78 datasets found
  1. e

    NOAA Weather and Marine Observations

    • national-government.esrij.com
    Updated Oct 19, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CA Governor's Office of Emergency Services (2018). NOAA Weather and Marine Observations [Dataset]. https://national-government.esrij.com/maps/26ad0000b1a540e9a90760032669f3e6
    Explore at:
    Dataset updated
    Oct 19, 2018
    Dataset authored and provided by
    CA Governor's Office of Emergency Services
    Area covered
    Description

    Last Revised: February 2016 Map InformationThis nowCOAST™ time-enabled map service provides maps depicting the latest surface weather and marine weather observations at observing sites using the international station model. The station model is a method for representing information collected at an observing station using symbols and numbers. The station model depicts current weather conditions, cloud cover, wind speed, wind direction, visibility, air temperature, dew point temperature, sea surface water temperature, significant wave height, air pressure adjusted to mean sea level, and the change in air pressure over the last 3 hours. The circle in the model is centered over the latitude and longitude coordinates of the station. The total cloud cover is expressed as a fraction of cloud covering the sky and is indicated by the amount of circle filled in; however, all cloud cover values are presently displayed using the "Missing" symbol due to a problem with the source data. Present weather information is also not available for display at this time. Wind speed and direction are represented by a wind barb whose line extends from the cover cloud circle towards the direction from which the wind is blowing. The short lines or flags coming off the end of the long line are called barbs, which indicate wind speed in knots. Each normal barb represents 10 knots, while short barbs indicate 5 knots. A flag represents 50 knots. If there is no wind barb depicted, an outer circle around the cloud cover symbol indicates calm winds.Due to software limitations, the observations included in this map service are organized into three separate group layers: 1) Wind velocity (wind barb) observations, 2) Cloud Cover observations, and 3) All other observations, which are displayed as numerical values (e.g. Air Temperature, Wind Gust, Visibility, Sea Surface Temperature, etc.).Additionally, due to the density of weather/ocean observations in this map service, each of these group data layers has been split into ten individual "Scale Band" layers, with each one visible for a certain range of map scales. Thus, to ensure observations are displayed at any scale, users should make sure to always specify all ten corresponding scale band layers in every map request. This will result in the scale band most appropriate for your present zoom level being shown, resulting in a clean, uncluttered display. As you zoom in, additional observations will appear.The observations in this nowCOAST™ map service are updated approximately every 10 minutes. However, since the reporting frequency varies by network or station, the observations for a particular station may update only once per hour. For more detailed information about layer update frequency and timing, please reference the nowCOAST™ Dataset Update Schedule.Background InformationThe maps of near-real-time surface weather and ocean observations are based on non-restricted data obtained from the NWS Family of Services courtesy of NESDIS/OPSD and also the NWS Meteorological Assimilation Data Ingest System (MADIS). The data includes observations from terrestrial and maritime observing stations from the U.S.A. and other countries. For terrestrial networks, the platforms include but are not limited to ASOS, AWOS, RAWS, non-automated stations, U.S. Climate Reference Networks, many U.S. Geological Survey Stations via NWS HADS, several state DOT Road Weather Information Systems, and U.S. Historical Climatology Network-Modernization. For maritime areas, the platforms include NOS/CO-OPS National Water Level Observation Network (NWLON), NOS/CO-OPS Physical Oceanographic Real-Time System (PORTS), NWS/NDBC Fixed Buoys, NDBC Coastal-Marine Automated Network (C-MAN), drifting buoys, ferries, Regional Ocean Observing System (ROOS) coastal stations and buoys, and ships participating in the Voluntary Ship Observing (VOS) Program. Observations from MADIS are updated approximately every 10 minutes in the map service and those from NESDIS are updated every hour. However, not all stations report that frequently. Many stations only report once per hour sometime between 15 minutes before the hour and 30 minutes past the hour. For these stations, new observations will not appear until approximately 23 minutes past top of the hour for land-based stations and 33 minutes past the top of the hour for maritime stations.Time InformationThis map service is time-enabled, meaning that each individual layer contains time-varying data and can be utilized by clients capable of making map requests that include a time component.In addition to ArcGIS Server REST access, time-enabled OGC WMS 1.3.0 access is also provided by this service.This particular service can be queried with or without the use of a time component. If the time parameter is specified in a request, the data or imagery most relevant to the provided time value, if any, will be returned. If the time parameter is not specified in a request, the latest data or imagery valid for the present system time will be returned to the client. If the time parameter is not specified and no data or imagery is available for the present time, no data will be returned.This service is configured with time coverage support, meaning that the service will always return the most relevant available data, if any, to the specified time value. For example, if the service contains data valid today at 12:00 and 12:10 UTC, but a map request specifies a time value of today at 12:07 UTC, the data valid at 12:10 UTC will be returned to the user. This behavior allows more flexibility for users, especially when displaying multiple time-enabled layers together despite slight differences in temporal resolution or update frequency.When interacting with this time-enabled service, only a single instantaneous time value should be specified in each request. If instead a time range is specified in a request (i.e. separate start time and end time values are given), the data returned may be different than what was intended.Care must be taken to ensure the time value specified in each request falls within the current time coverage of the service. Because this service is frequently updated as new data becomes available, the user must periodically determine the service's time extent. However, due to software limitations, the time extent of the service and map layers as advertised by ArcGIS Server does not always provide the most up-to-date start and end times of available data. Instead, users have three options for determining the latest time extent of the service:Issue a returnUpdates=true request (ArcGIS REST protocol only) for an individual layer or for the service itself, which will return the current start and end times of available data, in epoch time format (milliseconds since 00:00 January 1, 1970). To see an example, click on the "Return Updates" link at the bottom of the REST Service page under "Supported Operations". Refer to the ArcGIS REST API Map Service Documentation for more information.Issue an Identify (ArcGIS REST) or GetFeatureInfo (WMS) request against the proper layer corresponding with the target dataset. For raster data, this would be the "Image Footprints with Time Attributes" layer in the same group as the target "Image" layer being displayed. For vector (point, line, or polygon) data, the target layer can be queried directly. In either case, the attributes returned for the matching raster(s) or vector feature(s) will include the following:validtime: Valid timestamp.starttime: Display start time.endtime: Display end time.reftime: Reference time (sometimes referred to as issuance time, cycle time, or initialization time).projmins: Number of minutes from reference time to valid time.desigreftime: Designated reference time; used as a common reference time for all items when individual reference times do not match.desigprojmins: Number of minutes from designated reference time to valid time.Query the nowCOAST™ LayerInfo web service, which has been created to provide additional information about each data layer in a service, including a list of all available "time stops" (i.e. "valid times"), individual timestamps, or the valid time of a layer's latest available data (i.e. "Product Time"). For more information about the LayerInfo web service, including examples of various types of requests, refer to the nowCOAST™ LayerInfo Help DocumentationReferencesNWS, 2013: Sample Station Plot, NWS/NCEP/WPC, College Park, MD (Available at http://www.wpc.ncep.noaa.gov/html/stationplot.shtml).NWS, 2013: Terminology and Weather Symbols, NWS/NCEP/OPC, College Park, MD (Available at http://www.opc.ncep.noaa.gov/product_description/keyterm.shtml).NWS, 2013: How to read Surface weather maps, JetStream an Online School for Weather (Available at http://www.srh.noaa.gov/jetstream/synoptic/wxmaps.htm).

  2. a

    Sea Surface Water Temperature - Global (deg. F)

    • hub.arcgis.com
    Updated Aug 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NASA ArcGIS Online (2019). Sea Surface Water Temperature - Global (deg. F) [Dataset]. https://hub.arcgis.com/datasets/14e469fbfd794414a64c4669e5f7a424_4
    Explore at:
    Dataset updated
    Aug 29, 2019
    Dataset authored and provided by
    NASA ArcGIS Online
    Area covered
    Description

    Last Revised: February 2016

    Map Information

    This nowCOAST™ time-enabled map service provides a map depicting the latest daily sea surface temperature analyses from both the NOAA/NWS/NCEP operational Real-Time Global SST Analysis System, commonly referred to as RTG_SST, and the NASA/SPoRT experimental Sea Surface Temperature Composite.

    The RTG_SST has a 1/12 degree (~9 km) grid resolution and covers the globe including the Great Lakes. SSTs are indicated by different colors at 2 degrees F intervals. NCEP generates the analysis once per day and it is updated on the nowCOAST™ map service around 0400 UTC (11 PM EST).

    The experimental SPoRT SST analysis has a 2 km grid resolution and covers the North Atlantic Ocean and the Eastern North Pacific Ocean, the Great Lakes, and occasionally other large lakes. SSTs are displayed by the same color scale used for the RTG_SST analysis. NASA generates the analysis twice per day and it is updated on the nowCOAST™ map service around 0330 UTC (2230 EST) and 1530 UTC (1030 EST). For more detailed information about layer update frequency and timing, please reference the nowCOAST™ Dataset Update Schedule.

    Background Information

    The NWS/NCEP daily SST (1/12 deg) analysis is generated by the NCEP RTG_SST Analysis System using a two-dimensional variational interpolation scheme. The interpolation scheme uses the most recent 24-hours buoy and ship data and U.S. Navy SEATEMP (SST) retrievals derived from AVHRR data from the NOAA polar orbiting satellites. The first guess for the interpolation scheme is provided by the un-smoothed analysis from the previous day with a one-day climate adjustment. The analysis system was developed by the NWS/NCEP/Environmental Modeling Center/Marine Modeling and Analysis Branch.

    The NASA/SPoRT experimental SST Composite is a blend of the MODIS and NESDIS SST products except over the Great Lakes, where it is a blend of the MODIS and the United Kingdom Met Office (UKMO) Operational Sea Surface Temperature and Sea Ice Analysis (OSTIAS2). The NESDIS and OSTIAS2 products have spatial resolutions of 9 and 6 km, respectively. The compositing algorithm uses a seven-day collection of MODIS level-2B data and the most recent NESDIS GOES/POES SST Composite and OSTIAS2 daily products. Two types of weighting are used in the compositing process. One weight is for the data latency and the other for the product type. The MODIS data with a 1-km resolution is given the most weight. All available confidence flags and bias information are incorporated in the compositing process. The SST Composite is computed twice-daily (nighttime and daytime). The MODIS and OSTIA products are obtained in near-real-time from the GHRSST archive at NASA/JPL. The compositing system was developed by NASA Short-Term Prediction Research and Transition Center (SPoRT) Team.

    Time Information

    This map service is time-enabled, meaning that each individual layer contains time-varying data and can be utilized by clients capable of making map requests that include a time component.

    In addition to ArcGIS Server REST access, time-enabled OGC WMS 1.3.0 access is also provided by this service.

    This particular service can be queried with or without the use of a time component. If the time parameter is specified in a request, the data or imagery most relevant to the provided time value, if any, will be returned. If the time parameter is not specified in a request, the latest data or imagery valid for the present system time will be returned to the client. If the time parameter is not specified and no data or imagery is available for the present time, no data will be returned.

    This service is configured with time coverage support, meaning that the service will always return the most relevant available data, if any, to the specified time value. For example, if the service contains data valid today at 12:00 and 12:10 UTC, but a map request specifies a time value of today at 12:07 UTC, the data valid at 12:10 UTC will be returned to the user. This behavior allows more flexibility for users, especially when displaying multiple time-enabled layers together despite slight differences in temporal resolution or update frequency.

    When interacting with this time-enabled service, only a single instantaneous time value should be specified in each request. If instead a time range is specified in a request (i.e. separate start time and end time values are given), the data returned may be different than what was intended.

    Care must be taken to ensure the time value specified in each request falls within the current time coverage of the service. Because this service is frequently updated as new data becomes available, the user must periodically determine the service's time extent. However, due to software limitations, the time extent of the service and map layers as advertised by ArcGIS Server does not always provide the most up-to-date start and end times of available data. Instead, users have three options for determining the latest time extent of the service:

      Issue a returnUpdates=true request (ArcGIS REST protocol only)
      for an individual layer or for the service itself, which will return
      the current start and end times of available data, in epoch time format
      (milliseconds since 00:00 January 1, 1970). To see an example, click on
      the "Return Updates" link at the bottom of the REST Service page under
      "Supported Operations". Refer to the
      ArcGIS REST API Map Service Documentation
      for more information.
    
