Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median household incomes for various household sizes in White House, TN, as reported by the U.S. Census Bureau. The dataset highlights the variation in median household income with the size of the family unit, offering valuable insights into economic trends and disparities within different household sizes, aiding in data analysis and decision-making.
Key observations
https://i.neilsberg.com/ch/white-house-tn-median-household-income-by-household-size.jpeg" alt="White House, TN median household income, by household size (in 2022 inflation-adjusted dollars)">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Household Sizes:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for White House median household income. You can refer the same here
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Thumbnail image by Tony Moody.This dataset includes all housing developments approved by the City of Boise’s (“city”) Planning Division since 2020 that are known by the city to have received or are expected to receive support or incentives from a government entity. Each row represents one development. Data may be unavailable for some projects and details are subject to change until construction is complete. Addresses are excluded for projects with fewer than five homes for privacy reasons.
The dataset includes details on the number of “homes” in a development. We use the word "home" to refer to any single unit of housing regardless of size, type, or whether it is rented or owned. For example, a building with 40 apartments counts as 40 homes, and a single detached house counts as one home.
The dataset includes details about the phase of each project. The process for build a new development is as follows: First, one must receive approval from the city’s Planning Division, which is also known as being “entitled.” Next, one must apply for and receive a permit from the city’s Building Division before beginning construction. Finally, once construction is complete and all city inspections have been passed, the building can be occupied.
The dataset also includes data on the affordability level of each development. To receive a government incentive, a developer is typically required to rent or sell a specified number of homes to households that have an income below limits set by the government and their housing cost must not exceed 30% of their income. The federal government determines income limits based on a standard called “area median income.” The city considers housing affordable if is targeted to households earning at or below 80% of the area median income. For a three-person household in Boise, that equates to an annual income of $60,650 and monthly rent or mortgage of $1,516. See Boise Income Guidelines for more details.Project Address(es) – Includes all addresses that are included as part of the development project.Address – The primary address for the development.Parcel Number(s) – The identification code for all parcels of land included in the development.Acreage – The number of acres for the parcel(s) included in the project.Planning Permit Number – The identification code for all permits the development has received from the Planning Division for the City of Boise. The number and types of permits required vary based on the location and type of development.Date Entitled – The date a development was approved by the City’s Planning Division.Building Permit Number – The identification code for all permits the development has received from the city’s Building Division.Date Building Permit Issued – Building permits are required to begin construction on a development.Date Final Certificate of Occupancy Issued – A certificate of occupancy is the final approval by the city for a development, once construction is complete. Not all developments require a certificate of occupancy.Studio – The number of homes in the development that are classified as a studio. A studio is typically defined as a home in which there is no separate bedroom. A single room serves as both a bedroom and a living room.1-Bedroom – The number of homes in a development that have exactly one bedroom.2-Bedroom – The number of homes in a development that have exactly two bedrooms.3-Bedroom – The number of homes in a development that have exactly three bedrooms.4+ Bedroom – The number of homes in a development that have four or more bedrooms.# of Total Project Units – The total number of homes in the development.# of units toward goals – The number of homes in a development that contribute to either the city’s goal to produce housing affordable at or under 60% of area median income, or the city’s goal to create permanent supportive housing for households experiencing homelessness.Rent at or under 60% AMI - The number of homes in a development that are required to be rented at or below 60% of area median income. See the description of the dataset above for an explanation of area median income or see Boise Income Guidelines for more details. Boise defines a home as “affordable” if it is rented or sold at or below 80% of area median income.Rent 61-80% AMI – The number of homes in a development that are required to be rented at between 61% and 80% of area median income. See the description of the dataset above for an explanation of area median income or see Boise Income Guidelines for more details. Boise defines a home as “affordable” if it is rented or sold at or below 80% of area median income.Rent 81-120% AMI - The number of homes in a development that are required to be rented at between 81% and 120% of area median income. See the description of the dataset above for an explanation of area median income or see Boise Income Guidelines for more details.Own at or under 60% AMI - The number of homes in a development that are required to be sold at or below 60% of area median income. See the description of the dataset above for an explanation of area median income or see Boise Income Guidelines for more details. Boise defines a home as “affordable” if it is rented or sold at or below 80% of area median income.Own 61-80% AMI – The number of homes in a development that are required to be sold at between 61% and 80% of area median income. See the description of the dataset above for an explanation of area median income or see Boise Income Guidelines for more details. Boise defines a home as “affordable” if it is rented or sold at or below 80% of area median income.Own 81-120% AMI - The number of homes in a development that are required to be sold at between 81% and 120% of area median income. See the description of the dataset above for an explanation of area median income or see Boise Income Guidelines for more details.Housing Land Trust – “Yes” if a development receives or is expected to receive this incentive. The Housing Land Trust is a model in which the city owns land that it leases to a developer to build affordable housing.City Investment – “Yes” if the city invests funding or contributes land to an affordable development.Zoning Incentive - The city's zoning code provides incentives for developers to create affordable housing. Incentives may include the ability to build an extra floor or be subject to reduced parking requirements. “Yes” if a development receives or is expected to receive one of these incentives.Project Management - The city provides a developer and their design team a single point of contact who works across city departments to simplify the permitting process, and assists the applicants in understanding the city’s requirements to avoid possible delays. “Yes” if a development receives or is expected to receive this incentive.Low-Income Housing Tax Credit (LIHTC) - A federal tax credit available to some new affordable housing developments. The Idaho Housing and Finance Association is a quasi-governmental agency that administers these federal tax credits. “Yes” if a development receives or is expected to receive this incentive.CCDC Investment - The Capital City Development Corp (CCDC) is a public agency that financially supports some affordable housing development in Urban Renewal Districts. “Yes” if a development receives or is expected to receive this incentive. If “Yes” the field identifies the Urban Renewal District associated with the development.City Goal – The city has set goals to produce housing affordable to households at or below 60% of area median income, and to create permanent supportive housing for households experiencing homelessness. This field identifies whether a development contributes to one of those goals.Project Phase - The process for build a new development is as follows: First, one must receive approval from the city’s Planning Division, which is also known as being “entitled.” Next, one must apply for and receive a permit from the city’s Building Division before beginning construction. Finally, once construction is complete and all city inspections have been passed, the building can be occupied.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median household incomes for various household sizes in Washington Court House, OH, as reported by the U.S. Census Bureau. The dataset highlights the variation in median household income with the size of the family unit, offering valuable insights into economic trends and disparities within different household sizes, aiding in data analysis and decision-making.
