777c1fe6/
    Explore at:
    Dataset updated
    Aug 18, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    White Earth Township, Minnesota
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the White Earth township population by race and ethnicity. The dataset can be utilized to understand the racial distribution of White Earth township.

    Content

    The dataset will have the following datasets when applicable

    Please note that in case when either of Hispanic or Non-Hispanic population doesnt exist, the respective dataset will not be available (as there will not be a population subset applicable for the same)

    • White Earth Township, Minnesota Population Breakdown by Race
    • White Earth Township, Minnesota Non-Hispanic Population Breakdown by Race
    • White Earth Township, Minnesota Hispanic or Latino Population Distribution by Their Ancestries

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

  18. California Household Crowding

    • kaggle.com
    zip
    Updated Jan 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). California Household Crowding [Dataset]. https://www.kaggle.com/datasets/thedevastator/california-household-crowding
    Explore at:
    zip(585269 bytes)Available download formats
    Dataset updated
    Jan 28, 2023
    Authors
    The Devastator
    Area covered
    California
    Description

    California Household Crowding

    2006-2010 Risk Ratios and Percentages

    By Health [source]

    About this dataset

    This table provides an overview of the prevalence of household overcrowding and severe overcrowding in California from 2006-2010. Data on relative Standard Error (RSE), California decimal, and California Risk Ratio (RR) are also included. Residential crowding has serious health consequences, including increased risk of infection from communicable diseases, higher prevalence of respiratory ailments, and greater vulnerability to homelessness among the poor. This dataset can be used to identify demographics that may be disproportionately affected by crowded housing situation such as older immigrant communities, households with low income, renter-occupied dwellings and those that engage in doubling up. Furthermore, this data can help policy makers allocate resources to improve living conditions for affected individuals. An understanding of these household characteristics is essential for creating more equitable living conditions throughout California

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset provides detailed data on the populations experiencing overcrowding and severe overcrowding in California, its regions, counties, and cities/towns. It is essential to understand household crowding in order to better target governmental efforts towards the most affected communities. To use this dataset, you'll need to first become familiar with some of the key fields included and what they mean:

    • ind_definition: This field provides a definition of the indicator which indicates whether we are looking at data for households experiencing overcrowding or severe overcrowding.
    • reportyear: This field contains information about what year the report was published for.
    • race_eth_code: This field contains a numerical code which describes race/ethnicity information for each area included in the dataset.
    • race_eth_name: This field provides additional descriptive information about each area's racial/ethnic makeup based off of their race/ethnicity code in this database.
    • income_level: This field displays income level measurements as specified by HUD categories such as Very Low Income (VLI) and Extremely Low Income (ELI).
    • tenure: Tenure is broken down into rental households vs owner occupied households - this is an important factor when considering household crowding as renters are more likely to experience it than people who own their home outright due to cost criteria so they may be more likely living with other people or living close quarters just to save money on rent payments upfront or security deposits. - crowding cat: Describes whether we are measuring overall household crowding or severe overcrowded houses according to HUD definitions (see above). - geotype & geotypevalue : These two fields contain specific geographic data for each area that can be used for mapping analysis etc.. The geotype contains information about what type of geography we're looking at i.e., county/city etc., while geotypevalue contains ID values associated with those types allowing further analysis based off these IDs if necessary! - countyfips & regionname provide useful labels when attempting geographical analysis; regionname will describe high level geography such as state boundaries etc., while countyfips allow us more precise locations within states thus enabling precision query analysis into localized areas using tools such as ArcGIS' statistical functions etc..

        The totalhshlds column shows us exactly how many homes are present across California regions counties or cities whereas crowdedhshlds tells us
      

    Research Ideas

    • Analyzing and mapping regional variations in overcrowding and how it is related to regional economic conditions.
    • Identifying which race/ethnicities are most likely to experience overcrowding, and why this might be the case.
    • Examining how overcrowding affects housing affordability in California, and adapting public policy to address the issue where needed

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even comm...

  19. Population of the United States in 1860, by race and gender

    • statista.com
    Updated Jul 8, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2019). Population of the United States in 1860, by race and gender [Dataset]. https://www.statista.com/statistics/1010196/population-us-1860-race-and-gender/
    Explore at:
    Dataset updated
    Jul 8, 2019
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    1860
    Area covered
    United States
    Description

    This statistic shows the population of the United States in the final census year before the American Civil War, shown by race and gender. From the data we can see that there were almost 27 million white people, 4.5 million black people, and eighty thousand classed as 'other'. The proportions of men to women were different for each category, with roughly 700 thousand more white men than women, over 100 thousand more black women than men, and almost three times as many men than women in the 'other' category. The reason for the higher male numbers in the white and other categories is because men migrated to the US at a higher rate than women, while there is no concrete explanation for the statistic regarding black people.

  20. N

    Dataset for Blue Earth City Township, Minnesota Census Bureau Racial Data

    • neilsberg.com
    Updated Aug 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Dataset for Blue Earth City Township, Minnesota Census Bureau Racial Data [Dataset]. https://www.neilsberg.com/research/datasets/1a1b6d7b-4181-11ee-9cce-3860777c1fe6/
    Explore at:
    Dataset updated
    Aug 18, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Blue Earth City Township, Minnesota
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Blue Earth City township population by race and ethnicity. The dataset can be utilized to understand the racial distribution of Blue Earth City township.

    Content

    The dataset will have the following datasets when applicable

    Please note that in case when either of Hispanic or Non-Hispanic population doesnt exist, the respective dataset will not be available (as there will not be a population subset applicable for the same)

    • Blue Earth City Township, Minnesota Population Breakdown by Race
    • Blue Earth City Township, Minnesota Non-Hispanic Population Breakdown by Race
    • Blue Earth City Township, Minnesota Hispanic or Latino Population Distribution by Their Ancestries

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Neilsberg Research (2023). Dataset for White Earth, ND Census Bureau Racial Data [Dataset]. https://www.neilsberg.com/research/datasets/1a5ade1f-4181-11ee-9cce-3860777c1fe6/

Dataset for White Earth, ND Census Bureau Racial Data

Explore at:
Dataset updated
Aug 18, 2023
Dataset authored and provided by
Neilsberg Research
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Area covered
North Dakota, White Earth
Dataset funded by
Neilsberg Research
Description
About this dataset

Context

The dataset tabulates the White Earth population by race and ethnicity. The dataset can be utilized to understand the racial distribution of White Earth.

Content

The dataset will have the following datasets when applicable

Please note that in case when either of Hispanic or Non-Hispanic population doesnt exist, the respective dataset will not be available (as there will not be a population subset applicable for the same)

  • White Earth, ND Population Breakdown by Race
  • White Earth, ND Non-Hispanic Population Breakdown by Race
  • White Earth, ND Hispanic or Latino Population Distribution by Their Ancestries

Good to know

Margin of Error

Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

Custom data

If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

Inspiration

Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

Search
Clear search
Close search
Google apps
Main menu