    
      Issue an Identify (ArcGIS REST) or GetFeatureInfo (WMS) request against
      the proper layer corresponding with the target dataset. For raster
      data, this would be the "Image Footprints with Time Attributes" layer
      in the same group as the target "Image" layer being displayed. For
      vector (point, line, or polygon) data, the target layer can be queried
      directly. In either case, the attributes returned for the matching
      raster(s) or vector feature(s) will include the following:
    
    
          validtime: Valid timestamp.
    
    
          starttime: Display start time.
    
    
          endtime: Display end time.
    
    
          reftime: Reference time (sometimes referred to as
          issuance time, cycle time, or initialization time).
    
    
          projmins: Number of minutes from reference time to valid
          time.
    
    
          desigreftime: Designated reference time; used as a
          common reference time for all items when individual reference
          times do not match.
    
    
          desigprojmins: Number of minutes from designated
          reference time to valid time.
    
    
    
    
      Query the nowCOAST™ LayerInfo web service, which has been created to
      provide additional information about each data layer in a service,
      including a list of all available "time stops" (i.e. "valid times"),
      individual timestamps, or the valid time of a layer's latest available
      data (i.e. "Product Time"). For more information about the LayerInfo
      web service, including examples of various types of requests, refer to
      the 
      nowCOAST™ LayerInfo Help Documentation
    

    References

      Jedlovec, G.J., F. LaFontaine, J. Shafer, J. Vazquez, E. Armstrong, and M. Chin, 2009:
      An Enhanced MODIS / AMSR-E SST Composite Product, GHRSST User Symposium, Santa Rosa, CA.
    
    
      NASA, 2014: Sea Surface Temperature (SST) Product Details (Available at http://weather.msfc.nasa.gov/sport/sst/descriptions.html)
    
    
      NWS, 2001: The Real-Time Global Sea Surface Temperature Analysis: RTG_SST, NWS Technical Procedures Bulletin Series No. 477, NWS, Silver Spring, MD
      (Available at http://www.nws.noaa.gov/om/tpb/477.pdf)
    
  3. n

    Hazardous Wildfire Conditions (Dissolved Polygons) - Dataset - CKAN

    • nationaldataplatform.org
    Updated Feb 28, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Hazardous Wildfire Conditions (Dissolved Polygons) - Dataset - CKAN [Dataset]. https://nationaldataplatform.org/catalog/dataset/hazardous-wildfire-conditions-dissolved-polygons
    Explore at:
    Dataset updated
    Feb 28, 2024
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This nowCOAST™ time-enabled map service provides maps depicting the geographic coverage of the latest NOAA/National Weather Service (NWS) WATCHES, WARNINGS, ADVISORIES, and STATEMENTS for long-duration hazardous weather, marine weather, hydrological, oceanographic, wildfire, air quality, and ecological conditions which may or are presently affecting inland, coastal, and maritime areas. A few examples include Gale Watch, Gale Warning, High Surf Advisory, High Wind Watch, Areal Flood Warning, Coastal Flood Watch, Winter Storm Warning, Wind Chill Advisory, Frost Advisory, Tropical Storm Watch, Red Flag Warning, Air Stagnation Warning, and Beach Hazards Statement. (A complete list is given in the Background Information section below.) The coverage areas of these products are usually defined by county or sub-county boundaries. The colors used to identify the different watches, advisories, warnings, and statements are the same colors used by the NWS on their map at weather.gov. The NWS products for long-duration hazardous conditions are updated in the nowCOAST map service approximately every 10 minutes. For more detailed information about the update schedule, please see: http://new.nowcoast.noaa.gov/help/#section=updateschedule. The coverage areas of these products are usually defined by county or sub-county boundaries, but for simplicity and performance reasons, adjacent WWAs of the same type, issuance, and expiration are depicted in this service as unified (merged/dissolved) polygons in the layers indicated with the suffix "(Dissolved Polygons)". However, a set of equivalent layers containing the original individual zone geometries are also included for querying purposes, and are indicated with the suffix "(Zone Polygons)". Corresponding zone polygon and dissolved polygon layers are matched together in group layers for each WWA category. The zone polygon layers are included in this service only to support query/identify operations (e.g., in order to retrieve the original zone geometry or other attributes such as a URL to the warning text bulletin) and thus will not be drawn when included in a normal map image request. Thus, the dissolved polygon layers should be used when requesting a map image (e.g. WMS GetMap or ArcGIS REST export operations), while the zone polygon layers should be used when performing a query (e.g. WMS GetFeatureInfo or ArcGIS REST query or identify operations). The colors used to identify the different watches, advisories, warnings, and statements are the same colors used by the NWS on their map at http://www.weather.gov. The NWS products for long-duration hazardous conditions are updated in the nowCOAST™ map service approximately every 10 minutes. For more detailed information about layer update frequency and timing, please reference the nowCOAST™ Dataset Update Schedule. Background Information NWS watches depict the geographic areas where the risk of hazardous weather or hydrologic events has increased significantly, but their occurrence, location, and/or timing is still uncertain. A warning depicts where a hazardous weather or hydrologic event is occurring, is imminent, or has a very high probability of occurring. A warning is used for conditions posing a threat to life or property. Advisories indicate where special weather conditions are occurring, imminent, or have a very high probability of occurring but are less serious than a warning. They are for events that may cause significant inconvenience, and if caution is not exercised, could lead to situations that may threaten life and/or property. Statements usually contain updated information on a warning and are used to let the public know when a warning is no longer in effect. NWS issues over 75 different types of watches, warnings, and advisories (WWAs). WWAs are issued by the NWS regional Weather Forecast Offices (WFOs) and also the NWS Ocean Prediction Center, National Hurricane Center, Central Pacific Hurricane Center, and Storm Prediction Center. The NWS WWAs are organized on the nowCOAST™ map viewer and within this map service by hazardous condition/threat layer groups and then by the geographic area (i.e. coastal & inland, immediate coast or maritime) for which the WWA product is targeted. This was done to allow users to select WWAs for hazardous conditions that are important to their operations or activities. Please note that the Tropical Storm and Hurricane Warnings are provided in both the High Wind Hazards: Maritime Areas and Coastal & Inland Areas layer groups and the Flooding Hazards: Coastal Areas layer group. These warnings are included in the Flooding Hazards/Coastal Areas layer group because the NWS uses those warnings to inform the public that tropical storm or hurricane winds may be accompanied by significant coastal flooding but below the thresholds required for the issuance of a storm surge warning. In addition, a tropical storm or hurricane warning may remain in effect when dangerously high water or a combination of dangerously high water and waves continue, even though the winds may be less than hurricane or tropical storm force. The NWS does not issue a Coastal Flood Warning or Advisory when a tropical storm or hurricane warning is in effect; however that does not mean that there is not a significant coastal flooding threat. High Wind Hazards (Associated with Non-Tropical & Tropical Cyclones) Maritime Areas Brisk Wind Advisory Small Craft Advisory Small Craft Advisory for Winds Gale Watch Gale Warning Storm Watch Storm Warning Hurricane Force Wind Watch Hurricane Force Wind Warning Tropical Storm Watch Tropical Storm Warning Hurricane Watch Hurricane Warning Coastal & Inland Areas High Wind Watch Wind Advisory Lake Wind Advisory High Wind Warning Tropical Storm Watch Tropical Storm Warning Hurricane Watch Hurricane Warning Hazardous Seas, Surf, and Beach Conditions Maritime Areas Small Craft Advisory for Hazardous Seas Small Craft Advisory for Rough Bar Hazardous Seas Watch Hazardous Seas Warning Immediate Coast Beach Hazards Statement High Surf Advisory High Surf Warning Low Water Advisory Rip Current Statement Flooding Hazards Coastal Areas Coastal Flood Statement Coastal Flood Watch Coastal Flood Advisory Coastal Flood Warning Lakeshore Flood Watch Lakeshore Flood Advisory Lakeshore Flood Warning Lakeshore Flood Statement Storm Surge Watch Storm Surge Warning Tsunami Watch Tsunami Warning Tropical Storm Warning Hurricane Warning Inland Areas Flood Watch (Point) (also called River Flood Watch) Flood Watch (Areal) Flood Advisory (Point) (also called River Flood Advisory) Flood Advisory (Areal) Flood Warning (Point) (also called River Flood Warning) Flood Warning (Areal) Hydrologic Outlook Hydrologic Statement Reduced Visibility Hazards Maritime Areas Dense Fog Advisory Coastal & Inland Areas Ashfall Advisory Ashfall Warning Blowing Dust Advisory Blowing Dust Warning Dense Fog Advisory Dense Smoke Advisory Freezing Spray Hazards Maritime Areas Heavy Freezing Spray Watch Freezing Spray Advisory Heavy Freezing Spray Advisory Snow, Sleet, Freezing Rain, and Freezing Fog Hazards Coastal & Inland Areas Blizzard Watch Blizzard Warning Freezing Fog Advisory Freezing Rain Advisory Ice Storm Warning Lake-Effect Snow Watch Lake-Effect Snow Advisory Lake-Effect Snow Warning Winter Storm Watch Winter Weather Advisory Winter Storm Warning Cold and Heat Hazards Coastal & Inland Areas Excessive Cold Watch Excessive Cold Warning Excessive Heat Watch Heat Advisory Excessive Heat Warning Frost Advisory Freeze Watch Freeze Warning Wind Chill Advisory Wind Chill Warning Critical Wildfire Conditions Coastal & Inland Areas Fire Weather Watch Red Flag Warning Unhealthy Air Quality Coastal & Inland Areas Air Stagnation Advisory Air Quality Alerts from states are NOT available For descriptions of individual NWS watches, warnings, and advisories please see Section 2 of the NWS Reference Guide available at http://www.nws.noaa.gov/om/guide/Section2.pdf. Time Information This map service is time-enabled, meaning that each individual layer contains time-varying data and can be utilized by clients capable of making map requests that include a time component. In addition to ArcGIS Server REST access, time-enabled OGC WMS 1.3.0 access is also provided by this service. This particular service can be queried with or without the use of a time component. If the time parameter is specified in a request, the data or imagery most relevant to the provided time value, if any, will be returned. If the time parameter is not specified in a request, the latest data or imagery valid for the present system time will be returned to the client. If the time parameter is not specified and no data or imagery is available for the present time, no data will be returned. This service is configured with time coverage support, meaning that the service will always return the most relevant available data, if any, to the specified time value. For example, if the service contains data valid today at 12:00 and 12:10 UTC, but a map request specifies a time value of today at 12:07 UTC, the data valid at 12:10 UTC will be returned to the user. This behavior allows more flexibility for users, especially when displaying multiple time-enabled layers together despite slight differences in temporal resolution or update frequency. When interacting with this time-enabled service, only a single instantaneous time value should be specified in each request. If instead a time range is specified in a request (i.e. separate start time and end time values are given), the data returned may be different than what was intended. Care must be taken to ensure the time value specified in each request falls within the current time coverage of the service. Because this service is frequently updated as new data becomes available, the user must periodically determine the service's time extent. However, due to software limitations, the time extent of the service and

  4. Surface Meteorological and Hydrologic Analyses - Quantitative Precipitation...

    • gis-calema.opendata.arcgis.com
    Updated Sep 10, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CA Governor's Office of Emergency Services (2022). Surface Meteorological and Hydrologic Analyses - Quantitative Precipitation Estimates [Dataset]. https://gis-calema.opendata.arcgis.com/maps/d0eb629f909e490ab699371b2767b2ea
    Explore at:
    Dataset updated
    Sep 10, 2022
    Dataset provided by
    California Governor's Office of Emergency Services
    Authors
    CA Governor's Office of Emergency Services
    Area covered
    Description

    Map InformationThis nowCOAST time-enabled map service provides maps depicting the NWS Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimate mosaics for 1-, 3-, 6-, 12-, 24-, 48-, and 72-hr time periods at a 1 km (0.6 miles) horizontal resolution for CONUS and southern part of Canada. The precipitation estimates are based only on radar data. The total precipitation amount is indicated by different colors at 0.01, 0.10, 0.25 and then at 1/4 inch intervals up to 4.0 inches (e.g. 0.50, 0.75, 1.00, 1.25, etc.), at 1-inch intervals from 4 to 10 inches and then at 2-inch intervals up to 14 inches. The increments from 0.01 to 1.00 or 2.00 inches are similar to what are used on NCEP's Weather Prediction Center QPF products and the NWS River Forecast Center (RFC) daily precipitation analysis. The 1-hr mosaic is updated every 4 minutes with a latency on nowCOAST of about 6-7 minutes from valid time. The 3-, 6-, 12-, and 24-hr QPEs are updated on nowCOAST every hour for the period ending at the top of the hour. The 48- and 72-hr QPEs are generated daily for the period ending at 12 UTC (i.e. 7AM EST) and available on nowCOAST shortly afterwards. For more detailed information about the update schedule.Background InformationThe NWS Multi-Radar Multi-Sensor System (MRMS)/Q3 QPEs are radar-only based quantitative precipitation analyses. The 1-h precipitation accumulation is obtained by aggregating 12 instantaneous rate fields. Missing rate fields are filled with the neighboring rate fields if the data gap is not significantly large (e.g.<=15 minutes). The instantaneous rate is computed from the hybrid scan reflectivity and the precipitation flag fields. (Both are 2-D derivative products from the National 3-D Reflectivity Mosaic grid which has a 1-km horizontal resolution, 31 vertical levels and a 5-minute update cycle). The instantaneous rate currently uses four Z-R relationships (i.e. tropical, convective, stratiform, or snow). The particular ZR relationship used in any grid cell depends on precipitation type which is indicated by the precipitation flag. The other accumulation products are derived by aggregating the hourly accumulations. The 1-hr QPE are generated every 4 minutes, while the 3-,6-,12-, and 24-hr accumulations are generated every hour at the top of the hour. The 48- and 72-hr QPEs are updated daily at approximately 12 UTC. MRMS was developed by NOAA/OAR/National Severe Storms Laboratory and migrated into NWS operations at NOAA Integrated Dissemination Program.Time InformationThis map is time-enabled, meaning that each individual layer contains time-varying data and can be utilized by clients capable of making map requests that include a time component.This particular service can be queried with or without the use of a time component. If the time parameter is specified in a request, the data or imagery most relevant to the provided time value, if any, will be returned. If the time parameter is not specified in a request, the latest data or imagery valid for the present system time will be returned to the client. If the time parameter is not specified and no data or imagery is available for the present time, no data will be returned.In addition to ArcGIS Server REST access, time-enabled OGC WMS 1.3.0 access is also provided by this service.Due to software limitations, the time extent of the service and map layers displayed below does not provide the most up-to-date start and end times of available data. Instead, users have three options for determining the latest time information about the service:Issue a returnUpdates=true request for an individual layer or for the service itself, which will return the current start and end times of available data, in epoch time format (milliseconds since 00:00 January 1, 1970). To see an example, click on the "Return Updates" link at the bottom of this page under "Supported Operations". Refer to the ArcGIS REST API Map Service Documentation for more information.Issue an Identify (ArcGIS REST) or GetFeatureInfo (WMS) request against the proper layer corresponding with the target dataset. For raster data, this would be the "Image Footprints with Time Attributes" layer in the same group as the target "Image" layer being displayed. For vector (point, line, or polygon) data, the target layer can be queried directly. In either case, the attributes returned for the matching raster(s) or vector feature(s) will include the following:validtime: Valid timestamp.starttime: Display start time.endtime: Display end time.reftime: Reference time (sometimes reffered to as issuance time, cycle time, or initialization time).projmins: Number of minutes from reference time to valid time.desigreftime: Designated reference time; used as a common reference time for all items when individual reference times do not match.desigprojmins: Number of minutes from designated reference time to valid time.Query the nowCOAST LayerInfo web service, which has been created to provide additional information about each data layer in a service, including a list of all available "time stops" (i.e. "valid times"), individual timestamps, or the valid time of a layer's latest available data (i.e. "Product Time"). For more information about the LayerInfo web service, including examples of various types of requests, refer to the nowCOAST help documentation.References For more information about the MRMS/Q3 system.

  5. NOS CO-OPS Water Level Data, Verified, High Low

    • datasets.ai
    • catalog.data.gov
    • +1more
    0, 21
    Updated Oct 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Oceanic and Atmospheric Administration, Department of Commerce (2024). NOS CO-OPS Water Level Data, Verified, High Low [Dataset]. https://datasets.ai/datasets/nos-co-ops-water-level-data-verified-high-low
    Explore at:
    0, 21Available download formats
    Dataset updated
    Oct 1, 2024
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Authors
    National Oceanic and Atmospheric Administration, Department of Commerce
    Description

    This dataset has verified (quality-controlled), daily, high low water level (tide) data from NOAA NOS Center for Operational Oceanographic Products and Services (CO-OPS). This is a delayed dataset, not a near-real-time dataset.

    WARNING: * Queries for data MUST include stationID=, datum=, time>=, and time<=. * Queries MUST be for less than 30 days worth of data. * Different stations support different datums. Use ERDDAP's Subset web page to find out which datums a given station supports. * The data source isn't completely reliable. If your request returns no data when you think it should: * Make sure the station you specified supports the datum you specified. * Try revising the request (e.g., a different datum or a different time range). * The list of stations offering this data (or the list of datums) may be incorrect. * Sometimes a station or the entire data service is unavailable. Wait a while and try again.

  6. a

    Image Footprints with Time Attributes

    • margig-edt.hub.arcgis.com
    • national-government.esrij.com
    • +15more
    Updated May 12, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri European National Government Team (2019). Image Footprints with Time Attributes [Dataset]. https://margig-edt.hub.arcgis.com/datasets/image-footprints-with-time-attributes
    Explore at:
    Dataset updated
    May 12, 2019
    Dataset authored and provided by
    Esri European National Government Team
    Area covered
    Description

    Map Information This nowCOAST time-enabled map service provides maps of experimental lightning strike density data from the NOAA/National Weather Service/NCEP's Ocean Prediction Center (OPC) which emulate (simulate) data from the future NOAA GOES-R Global Lightning Mapper (GLM). The purpose of this experimental product is to provide mariners and others with enhanced "awareness of developing and transitory thunderstorm activity, to give users the ability to determine whether a cloud system is producing lightning and if that activity is increasing or decreasing..." Lightning Strike Density, as opposed to display of individual strikes, highlights the location of lightning cores and trends of increasing and decreasing activity. The maps depict the density of lightning strikes during a 15 minute time period at an 8 km x 8 km spatial resolution. The lightning strike density maps cover the geographic area from 25 degrees South to 80 degrees North latitude and from 110 degrees East to 0 degrees West longitude. The map units are number of strikes per square km per minute multiplied by a scaling factor of 10^3. The strike density is color coded using a color scheme which allows the data to be easily seen when overlaid on GOES imagery and to distinguish values at low density values. The maps are updated on nowCOAST approximately every 15 minutes. The latest data depicted on the maps are approximately 12 minutes old (or older). The OPC lightning strike density product is still experimental and may not always be available. Given the spatial resolution and latency of the data, the data should NOT be used to activite your lightning safety plans. Always follow the safety rule: when you first hear thunder or see lightning in your area, activate your emergency plan. If outdoors, immediately seek shelter in a substantial building or a fully enclosed metal vehicle such as a car, truck or a van. Do not resume activities until 30 minutes after the last observed lightning or thunder. For more detailed information about the update schedule for the lightning strike density data maps on nowCOAST, please see: http://new.nowcoast.noaa.gov/help/#section=updateschedule Background Information The source for the data is OPC's gridded lightning strike density data on an 8 x 8 km grid. The gridded data emulate the spatial resolution of the future Global Lightning Mapper (GLM) instrument to be flown on the NOAA GOES-R series of geostationary satellites, with the first satellite scheduled for launch in early 2016. The gridded data is based on data from Vaisala's ground based Vaisala's U.S. National Lightning Detection Network (NLDN) and its global lightning detection network referred to as the Global Lightning Dataset (GLD360). These networks are capable of detecting cloud-to-ground strokes, cloud-to-ground flash information and survey level cloud lightning information. According to the National Lightning Safety Institute, NLDN uses radio frequency detectors in the spectrum 1.0 kHz through 400 kHz to measure energy discharges from lightning as well as approximate distance and direction. According to Vaisala, the GLD360 network is capable of a detection efficiency greater than 70% over most of the Northern Hemisphere with a median location accuracy of 5 km or better. OPC's experimental gridded data are coarser than the original source data from Vaisala's networks. The 15-minute gridded source data are updated at OPC every 15 minutes at 10 minutes past the valid time. The lightning strike density product from NWS/NCEP/OPC is considered a derived product or Level 5 product ("NOAA-generated products using lightning data as input but not displaying the contractor transmitted/provided lightning data") and is appropriate for public distribution. Time Information

    This map is time-enabled, meaning that each individual layer contains time-varying data and can be utilized by clients capable of making map requests that include a time component.

    This particular service can be queried with or without the use of a time component. If the time parameter is specified in a request, the data or imagery most relevant to the provided time value, if any, will be returned. If the time parameter is not specified in a request, the latest data or imagery valid for the present system time will be returned to the client. If the time parameter is not specified and no data or imagery is available for the present time, no data will be returned.

    In addition to ArcGIS Server REST access, time-enabled OGC WMS 1.3.0 access is also provided by this service.

    Due to software limitations, the time extent of the service and map layers displayed below does not provide the most up-to-date start and end times of available data. Instead, users have three options for determining the latest time information about the service:

    Issue a returnUpdates=true request for an individual layer or for the service itself, which will return the current start and end times of available data, in epoch time format (milliseconds since 00:00 January 1, 1970). To see an example, click on the "Return Updates" link at the bottom of this page under "Supported Operations". Refer to the ArcGIS REST API Map Service Documentation for more information.

    Issue an Identify (ArcGIS REST) or GetFeatureInfo (WMS) request against the proper layer corresponding with the target dataset. For raster data, this would be the "Image Footprints with Time Attributes" layer in the same group as the target "Image" layer being displayed. For vector (point, line, or polygon) data, the target layer can be queried directly. In either case, the attributes returned for the matching raster(s) or vector feature(s) will include the following:

    validtime: Valid timestamp.

    starttime: Display start time.

    endtime: Display end time.

    reftime: Reference time (sometimes reffered to as issuance time, cycle time, or initialization time).

    projmins: Number of minutes from reference time to valid time.

    desigreftime: Designated reference time; used as a common reference time for all items when individual reference times do not match.

    desigprojmins: Number of minutes from designated reference time to valid time.

    Query the nowCOAST LayerInfo web service, which has been created to provide additional information about each data layer in a service, including a list of all available "time stops" (i.e. "valid times"), individual timestamps, or the valid time of a layer's latest available data (i.e. "Product Time"). For more information about the LayerInfo web service, including examples of various types of requests, refer to the nowCOAST help documentation at: http://new.nowcoast.noaa.gov/help/#section=layerinfo

    References Kithil, 2015: Overview of Lightning Detection Equipment, National Lightning Safety Institute, Louisville, CO. (Available from http://www.lightningsafety.com/nsli_ihm/detectors.html).NASA and NOAA, 2014: Geostationary Lightning Mapper (GLM). (Available at http://www.goes-r.gov/spacesegment/glm.html).NWS, 2013: Experimental Lightning Strike Density Product Description Document. NOAA/NWS/NCEP/Ocean Prediction Center, College Park, MD (Available at http://www.opc.ncep.noaa.gov/lightning/lightning_pdd.php and http://products.weather.gov/PDD/Experimental%20Lightning%20Strike%20Density%20Product%2020130913.pdf). ,li>NOAA Knows Lightning. NWS, Silver Spring, MD (Available at http://www.lightningsafety.noaa.gov/resources/lightning3_050714.pdf).) Siebers, A., 2013: Soliciting Comments until June 3, 2014 on an Experimental Lightning Strike Density product (Offshore Waters). Public Information Notice, NOAA/NWS Headquarters, Washington, DC (Available at http://www.nws.noaa.gov/om/notification/pns13lightning_strike_density.htm).

  7. NOS CO-OPS Water Level Data, Preliminary, 6-Minute

    • catalog.data.gov
    • data.amerigeoss.org
    • +1more
    Updated Jun 10, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA NOS COOPS (Point of Contact) (2023). NOS CO-OPS Water Level Data, Preliminary, 6-Minute [Dataset]. https://catalog.data.gov/dataset/nos-co-ops-water-level-data-preliminary-6-minute
    Explore at:
    Dataset updated
    Jun 10, 2023
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    National Ocean Servicehttps://oceanservice.noaa.gov/
    Description

    This dataset has recent, preliminary (not quality-controlled), 6-minute, water level (tide) data from NOAA NOS Center for Operational Oceanographic Products and Services (CO-OPS). WARNING: These raw data have not been subjected to the National Ocean Service's quality control or quality assurance procedures and do not meet the criteria and standards of official National Ocean Service data. They are released for limited public use as preliminary data to be used only with appropriate caution. WARNING: * Queries for data MUST include stationID=, datum=, time>=. * Queries for data USUALLY include time<=. * Queries MUST be for less than 30 days worth of data. The default time<= value corresponds to 'now'. * Different stations support different datums. Use ERDDAP's Subset web page to find out which datums a given station supports. * The data source isn't completely reliable. If your request returns no data when you think it should: * Make sure the station you specified supports the datum you specified. * Try revising the request (e.g., a different datum or a different time range). * The list of stations offering this data (or the list of datums) may be incorrect. * Sometimes a station or the entire data service is unavailable. Wait a while and try again.

  8. n

    Cold and Heat Hazards (Dissolved Polygons) - Dataset - CKAN

    • nationaldataplatform.org
    Updated Feb 28, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Cold and Heat Hazards (Dissolved Polygons) - Dataset - CKAN [Dataset]. https://nationaldataplatform.org/catalog/dataset/cold-and-heat-hazards-dissolved-polygons
    Explore at:
    Dataset updated
    Feb 28, 2024
    Description

    This nowCOAST™ time-enabled map service provides maps depicting the geographic coverage of the latest NOAA/National Weather Service (NWS) WATCHES, WARNINGS, ADVISORIES, and STATEMENTS for long-duration hazardous weather, marine weather, hydrological, oceanographic, wildfire, air quality, and ecological conditions which may or are presently affecting inland, coastal, and maritime areas. A few examples include Gale Watch, Gale Warning, High Surf Advisory, High Wind Watch, Areal Flood Warning, Coastal Flood Watch, Winter Storm Warning, Wind Chill Advisory, Frost Advisory, Tropical Storm Watch, Red Flag Warning, Air Stagnation Warning, and Beach Hazards Statement. (A complete list is given in the Background Information section below.) The coverage areas of these products are usually defined by county or sub-county boundaries. The colors used to identify the different watches, advisories, warnings, and statements are the same colors used by the NWS on their map at weather.gov. The NWS products for long-duration hazardous conditions are updated in the nowCOAST map service approximately every 10 minutes. For more detailed information about the update schedule, please see: http://new.nowcoast.noaa.gov/help/#section=updateschedule. The coverage areas of these products are usually defined by county or sub-county boundaries, but for simplicity and performance reasons, adjacent WWAs of the same type, issuance, and expiration are depicted in this service as unified (merged/dissolved) polygons in the layers indicated with the suffix "(Dissolved Polygons)". However, a set of equivalent layers containing the original individual zone geometries are also included for querying purposes, and are indicated with the suffix "(Zone Polygons)". Corresponding zone polygon and dissolved polygon layers are matched together in group layers for each WWA category. The zone polygon layers are included in this service only to support query/identify operations (e.g., in order to retrieve the original zone geometry or other attributes such as a URL to the warning text bulletin) and thus will not be drawn when included in a normal map image request. Thus, the dissolved polygon layers should be used when requesting a map image (e.g. WMS GetMap or ArcGIS REST export operations), while the zone polygon layers should be used when performing a query (e.g. WMS GetFeatureInfo or ArcGIS REST query or identify operations). The colors used to identify the different watches, advisories, warnings, and statements are the same colors used by the NWS on their map at http://www.weather.gov. The NWS products for long-duration hazardous conditions are updated in the nowCOAST™ map service approximately every 10 minutes. For more detailed information about layer update frequency and timing, please reference the nowCOAST™ Dataset Update Schedule. Background Information NWS watches depict the geographic areas where the risk of hazardous weather or hydrologic events has increased significantly, but their occurrence, location, and/or timing is still uncertain. A warning depicts where a hazardous weather or hydrologic event is occurring, is imminent, or has a very high probability of occurring. A warning is used for conditions posing a threat to life or property. Advisories indicate where special weather conditions are occurring, imminent, or have a very high probability of occurring but are less serious than a warning. They are for events that may cause significant inconvenience, and if caution is not exercised, could lead to situations that may threaten life and/or property. Statements usually contain updated information on a warning and are used to let the public know when a warning is no longer in effect. NWS issues over 75 different types of watches, warnings, and advisories (WWAs). WWAs are issued by the NWS regional Weather Forecast Offices (WFOs) and also the NWS Ocean Prediction Center, National Hurricane Center, Central Pacific Hurricane Center, and Storm Prediction Center. The NWS WWAs are organized on the nowCOAST™ map viewer and within this map service by hazardous condition/threat layer groups and then by the geographic area (i.e. coastal & inland, immediate coast or maritime) for which the WWA product is targeted. This was done to allow users to select WWAs for hazardous conditions that are important to their operations or activities. Please note that the Tropical Storm and Hurricane Warnings are provided in both the High Wind Hazards: Maritime Areas and Coastal & Inland Areas layer groups and the Flooding Hazards: Coastal Areas layer group. These warnings are included in the Flooding Hazards/Coastal Areas layer group because the NWS uses those warnings to inform the public that tropical storm or hurricane winds may be accompanied by significant coastal flooding but below the thresholds required for the issuance of a storm surge warning. In addition, a tropical storm or hurricane warning may remain in effect when dangerously high water or a combination of dangerously high water and waves continue, even though the winds may be less than hurricane or tropical storm force. The NWS does not issue a Coastal Flood Warning or Advisory when a tropical storm or hurricane warning is in effect; however that does not mean that there is not a significant coastal flooding threat. High Wind Hazards (Associated with Non-Tropical & Tropical Cyclones) Maritime Areas Brisk Wind Advisory Small Craft Advisory Small Craft Advisory for Winds Gale Watch Gale Warning Storm Watch Storm Warning Hurricane Force Wind Watch Hurricane Force Wind Warning Tropical Storm Watch Tropical Storm Warning Hurricane Watch Hurricane Warning Coastal & Inland Areas High Wind Watch Wind Advisory Lake Wind Advisory High Wind Warning Tropical Storm Watch Tropical Storm Warning Hurricane Watch Hurricane Warning Hazardous Seas, Surf, and Beach Conditions Maritime Areas Small Craft Advisory for Hazardous Seas Small Craft Advisory for Rough Bar Hazardous Seas Watch Hazardous Seas Warning Immediate Coast Beach Hazards Statement High Surf Advisory High Surf Warning Low Water Advisory Rip Current Statement Flooding Hazards Coastal Areas Coastal Flood Statement Coastal Flood Watch Coastal Flood Advisory Coastal Flood Warning Lakeshore Flood Watch Lakeshore Flood Advisory Lakeshore Flood Warning Lakeshore Flood Statement Storm Surge Watch Storm Surge Warning Tsunami Watch Tsunami Warning Tropical Storm Warning Hurricane Warning Inland Areas Flood Watch (Point) (also called River Flood Watch) Flood Watch (Areal) Flood Advisory (Point) (also called River Flood Advisory) Flood Advisory (Areal) Flood Warning (Point) (also called River Flood Warning) Flood Warning (Areal) Hydrologic Outlook Hydrologic Statement Reduced Visibility Hazards Maritime Areas Dense Fog Advisory Coastal & Inland Areas Ashfall Advisory Ashfall Warning Blowing Dust Advisory Blowing Dust Warning Dense Fog Advisory Dense Smoke Advisory Freezing Spray Hazards Maritime Areas Heavy Freezing Spray Watch Freezing Spray Advisory Heavy Freezing Spray Advisory Snow, Sleet, Freezing Rain, and Freezing Fog Hazards Coastal & Inland Areas Blizzard Watch Blizzard Warning Freezing Fog Advisory Freezing Rain Advisory Ice Storm Warning Lake-Effect Snow Watch Lake-Effect Snow Advisory Lake-Effect Snow Warning Winter Storm Watch Winter Weather Advisory Winter Storm Warning Cold and Heat Hazards Coastal & Inland Areas Excessive Cold Watch Excessive Cold Warning Excessive Heat Watch Heat Advisory Excessive Heat Warning Frost Advisory Freeze Watch Freeze Warning Wind Chill Advisory Wind Chill Warning Critical Wildfire Conditions Coastal & Inland Areas Fire Weather Watch Red Flag Warning Unhealthy Air Quality Coastal & Inland Areas Air Stagnation Advisory Air Quality Alerts from states are NOT available For descriptions of individual NWS watches, warnings, and advisories please see Section 2 of the NWS Reference Guide available at http://www.nws.noaa.gov/om/guide/Section2.pdf. Time Information This map service is time-enabled, meaning that each individual layer contains time-varying data and can be utilized by clients capable of making map requests that include a time component. In addition to ArcGIS Server REST access, time-enabled OGC WMS 1.3.0 access is also provided by this service. This particular service can be queried with or without the use of a time component. If the time parameter is specified in a request, the data or imagery most relevant to the provided time value, if any, will be returned. If the time parameter is not specified in a request, the latest data or imagery valid for the present system time will be returned to the client. If the time parameter is not specified and no data or imagery is available for the present time, no data will be returned. This service is configured with time coverage support, meaning that the service will always return the most relevant available data, if any, to the specified time value. For example, if the service contains data valid today at 12:00 and 12:10 UTC, but a map request specifies a time value of today at 12:07 UTC, the data valid at 12:10 UTC will be returned to the user. This behavior allows more flexibility for users, especially when displaying multiple time-enabled layers together despite slight differences in temporal resolution or update frequency. When interacting with this time-enabled service, only a single instantaneous time value should be specified in each request. If instead a time range is specified in a request (i.e. separate start time and end time values are given), the data returned may be different than what was intended. Care must be taken to ensure the time value specified in each request falls within the current time coverage of the service. Because this service is frequently updated as new data becomes available, the user must periodically determine the service's time extent. However, due to software limitations, the time extent of the service and

  9. a

    NWS Multi-Radar Multi-Sensor System (MRMS)/Q3 QPEs

    • hub.arcgis.com
    • emergency-lacounty.hub.arcgis.com
    Updated Aug 8, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of New Orleans (2017). NWS Multi-Radar Multi-Sensor System (MRMS)/Q3 QPEs [Dataset]. https://hub.arcgis.com/maps/dbef6cc6c1114099b88f6bb735b55de5
    Explore at:
    Dataset updated
    Aug 8, 2017
    Dataset authored and provided by
    City of New Orleans
    Area covered
    Description

    This nowCOAST™ time-enabled map service provides maps depicting the NWS Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimate mosaics for 1-, 3-, 6-, 12-, 24-, 48-, and 72-hr time periods at a 1 km (0.6 miles) horizontal resolution for CONUS and southern part of Canada. The precipitation estimates are based only on radar data. The total precipitation amount is indicated by different colors at 0.01, 0.10, 0.25 inches and then at 1/4 inch intervals up to 4.0 inches (e.g. 0.50, 0.75, 1.00, 1.25, etc.), at 1-inch intervals from 4 to 10 inches and then at 2-inch intervals up to 14+ inches. The increments from 0.01 to 1.00 or 2.00 inches are similar to what are used on NCEP's Weather Prediction Center QPF products and the NWS River Forecast Center (RFC) daily precipitation analysis. The 1-hr mosaic is updated every 4 minutes with a latency on nowCOAST™ of about 6-7 minutes from valid time. The 3-, 6-, 12-, and 24-hr QPEs are updated on nowCOAST™ every hour for the period ending at the top of the hour. The 48- and 72-hr QPEs are generated daily for the period ending at 12 UTC (i.e. 7AM EST) and available on nowCOAST™ shortly afterwards. For more detailed information about layer update frequency and timing, please reference the nowCOAST™ Dataset Update Schedule.The NWS Multi-Radar Multi-Sensor System (MRMS)/Q3 QPEs are radar-only based quantitative precipitation analyses. The 1-hr precipitation accumulation is obtained by aggregating 12 instantaneous rate fields. Missing rate fields are filled with the neighboring rate fields if the data gap is not significantly large (e.g.<=15 minutes). The instantaneous rate is computed from the hybrid scan reflectivity and the precipitation flag fields (both are 2-D derivative products from the National 3-D Reflectivity Mosaic grid which has a 1-km horizontal resolution, 31 vertical levels and a 5-minute update cycle). The instantaneous rate currently uses four Z-R relationships (i.e. tropical, convective, stratiform, or snow). The particular ZR relationship used in any grid cell depends on precipitation type which is indicated by the precipitation flag. The other accumulation products are derived by aggregating the hourly accumulations. The 1-hr QPE are generated every 4 minutes, while the 3-, 6-, 12-, and 24-hr accumulations are generated every hour at the top of the hour. The 48- and 72-hr QPEs are updated daily at approximately 12 UTC. MRMS was developed by NOAA/OAR/National Severe Storms Laboratory and migrated into NWS operations at NOAA Integrated Dissemination Program.This map service is time-enabled, meaning that each individual layer contains time-varying data and can be utilized by clients capable of making map requests that include a time component.In addition to ArcGIS Server REST access, time-enabled OGC WMS 1.3.0 access is also provided by this service.This particular service can be queried with or without the use of a time component. If the time parameter is specified in a request, the data or imagery most relevant to the provided time value, if any, will be returned. If the time parameter is not specified in a request, the latest data or imagery valid for the present system time will be returned to the client. If the time parameter is not specified and no data or imagery is available for the present time, no data will be returned.This service is configured with time coverage support, meaning that the service will always return the most relevant available data, if any, to the specified time value. For example, if the service contains data valid today at 12:00 and 12:10 UTC, but a map request specifies a time value of today at 12:07 UTC, the data valid at 12:10 UTC will be returned to the user. This behavior allows more flexibility for users, especially when displaying multiple time-enabled layers together despite slight differences in temporal resolution or update frequency.When interacting with this time-enabled service, only a single instantaneous time value should be specified in each request. If instead a time range is specified in a request (i.e. separate start time and end time values are given), the data returned may be different than what was intended.Care must be taken to ensure the time value specified in each request falls within the current time coverage of the service. Because this service is frequently updated as new data becomes available, the user must periodically determine the service's time extent. However, due to software limitations, the time extent of the service and map layers as advertised by ArcGIS Server does not always provide the most up-to-date start and end times of available data. Instead, users have three options for determining the latest time extent of the service:Issue a returnUpdates=true request (ArcGIS REST protocol only) for an individual layer or for the service itself, which will return the current start and end times of available data, in epoch time format (milliseconds since 00:00 January 1, 1970). To see an example, click on the "Return Updates" link at the bottom of the REST Service page under "Supported Operations". Refer to the ArcGIS REST API Map Service Documentation for more information.Issue an Identify (ArcGIS REST) or GetFeatureInfo (WMS) request against the proper layer corresponding with the target dataset. For raster data, this would be the "Image Footprints with Time Attributes" layer in the same group as the target "Image" layer being displayed. For vector (point, line, or polygon) data, the target layer can be queried directly. In either case, the attributes returned for the matching raster(s) or vector feature(s) will include the following:validtime: Valid timestamp.starttime: Display start time.endtime: Display end time.reftime: Reference time (sometimes referred to as issuance time, cycle time, or initialization time).projmins: Number of minutes from reference time to valid time.desigreftime: Designated reference time; used as a common reference time for all items when individual reference times do not match.desigprojmins: Number of minutes from designated reference time to valid time.Query the nowCOAST™ LayerInfo web service, which has been created to provide additional information about each data layer in a service, including a list of all available "time stops" (i.e. "valid times"), individual timestamps, or the valid time of a layer's latest available data (i.e. "Product Time"). For more information about the LayerInfo web service, including examples of various types of requests, refer to the nowCOAST™ LayerInfo Help DocumentationReferencesFor more information about the MRMS/Q3 system, please see http://nmq.ou.edu and http://www.nssl.noaa.gov/projects/mrms.

  10. Image Footprints with Time Attributes

    • data.amerigeoss.org
    Updated Sep 8, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA GeoPlatform (2020). Image Footprints with Time Attributes [Dataset]. https://data.amerigeoss.org/is/dataset/image-footprints-with-time-attributes32
    Explore at:
    kml, geojson, csv, zip, ogc wms, arcgis geoservices rest api, htmlAvailable download formats
    Dataset updated
    Sep 8, 2020
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Description
    Map Information

    This nowCOAST time-enabled map service provides maps depicting the latest global forecast guidance of water currents, water temperature, and salinity at forecast projections: 0, 12, 24, 36, 48, 60, 72, 84, and 96-hours from the NWS/NCEP Global Real-Time Ocean Forecast System (GRTOFS). The surface water currents velocity maps displays the direction using white or black streaklets. The magnitude of the current is indicated by the length and width of the streaklet. The maps of the GRTOFS surface forecast guidance are updated on the nowCOAST map service once per day. For more detailed information about the update schedule, see: https://new.nowcoast.noaa.gov/help/#section=updateschedule

    Background Information

    GRTOFS is based on the Hybrid Coordinates Ocean Model (HYCOM), an eddy resolving, hybrid coordinate numerical ocean prediction model. GRTOFS has global coverge and a horizontal resolution of 1/12 degree and 32 hybrid vertical layers. It has one forecast cycle per day (i.e. 0000 UTC) which generates forecast guidance out to 144 hours (6 days). However, nowCOAST only provides guidance out to 96 hours (4 days). The forecast cycle uses 3-hourly momentum and radiation fluxes along with precipitation predictions from the NCEP Global Forecast System (GFS). Each forecast cycle is preceded with a 48-hr long nowcast cycle. The nowcast cycle uses daily initial 3-D fields from the NAVOCEANO operational HYCOM-based forecast system which assimilates situ profiles of temperature and salinity from a variety of sources and remotely sensed SST, SSH and sea-ice concentrations. GRTOFS was developed by NCEP/EMC/Marine Modeling and Analysis Programs. GRTOFS is run once per day (0000 UTC forecast cycle) on the NOAA Weather and Climate Operational Supercomputer System (WCOSS) operated by NWS/NCEP Central Operations.

    The maps are generated using a visualization technique was developed by the Data Visualization Research Lab at The University of New Hampshire Center for Coastal and Ocean Mapping (https://www.ccom.unh.edu/vislab/). The method combines two techniques. First, equally spaced streamlines are computed in the flow field using Jobard and Lefer's (1977) algorithm. Second, a series of "streaklets" are rendered head to tail along each streamline to show the direction of flow. Each of these varies along its length in size, color and transparency using a method developed by Fowler and Ware (1989), and later refined by Mr. Pete Mitchell and Dr. Colin Ware (Mitchell, 2007).

    Time Information

    This map is time-enabled, meaning that each individual layer contains time-varying data and can be utilized by clients capable of making map requests that include a time component.

    This particular service can be queried with or without the use of a time component. If the time parameter is specified in a request, the data or imagery most relevant to the provided time value, if any, will be returned. If the time parameter is not specified in a request, the latest data or imagery valid for the present system time will be returned to the client. If the time parameter is not specified and no data or imagery is available for the present time, no data will be returned.

    In addition to ArcGIS Server REST access, time-enabled OGC WMS 1.3.0 access is also provided by this service.

    Due to software limitations, the time extent of the service and map layers displayed below does not provide the most up-to-date start and end times of available data. Instead, users have three options for determining the latest time information about the service:

    1. Issue a returnUpdates=true request for an individual layer or for the service itself, which will return the current start and end times of available data, in epoch time format (milliseconds since 00:00 January 1, 1970). To see an example, click on the "Return Updates" link at the bottom of this page under "Supported Operations". Refer to the ArcGIS REST API Map Service Documentation for more information.
    2. Issue an Identify (ArcGIS REST) or GetFeatureInfo (WMS) request against the proper layer corresponding with the target dataset. For raster data, this would be the "Image Footprints with Time Attributes" layer in the same group as the target "Image" layer being displayed. For vector (point, line, or polygon) data, the target layer can be queried directly. In either case, the attributes returned for the matching raster(s) or vector feature(s) will include the following:
      • validtime: Valid timestamp.
      • starttime: Display start time.
      • endtime: Display end time.
      • reftime: Reference time (sometimes reffered to as issuance time, cycle time, or initialization time).
      • projmins: Number of minutes from reference time to valid time.
      • desigreftime: Designated reference time; used as a common reference time for all items when individual reference times do not match.
      • desigprojmins: Number of minutes from designated reference time to valid time.
    3. Query the nowCOAST LayerInfo web service, which has been created to provide additional information about each data layer in a service, including a list of all available "time stops" (i.e. "valid times"), individual timestamps, or the valid time of a layer's latest available data (i.e. "Product Time"). For more information about the LayerInfo web service, including examples of various types of requests, refer to the nowCOAST help documentation at:https://new.nowcoast.noaa.gov/help/#section=layerinfo
    References
    • Fowler, D. and C. Ware, 1989: Strokes for Representing Vector Field Maps. Proceedings: Graphics Interface '98 249-253.
    • Jobard, B and W. Lefer,1977: Creating evenly spaced streamlines of arbitrary density. Proceedings: Eurographics workshop on Visualization in Scientific Computing. 43-55.
    • Mitchell, P.W., 2007: The Perceptual optimization of 2D Flow Visualizations Using Human in the Loop Local Hill Climbing. University of New Hampshire Masters Thesis. Department of Computer Science.
    • NWS, 2013: About Global RTOFS, NCEP/EMC/MMAB, College Park, MD (Available at https://polar.ncep.noaa.gov/global/about/).
    • Chassignet, E.P., H.E. Hurlburt, E.J. Metzger, O.M. Smedstad, J. Cummings, G.R. Halliwell, R. Bleck, R. Baraille, A.J. Wallcraft, C. Lozano, H.L. Tolman, A. Srinivasan, S. Hankin, P. Cornillon, R. Weisberg, A. Barth, R. He, F. Werner, and J. Wilkin, 2009: U.S. GODAE: Global Ocean Prediction with the HYbrid Coordinate Ocean Model (HYCOM). Oceanography, 22(2), 64-75.
    • Mehra, A, I. Rivin, H. Tolman, T. Spindler, and B. Balasubramaniyan, 2011: A Real-Time Operational Global Ocean Forecast System, Poster, GODAE OceanView –GSOP-CLIVAR Workshop in Observing System Evaluation and Intercomparisons, Santa Cruz, CA.
  11. a

    Surface Water Currents w/Speed

    • gis.data.alaska.gov
    Updated Nov 22, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Southeast Alaska GIS Library (2018). Surface Water Currents w/Speed [Dataset]. https://gis.data.alaska.gov/datasets/4755cf6846be421da1010b05335cd9d0_0
    Explore at:
    Dataset updated
    Nov 22, 2018
    Dataset authored and provided by
    Southeast Alaska GIS Library
    Area covered
    Description

    Last Revised: February 2016

    Map Information

    This nowCOAST™ time-enabled map service provides maps depicting the latest global forecast guidance of water currents, water temperature, and salinity at forecast projections: 0, 12, 24, 36, 48, 60, 72, 84, and 96-hours from the NWS/NCEP Global Real-Time Ocean Forecast System (GRTOFS). The surface water currents velocity maps display the direction using white or black streaklets. The magnitude of the current is indicated by the length and width of the streaklet. The maps of the GRTOFS surface forecast guidance are updated on the nowCOAST™ map service once per day. For more detailed information about layer update frequency and timing, please reference the
    nowCOAST™ Dataset Update Schedule.

    Background Information

    GRTOFS is based on the Hybrid Coordinates Ocean Model (HYCOM), an eddy resolving, hybrid coordinate numerical ocean prediction model. GRTOFS has global coverge and a horizontal resolution of 1/12 degree and 32 hybrid vertical layers. It has one forecast cycle per day (i.e. 0000 UTC) which generates forecast guidance out to 144 hours (6 days). However, nowCOAST™ only provides guidance out to 96 hours (4 days). The forecast cycle uses 3-hourly momentum and radiation fluxes along with precipitation predictions from the NCEP Global Forecast System (GFS). Each forecast cycle is preceded with a 48-hr long nowcast cycle. The nowcast cycle uses daily initial 3-D fields from the NAVOCEANO operational HYCOM-based forecast system which assimilates situ profiles of temperature and salinity from a variety of sources and remotely sensed SST, SSH and sea-ice concentrations. GRTOFS was developed by NCEP/EMC/Marine Modeling and Analysis Branch. GRTOFS is run once per day (0000 UTC forecast cycle) on the NOAA Weather and Climate Operational Supercomputer System (WCOSS) operated by NWS/NCEP Central Operations.

    The maps are generated using a visualization technique developed by the Data Visualization Research Lab at The University of New Hampshire's Center for Coastal and Ocean Mapping (http://www.ccom.unh.edu/vislab/). The method combines two techniques. First, equally spaced streamlines are computed in the flow field using Jobard and Lefer's (1977) algorithm. Second, a series of "streaklets" are rendered head to tail along each streamline to show the direction of flow. Each of these varies along its length in size, color and transparency using a method developed by Fowler and Ware (1989), and later refined by Mr. Pete Mitchell and Dr. Colin Ware (Mitchell, 2007).

    Time Information

    This map service is time-enabled, meaning that each individual layer contains time-varying data and can be utilized by clients capable of making map requests that include a time component.

    In addition to ArcGIS Server REST access, time-enabled OGC WMS 1.3.0 access is also provided by this service.

    This particular service can be queried with or without the use of a time component. If the time parameter is specified in a request, the data or imagery most relevant to the provided time value, if any, will be returned. If the time parameter is not specified in a request, the latest data or imagery valid for the present system time will be returned to the client. If the time parameter is not specified and no data or imagery is available for the present time, no data will be returned.

    This service is configured with time coverage support, meaning that the service will always return the most relevant available data, if any, to the specified time value. For example, if the service contains data valid today at 12:00 and 12:10 UTC, but a map request specifies a time value of today at 12:07 UTC, the data valid at 12:10 UTC will be returned to the user. This behavior allows more flexibility for users, especially when displaying multiple time-enabled layers together despite slight differences in temporal resolution or update frequency.

    When interacting with this time-enabled service, only a single instantaneous time value should be specified in each request. If instead a time range is specified in a request (i.e. separate start time and end time values are given), the data returned may be different than what was intended.

    Care must be taken to ensure the time value specified in each request falls within the current time coverage of the service. Because this service is frequently updated as new data becomes available, the user must periodically determine the service's time extent. However, due to software limitations, the time extent of the service and map layers as advertised by ArcGIS Server does not always provide the most up-to-date start and end times of available data. Instead, users have three options for determining the latest time extent of the service:

      Issue a returnUpdates=true request (ArcGIS REST protocol only)
      for an individual layer or for the service itself, which will return
      the current start and end times of available data, in epoch time format
      (milliseconds since 00:00 January 1, 1970). To see an example, click on
      the "Return Updates" link at the bottom of the REST Service page under
      "Supported Operations". Refer to the
      ArcGIS REST API Map Service Documentation
      for more information.
    
    
      Issue an Identify (ArcGIS REST) or GetFeatureInfo (WMS) request against
      the proper layer corresponding with the target dataset. For raster
      data, this would be the "Image Footprints with Time Attributes" layer
      in the same group as the target "Image" layer being displayed. For
      vector (point, line, or polygon) data, the target layer can be queried
      directly. In either case, the attributes returned for the matching
      raster(s) or vector feature(s) will include the following:
    
    
          validtime: Valid timestamp.
    
    
          starttime: Display start time.
    
    
          endtime: Display end time.
    
    
          reftime: Reference time (sometimes referred to as
          issuance time, cycle time, or initialization time).
    
    
          projmins: Number of minutes from reference time to valid
          time.
    
    
          desigreftime: Designated reference time; used as a
          common reference time for all items when individual reference
          times do not match.
    
    
          desigprojmins: Number of minutes from designated
          reference time to valid time.
    
    
    
    
      Query the nowCOAST™ LayerInfo web service, which has been created to
      provide additional information about each data layer in a service,
      including a list of all available "time stops" (i.e. "valid times"),
      individual timestamps, or the valid time of a layer's latest available
      data (i.e. "Product Time"). For more information about the LayerInfo
      web service, including examples of various types of requests, refer to
      the 
      nowCOAST™ LayerInfo Help Documentation
    

    References

    Fowler, D. and C. Ware, 1989: Strokes for Representing Vector Field Maps. Proceedings: Graphics Interface '98 249-253. Jobard, B and W. Lefer,1977: Creating evenly spaced streamlines of arbitrary density. Proceedings: Eurographics workshop on Visualization in Scientific Computing. 43-55. Mitchell, P.W., 2007: The Perceptual optimization of 2D Flow Visualizations Using Human in the Loop Local Hill Climbing. University of New Hampshire Masters Thesis. Department of Computer Science. NWS, 2013: About Global RTOFS, NCEP/EMC/MMAB, College Park, MD (Available at http://polar.ncep.noaa.gov/global/about/). Chassignet, E.P., H.E. Hurlburt, E.J. Metzger, O.M. Smedstad, J. Cummings, G.R. Halliwell, R. Bleck, R. Baraille, A.J. Wallcraft, C. Lozano, H.L. Tolman, A. Srinivasan, S. Hankin, P. Cornillon, R. Weisberg, A. Barth, R. He, F. Werner, and J. Wilkin, 2009: U.S. GODAE: Global Ocean Prediction with the HYbrid Coordinate Ocean Model (HYCOM). Oceanography, 22(2), 64-75. Mehra, A, I. Rivin, H. Tolman, T. Spindler, and B. Balasubramaniyan, 2011: A Real-Time Operational Global Ocean Forecast System, Poster, GODAE OceanView –GSOP-CLIVAR Workshop in Observing System Evaluation and Intercomparisons, Santa Cruz, CA.

  12. Data from: Current and projected research data storage needs of Agricultural...

    • catalog.data.gov
    • agdatacommons.nal.usda.gov
    • +2more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agricultural Research Service (2025). Current and projected research data storage needs of Agricultural Research Service researchers in 2016 [Dataset]. https://catalog.data.gov/dataset/current-and-projected-research-data-storage-needs-of-agricultural-research-service-researc-f33da
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    Agricultural Research Servicehttps://www.ars.usda.gov/
    Description

    The USDA Agricultural Research Service (ARS) recently established SCINet , which consists of a shared high performance computing resource, Ceres, and the dedicated high-speed Internet2 network used to access Ceres. Current and potential SCINet users are using and generating very large datasets so SCINet needs to be provisioned with adequate data storage for their active computing. It is not designed to hold data beyond active research phases. At the same time, the National Agricultural Library has been developing the Ag Data Commons, a research data catalog and repository designed for public data release and professional data curation. Ag Data Commons needs to anticipate the size and nature of data it will be tasked with handling. The ARS Web-enabled Databases Working Group, organized under the SCINet initiative, conducted a study to establish baseline data storage needs and practices, and to make projections that could inform future infrastructure design, purchases, and policies. The SCINet Web-enabled Databases Working Group helped develop the survey which is the basis for an internal report. While the report was for internal use, the survey and resulting data may be generally useful and are being released publicly. From October 24 to November 8, 2016 we administered a 17-question survey (Appendix A) by emailing a Survey Monkey link to all ARS Research Leaders, intending to cover data storage needs of all 1,675 SY (Category 1 and Category 4) scientists. We designed the survey to accommodate either individual researcher responses or group responses. Research Leaders could decide, based on their unit's practices or their management preferences, whether to delegate response to a data management expert in their unit, to all members of their unit, or to themselves collate responses from their unit before reporting in the survey. Larger storage ranges cover vastly different amounts of data so the implications here could be significant depending on whether the true amount is at the lower or higher end of the range. Therefore, we requested more detail from "Big Data users," those 47 respondents who indicated they had more than 10 to 100 TB or over 100 TB total current data (Q5). All other respondents are called "Small Data users." Because not all of these follow-up requests were successful, we used actual follow-up responses to estimate likely responses for those who did not respond. We defined active data as data that would be used within the next six months. All other data would be considered inactive, or archival. To calculate per person storage needs we used the high end of the reported range divided by 1 for an individual response, or by G, the number of individuals in a group response. For Big Data users we used the actual reported values or estimated likely values. Resources in this dataset:Resource Title: Appendix A: ARS data storage survey questions. File Name: Appendix A.pdfResource Description: The full list of questions asked with the possible responses. The survey was not administered using this PDF but the PDF was generated directly from the administered survey using the Print option under Design Survey. Asterisked questions were required. A list of Research Units and their associated codes was provided in a drop down not shown here. Resource Software Recommended: Adobe Acrobat,url: https://get.adobe.com/reader/ Resource Title: CSV of Responses from ARS Researcher Data Storage Survey. File Name: Machine-readable survey response data.csvResource Description: CSV file includes raw responses from the administered survey, as downloaded unfiltered from Survey Monkey, including incomplete responses. Also includes additional classification and calculations to support analysis. Individual email addresses and IP addresses have been removed. This information is that same data as in the Excel spreadsheet (also provided).Resource Title: Responses from ARS Researcher Data Storage Survey. File Name: Data Storage Survey Data for public release.xlsxResource Description: MS Excel worksheet that Includes raw responses from the administered survey, as downloaded unfiltered from Survey Monkey, including incomplete responses. Also includes additional classification and calculations to support analysis. Individual email addresses and IP addresses have been removed.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel

  13. T

    Utah Healthcare Effectiveness Data and Information Set (HEDIS), 2010 - 2017

    • opendata.utah.gov
    application/rdfxml +5
    Updated Mar 22, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Utah Department Health, Office of Health Care Statistics (2018). Utah Healthcare Effectiveness Data and Information Set (HEDIS), 2010 - 2017 [Dataset]. https://opendata.utah.gov/Health/Utah-Healthcare-Effectiveness-Data-and-Information/gawi-uz7h
    Explore at:
    json, application/rssxml, csv, application/rdfxml, tsv, xmlAvailable download formats
    Dataset updated
    Mar 22, 2018
    Dataset authored and provided by
    Utah Department Health, Office of Health Care Statistics
    Area covered
    Utah
    Description

    The quality data in this table have been collected from health plans using standardized Health Effectiveness Data and Information Set (HEDIS) and are maintained and provided by the Utah Department of Health, Office of Health Care Statistics. The data span the years from 2010 through 2017. Each year of data represents patient care that occurred in the previous calendar year. This dataset is a sample of the full HEDIS data which is available for purchase from the Office of Health Care Statistics. To request a copy of the data in its entirety, please fill out a data request form located at: http://health.utah.gov/hda/order/view.php?id=10441

  14. A

    Weather Radar Base Reflectivity Mosaic

    • data.amerigeoss.org
    csv, esri rest +2
    Updated Jul 5, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmeriGEO ArcGIS (2017). Weather Radar Base Reflectivity Mosaic [Dataset]. https://data.amerigeoss.org/hr/dataset/weather-radar-base-reflectivity-mosaic
    Explore at:
    html, csv, esri rest, geojsonAvailable download formats
    Dataset updated
    Jul 5, 2017
    Dataset provided by
    AmeriGEO ArcGIS
    Description
    Map Information

    This nowCOAST time-enabled map service provides maps of NOAA/National Weather Service RIDGE2 mosaics of base reflectivity images across the Continental United States (CONUS) as well as Puerto Rico, Hawaii, Guam and Alaska with a 2 kilometer (1.25 mile) horizontal resolution. The mosaics are compiled by combining regional base reflectivity radar data obtained from 158 Weather Surveillance Radar 1988 Doppler (WSR-88D) also known as NEXt-generation RADar (NEXRAD) sites across the country operated by the NWS and the Dept. of Defense and also from data from Terminal Doppler Weather Radars (TDWR) at major airports. The colors on the map represent the strength of the energy reflected back toward the radar. The reflected intensities (echoes) are measured in dBZ (decibels of z). The color scale is very similar to the one used by the NWS RIDGE2 map viewer. The radar data itself is updated by the NWS every 10 minutes during non-precipitation mode, but every 4-6 minutes during precipitation mode. To ensure nowCOAST is displaying the most recent data possible, the latest mosaics are downloaded every 5 minutes. For more detailed information about the update schedule, see: http://new.nowcoast.noaa.gov/help/#section=updateschedule

    Background Information

    Reflectivity is related to the power, or intensity, of the reflected radiation that is sensed by the radar antenna. Reflectivity is expressed on a logarithmic scale in units called dBZ. The "dB" in the dBz scale is logarithmic and is unit less, but is used only to express a ratio. The "z" is the ratio of the density of water drops (measured in millimeters, raised to the 6th power) in each cubic meter (mm^6/m^3). When the "z" is large (many drops in a cubic meter), the reflected power is large. A small "z" means little returned energy. In fact, "z" can be less than 1 mm^6/m^3 and since it is logarithmic, dBz values will become negative, as often in the case when the radar is in clear air mode and indicated by earth tone colors. dBZ values are related to the intensity of rainfall. The higher the dBZ, the stronger the rain rate. A value of 20 dBZ is typically the point at which light rain begins. The values of 60 to 65 dBZ is about the level where 3/4 inch hail can occur. However, a value of 60 to 65 dBZ does not mean that severe weather is occurring at that location. The best reflectivity is lowest (1/2 degree elevation angle) reflectivity scan from the radar. The source of the base reflectivity mosaics is the NWS Southern Region Radar Integrated Display with Geospatial Elements (RIDGE2).

    Time Information

    This map is time-enabled, meaning that each individual layer contains time-varying data and can be utilized by clients capable of making map requests that include a time component.

    This particular service can be queried with or without the use of a time component. If the time parameter is specified in a request, the data or imagery most relevant to the provided time value, if any, will be returned. If the time parameter is not specified in a request, the latest data or imagery valid for the present system time will be returned to the client. If the time parameter is not specified and no data or imagery is available for the present time, no data will be returned.

    In addition to ArcGIS Server REST access, time-enabled OGC WMS 1.3.0 access is also provided by this service.

    Due to software limitations, the time extent of the service and map layers displayed below does not provide the most up-to-date start and end times of available data. Instead, users have three options for determining the latest time information about the service:

    1. Issue a returnUpdates=true request for an individual layer or for the service itself, which will return the current start and end times of available data, in epoch time format (milliseconds since 00:00 January 1, 1970). To see an example, click on the "Return Updates" link at the bottom of this page under "Supported Operations". Refer to the ArcGIS REST API Map Service Documentation for more information.
    2. Issue an Identify (ArcGIS REST) or GetFeatureInfo (WMS) request against the proper layer corresponding with the target dataset. For raster data, this would be the "Image Footprints with Time Attributes" layer in the same group as the target "Image" layer being displayed. For vector (point, line, or polygon) data, the target layer can be queried directly. In either case, the attributes returned for the matching raster(s) or vector feature(s) will include the following:
      • validtime: Valid timestamp.
      • starttime: Display start time.
      • endtime: Display end time.
      • reftime: Reference time (sometimes reffered to as issuance time, cycle time, or initialization time).
      • projmins: Number of minutes from reference time to valid time.
      • desigreftime: Designated reference time; used as a common reference time for all items when individual reference times do not match.
      • desigprojmins: Number of minutes from designated reference time to valid time.
    3. Query the nowCOAST LayerInfo web service, which has been created to provide additional information about each data layer in a service, including a list of all available "time stops" (i.e. "valid times"), individual timestamps, or the valid time of a layer's latest available data (i.e. "Product Time"). For more information about the LayerInfo web service, including examples of various types of requests, refer to the nowCOAST help documentation at: http://new.nowcoast.noaa.gov/help/#section=layerinfo
    References
  15. A

    311 Service Requests

    • data.boston.gov
    csv, pdf
    Updated Jul 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Boston 311 (2025). 311 Service Requests [Dataset]. https://data.boston.gov/dataset/311-service-requests
    Explore at:
    csv(2796509), csv(131662036), csv, csv(1821993), csv(23755820), csv(110983714), csv(122678569), csv(136144072), csv(131619049), csv(47734647), csv(62808386), pdf, csv(100742126), csv(58646367), csv(4181582)Available download formats
    Dataset updated
    Jul 29, 2025
    Dataset authored and provided by
    Boston 311
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Description

    This data set includes all channels of engagement in which a service request is created.

    Refer to this link to learn more about BOS:311: https://www.cityofboston.gov/311/

  16. Envestnet | Yodlee's De-Identified Spending Data | Row/Aggregate Level | USA...

    • datarade.ai
    .sql, .txt
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Envestnet | Yodlee, Envestnet | Yodlee's De-Identified Spending Data | Row/Aggregate Level | USA Consumer Data covering 3600+ corporations | 90M+ Accounts [Dataset]. https://datarade.ai/data-products/envestnet-yodlee-s-de-identified-spending-data-row-aggreg-envestnet-yodlee
    Explore at:
    .sql, .txtAvailable download formats
    Dataset provided by
    Yodlee
    Envestnethttp://envestnet.com/
    Authors
    Envestnet | Yodlee
    Area covered
    United States of America
    Description

    Envestnet®| Yodlee®'s Spending Data (Aggregate/Row) Panels consist of de-identified, near-real time (T+1) USA credit/debit/ACH transaction level data – offering a wide view of the consumer activity ecosystem. The underlying data is sourced from end users leveraging the aggregation portion of the Envestnet®| Yodlee®'s financial technology platform.

    Envestnet | Yodlee Consumer Panels (Aggregate/Row) include data relating to millions of transactions, including ticket size and merchant location. The dataset includes de-identified credit/debit card and bank transactions (such as a payroll deposit, account transfer, or mortgage payment). Our coverage offers insights into areas such as consumer, TMT, energy, REITs, internet, utilities, ecommerce, MBS, CMBS, equities, credit, commodities, FX, and corporate activity. We apply rigorous data science practices to deliver key KPIs daily that are focused, relevant, and ready to put into production.

    We offer free trials. Our team is available to provide support for loading, validation, sample scripts, or other services you may need to generate insights from our data.

    Investors, corporate researchers, and corporates can use our data to answer some key business questions such as: - How much are consumers spending with specific merchants/brands and how is that changing over time? - Is the share of consumer spend at a specific merchant increasing or decreasing? - How are consumers reacting to new products or services launched by merchants? - For loyal customers, how is the share of spend changing over time? - What is the company’s market share in a region for similar customers? - Is the company’s loyal user base increasing or decreasing? - Is the lifetime customer value increasing or decreasing?

    Additional Use Cases: - Use spending data to analyze sales/revenue broadly (sector-wide) or granular (company-specific). Historically, our tracked consumer spend has correlated above 85% with company-reported data from thousands of firms. Users can sort and filter by many metrics and KPIs, such as sales and transaction growth rates and online or offline transactions, as well as view customer behavior within a geographic market at a state or city level. - Reveal cohort consumer behavior to decipher long-term behavioral consumer spending shifts. Measure market share, wallet share, loyalty, consumer lifetime value, retention, demographics, and more.) - Study the effects of inflation rates via such metrics as increased total spend, ticket size, and number of transactions. - Seek out alpha-generating signals or manage your business strategically with essential, aggregated transaction and spending data analytics.

    Use Cases Categories (Our data provides an innumerable amount of use cases, and we look forward to working with new ones): 1. Market Research: Company Analysis, Company Valuation, Competitive Intelligence, Competitor Analysis, Competitor Analytics, Competitor Insights, Customer Data Enrichment, Customer Data Insights, Customer Data Intelligence, Demand Forecasting, Ecommerce Intelligence, Employee Pay Strategy, Employment Analytics, Job Income Analysis, Job Market Pricing, Marketing, Marketing Data Enrichment, Marketing Intelligence, Marketing Strategy, Payment History Analytics, Price Analysis, Pricing Analytics, Retail, Retail Analytics, Retail Intelligence, Retail POS Data Analysis, and Salary Benchmarking

    1. Investment Research: Financial Services, Hedge Funds, Investing, Mergers & Acquisitions (M&A), Stock Picking, Venture Capital (VC)

    2. Consumer Analysis: Consumer Data Enrichment, Consumer Intelligence

    3. Market Data: AnalyticsB2C Data Enrichment, Bank Data Enrichment, Behavioral Analytics, Benchmarking, Customer Insights, Customer Intelligence, Data Enhancement, Data Enrichment, Data Intelligence, Data Modeling, Ecommerce Analysis, Ecommerce Data Enrichment, Economic Analysis, Financial Data Enrichment, Financial Intelligence, Local Economic Forecasting, Location-based Analytics, Market Analysis, Market Analytics, Market Intelligence, Market Potential Analysis, Market Research, Market Share Analysis, Sales, Sales Data Enrichment, Sales Enablement, Sales Insights, Sales Intelligence, Spending Analytics, Stock Market Predictions, and Trend Analysis

  17. d

    Global Temperature and Salinity Profile Programme (GTSPP) Data

    • catalog.data.gov
    • data.wu.ac.at
    Updated Aug 19, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA NODC (Point of Contact) (2015). Global Temperature and Salinity Profile Programme (GTSPP) Data [Dataset]. https://catalog.data.gov/ro/dataset/global-temperature-and-salinity-profile-programme-gtspp-data
    Explore at:
    Dataset updated
    Aug 19, 2015
    Dataset provided by
    NOAA NODC (Point of Contact)
    Description

    The Global Temperature-Salinity Profile Programme (GTSPP) develops and maintains a global ocean temperature and salinity resource with data that are both up-to-date and of the highest quality. It is a joint World Meteorological Organization (WMO) and Intergovernmental Oceanographic Commission (IOC) program. It includes data from XBTs, CTDs, moored and drifting buoys, and PALACE floats. For information about organizations contributing data to GTSPP, see http://gosic.org/goos/GTSPP-data-flow.htm . The U.S. National Oceanographic Data Center (NODC) maintains the GTSPP Continuously Managed Data Base and releases new 'best-copy' data once per month. WARNING: This dataset has a lot of data. If you request too much data, your request will fail. * If you don't specify a longitude and latitude bounding box, don't request more than a month's data at a time. * If you do specify a longitude and latitude bounding box, you can request data for a proportionally longer time period. Requesting data for a specific station_id may be slow, but it works. *** This ERDDAP dataset has data for the entire world for all available times (currently, up to and including the July 2015 data) but is a subset of the original NODC 'best-copy' data. It only includes data where the quality flags indicate the data is 1=CORRECT, 2=PROBABLY GOOD, or 5=MODIFIED. It does not include some of the metadata, any of the history data, or any of the quality flag data of the original dataset. You can always get the complete, up-to-date dataset (and additional, near-real-time data) from the source: http://www.nodc.noaa.gov/GTSPP/ . Specific differences are: * Profiles with a position_quality_flag or a time_quality_flag other than 1|2|5 were removed. * Rows with a depth (z) value less than -0.4 or greater than 10000 or a z_variable_quality_flag other than 1|2|5 were removed. * Temperature values less than -4 or greater than 40 or with a temperature_quality_flag other than 1|2|5 were set to NaN. * Salinity values less than 0 or greater than 41 or with a salinity_quality_flag other than 1|2|5 were set to NaN. * Time values were converted from "days since 1900-01-01 00:00:00" to "seconds since 1970-01-01T00:00:00". See the Quality Flag definitions on page 5 and "Table 2.1: Global Impossible Parameter Values" on page 61 of http://www.nodc.noaa.gov/GTSPP/document/qcmans/GTSPP_RT_QC_Manual_20090916.pdf . The Quality Flag definitions are also at http://www.nodc.noaa.gov/GTSPP/document/qcmans/qcflags.htm .

  18. O

    Norfolk Cares Center

    • data.norfolk.gov
    • data.virginia.gov
    application/rdfxml +5
    Updated Apr 28, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Norfolk Cares Center (2020). Norfolk Cares Center [Dataset]. https://data.norfolk.gov/Government/Norfolk-Cares-Center/p5hy-7rkp
    Explore at:
    application/rssxml, application/rdfxml, tsv, csv, xml, jsonAvailable download formats
    Dataset updated
    Apr 28, 2020
    Dataset authored and provided by
    Norfolk Cares Center
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Area covered
    Norfolk
    Description

    As of October 30, 2019, this data set will no longer be updated. A new citizen request app, called MyNorfolk, has been implemented and data from that app is available in this Open Data portal.

    The Norfolk Cares data set provides data from the IMPACT System. The data was collected by phone calls, emails, iPhone requests, and on-line requests. This data set includes service requests from November 2014 to October 2019.

  19. d

    Health Plan Prior Authorization Data

    • catalog.data.gov
    • data.wa.gov
    • +1more
    Updated Dec 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.wa.gov (2024). Health Plan Prior Authorization Data [Dataset]. https://catalog.data.gov/dataset/health-plan-prior-authorization-data
    Explore at:
    Dataset updated
    Dec 20, 2024
    Dataset provided by
    data.wa.gov
    Description

    In 2020, the Washington State Legislature enacted Engrossed Substitute Senate Bill (ESSB) 6404 (Chapter 316, Laws of 2020, codified at RCW 48.43.0161), which requires that health carriers with at least one percent of the market share in Washington State annually report certain aggregated and de-identified data related to prior authorization to the Office of the Insurance Commissioner (OIC). Prior authorization is a utilization review tool used by carriers to review the medical necessity of requested health care services for specific health plan enrollees. Carriers choose the services that are subject to prior authorization review. The reported data includes prior authorization information for the following categories of health services: • Inpatient medical/surgical • Outpatient medical/surgical • Inpatient mental health and substance use disorder • Outpatient mental health and substance use disorder • Diabetes supplies and equipment • Durable medical equipment The carriers must report the following information for the prior plan year (PY) for their individual and group health plans for each category of services: • The 10 codes with the highest number of prior authorization requests and the percent of approved requests. • The 10 codes with the highest percentage of approved prior authorization requests and the total number of requests. • The 10 codes with the highest percentage of prior authorization requests that were initially denied and then approved on appeal and the total number of such requests. Carriers also must include the average response time in hours for prior authorization requests and the number of requests for each covered service in the lists above for: • Expedited decisions. • Standard decisions. • Extenuating-circumstances decisions. Engrossed Second Substitute House Bill 1357 added additional prescription drug prior authorization reporting requirements for health carriers beginning in reporting year 2024. Carriers were provided the opportunity to submit voluntary prescription drug prior authorization data for the 2023 reporting period. Prescription drug reporting was required for the 2024 reporting period.

  20. g

    Coronavirus (Covid-19) Data in the United States

    • github.com
    • openicpsr.org
    • +2more
    csv
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://github.com/nytimes/covid-19-data
    Explore at:
    csvAvailable download formats
    Dataset provided by
    New York Times
    License

    https://github.com/nytimes/covid-19-data/blob/master/LICENSEhttps://github.com/nytimes/covid-19-data/blob/master/LICENSE

    Description

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since the first reported coronavirus case in Washington State on Jan. 21, 2020, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
CA Governor's Office of Emergency Services (2018). NOAA Weather and Marine Observations [Dataset]. https://national-government.esrij.com/maps/26ad0000b1a540e9a90760032669f3e6

NOAA Weather and Marine Observations

Explore at:
Dataset updated
Oct 19, 2018
Dataset authored and provided by
CA Governor's Office of Emergency Services
Area covered
Description

Last Revised: February 2016 Map InformationThis nowCOAST™ time-enabled map service provides maps depicting the latest surface weather and marine weather observations at observing sites using the international station model. The station model is a method for representing information collected at an observing station using symbols and numbers. The station model depicts current weather conditions, cloud cover, wind speed, wind direction, visibility, air temperature, dew point temperature, sea surface water temperature, significant wave height, air pressure adjusted to mean sea level, and the change in air pressure over the last 3 hours. The circle in the model is centered over the latitude and longitude coordinates of the station. The total cloud cover is expressed as a fraction of cloud covering the sky and is indicated by the amount of circle filled in; however, all cloud cover values are presently displayed using the "Missing" symbol due to a problem with the source data. Present weather information is also not available for display at this time. Wind speed and direction are represented by a wind barb whose line extends from the cover cloud circle towards the direction from which the wind is blowing. The short lines or flags coming off the end of the long line are called barbs, which indicate wind speed in knots. Each normal barb represents 10 knots, while short barbs indicate 5 knots. A flag represents 50 knots. If there is no wind barb depicted, an outer circle around the cloud cover symbol indicates calm winds.Due to software limitations, the observations included in this map service are organized into three separate group layers: 1) Wind velocity (wind barb) observations, 2) Cloud Cover observations, and 3) All other observations, which are displayed as numerical values (e.g. Air Temperature, Wind Gust, Visibility, Sea Surface Temperature, etc.).Additionally, due to the density of weather/ocean observations in this map service, each of these group data layers has been split into ten individual "Scale Band" layers, with each one visible for a certain range of map scales. Thus, to ensure observations are displayed at any scale, users should make sure to always specify all ten corresponding scale band layers in every map request. This will result in the scale band most appropriate for your present zoom level being shown, resulting in a clean, uncluttered display. As you zoom in, additional observations will appear.The observations in this nowCOAST™ map service are updated approximately every 10 minutes. However, since the reporting frequency varies by network or station, the observations for a particular station may update only once per hour. For more detailed information about layer update frequency and timing, please reference the nowCOAST™ Dataset Update Schedule.Background InformationThe maps of near-real-time surface weather and ocean observations are based on non-restricted data obtained from the NWS Family of Services courtesy of NESDIS/OPSD and also the NWS Meteorological Assimilation Data Ingest System (MADIS). The data includes observations from terrestrial and maritime observing stations from the U.S.A. and other countries. For terrestrial networks, the platforms include but are not limited to ASOS, AWOS, RAWS, non-automated stations, U.S. Climate Reference Networks, many U.S. Geological Survey Stations via NWS HADS, several state DOT Road Weather Information Systems, and U.S. Historical Climatology Network-Modernization. For maritime areas, the platforms include NOS/CO-OPS National Water Level Observation Network (NWLON), NOS/CO-OPS Physical Oceanographic Real-Time System (PORTS), NWS/NDBC Fixed Buoys, NDBC Coastal-Marine Automated Network (C-MAN), drifting buoys, ferries, Regional Ocean Observing System (ROOS) coastal stations and buoys, and ships participating in the Voluntary Ship Observing (VOS) Program. Observations from MADIS are updated approximately every 10 minutes in the map service and those from NESDIS are updated every hour. However, not all stations report that frequently. Many stations only report once per hour sometime between 15 minutes before the hour and 30 minutes past the hour. For these stations, new observations will not appear until approximately 23 minutes past top of the hour for land-based stations and 33 minutes past the top of the hour for maritime stations.Time InformationThis map service is time-enabled, meaning that each individual layer contains time-varying data and can be utilized by clients capable of making map requests that include a time component.In addition to ArcGIS Server REST access, time-enabled OGC WMS 1.3.0 access is also provided by this service.This particular service can be queried with or without the use of a time component. If the time parameter is specified in a request, the data or imagery most relevant to the provided time value, if any, will be returned. If the time parameter is not specified in a request, the latest data or imagery valid for the present system time will be returned to the client. If the time parameter is not specified and no data or imagery is available for the present time, no data will be returned.This service is configured with time coverage support, meaning that the service will always return the most relevant available data, if any, to the specified time value. For example, if the service contains data valid today at 12:00 and 12:10 UTC, but a map request specifies a time value of today at 12:07 UTC, the data valid at 12:10 UTC will be returned to the user. This behavior allows more flexibility for users, especially when displaying multiple time-enabled layers together despite slight differences in temporal resolution or update frequency.When interacting with this time-enabled service, only a single instantaneous time value should be specified in each request. If instead a time range is specified in a request (i.e. separate start time and end time values are given), the data returned may be different than what was intended.Care must be taken to ensure the time value specified in each request falls within the current time coverage of the service. Because this service is frequently updated as new data becomes available, the user must periodically determine the service's time extent. However, due to software limitations, the time extent of the service and map layers as advertised by ArcGIS Server does not always provide the most up-to-date start and end times of available data. Instead, users have three options for determining the latest time extent of the service:Issue a returnUpdates=true request (ArcGIS REST protocol only) for an individual layer or for the service itself, which will return the current start and end times of available data, in epoch time format (milliseconds since 00:00 January 1, 1970). To see an example, click on the "Return Updates" link at the bottom of the REST Service page under "Supported Operations". Refer to the ArcGIS REST API Map Service Documentation for more information.Issue an Identify (ArcGIS REST) or GetFeatureInfo (WMS) request against the proper layer corresponding with the target dataset. For raster data, this would be the "Image Footprints with Time Attributes" layer in the same group as the target "Image" layer being displayed. For vector (point, line, or polygon) data, the target layer can be queried directly. In either case, the attributes returned for the matching raster(s) or vector feature(s) will include the following:validtime: Valid timestamp.starttime: Display start time.endtime: Display end time.reftime: Reference time (sometimes referred to as issuance time, cycle time, or initialization time).projmins: Number of minutes from reference time to valid time.desigreftime: Designated reference time; used as a common reference time for all items when individual reference times do not match.desigprojmins: Number of minutes from designated reference time to valid time.Query the nowCOAST™ LayerInfo web service, which has been created to provide additional information about each data layer in a service, including a list of all available "time stops" (i.e. "valid times"), individual timestamps, or the valid time of a layer's latest available data (i.e. "Product Time"). For more information about the LayerInfo web service, including examples of various types of requests, refer to the nowCOAST™ LayerInfo Help DocumentationReferencesNWS, 2013: Sample Station Plot, NWS/NCEP/WPC, College Park, MD (Available at http://www.wpc.ncep.noaa.gov/html/stationplot.shtml).NWS, 2013: Terminology and Weather Symbols, NWS/NCEP/OPC, College Park, MD (Available at http://www.opc.ncep.noaa.gov/product_description/keyterm.shtml).NWS, 2013: How to read Surface weather maps, JetStream an Online School for Weather (Available at http://www.srh.noaa.gov/jetstream/synoptic/wxmaps.htm).

Search
Clear search
Close search
Google apps
Main menu