Key observations
https://i.neilsberg.com/ch/washington-court-house-oh-median-household-income-by-household-size.jpeg" alt="Washington Court House, OH median household income, by household size (in 2022 inflation-adjusted dollars)">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Household Sizes:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Washington Court House median household income. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘3.05 Subsidized Housing Funding Usage (summary)’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/6c97f668-67da-4ae8-81a9-b35b7406c076 on 11 February 2022.
--- Dataset description provided by original source is as follows ---
This dataset provides information on Tempe's subsidized housing program, including monthly voucher and funding budgets and expenditures.
The City of Tempe Housing Services Division receives federal funds through Housing and Urban Development Department (HUD) to subsidize housing for low-income families that is decent, safe, sanitary and affordable. Families served by the program must live at or below 50% of the area median income.
Tempe has a fixed number of Housing Choice Vouchers (HCVs) based on our HUD contract, which represents the maximum number of families that the Housing Authority could assist. Congress and HUD do not fund the program to assist all of the families we are allotted to assist. We can only assist the number of families we have the budget to assist.
HUD provides an initial funding amount based on what they anticipate they will allocate to housing assistance payments. The actual amount of funding received is subject to change depending on Federal Budget priorities, Congressional approval and many other factors.
Expenditures are reported monthly, as HUD requires expenses to be posted in the month they were incurred rather than the month the expense was paid.
The performance measure dashboard is available at 3.05 Subsidized Housing Funding Usage.
Additional Information
Source: Manually maintained data, Housing Pro and Quickbooks
Contact: Levon Lamy
Contact E-Mail: Levon_Lamy@tempe.gov
Data Source Type: CSV
Preparation Method: Monthly values are calculated by determining the month each of the expenditures was for and retroactivelly accruing the funding use to the appropriate period. There are multiple, multistep excel worksheets that are used to balance between the specialty Housing Software, City Financial System and the HUD mandated reporting system. Additionally, it is important to note that Funding is allocated by Congress on the Federal Fiscal Year (October - September), the City operates on a Fiscal Year (July - June) and HUD provides funding on the Housing Authority in Calendar Year (January - December) funding increments. Therefore, the City must cross balance between three funding years.
Publish Frequency: Quarterly
Publish Method: Manual
--- Original source retains full ownership of the source dataset ---
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The Affordable Housing for Low/Moderate Households data set provides unit level data for permanently affordable rental and for sale properties in the City of Boulder. The data set includes the individual unit sizes, bedrooms, built years, census locations as well as other descriptive indicators. A data dictionary with descriptions of the fields included in the dataset can be downloaded here. For more information on the City of Boulder Housing program please visit https://bouldercolorado.gov/housing.
IMPORTANT! PLEASE READ DISCLAIMER BEFORE USING DATA. To reduce the energy burden on income-qualified households within New York State, NYSERDA offers the EmPower New York (EmPower) program, a retrofit program that provides cost-effective electric reduction measures (i.e., primarily lighting and refrigerator replacements), and cost-effective home performance measures (i.e., insulation air sealing, heating system repair and replacments, and health and safety measures) to income qualified homeowners and renters. Home assessments and implementation services are provided by Building Performance Institute (BPI) Goldstar contractors to reduce energy use for low income households. This data set includes energy efficiency projects completed since January 2018 for households with income up to 60% area (county) median income. D I S C L A I M E R: Estimated Annual kWh Savings, Estimated Annual MMBtu Savings, and First Year Energy Savings $ Estimate represent contractor reported savings derived from energy modeling software calculations and not actual realized energy savings. The accuracy of the Estimated Annual kWh Savings and Estimated Annual MMBtu Savings for projects has been evaluated by an independent third party. The results of the impact analysis indicate that, on average, actual savings amount to 54 percent of the Estimated Annual kWh Savings and 70 percent of the Estimated Annual MMBtu Savings. The analysis did not evaluate every single project, but rather a sample of projects from 2007 and 2008, so the results are applicable to the population on average but not necessarily to any individual project which could have over or under achieved in comparison to the evaluated savings. The results from the impact analysis will be updated when more recent information is available. Some reasons individual households may realize savings different from those projected include, but are not limited to, changes in the number or needs of household members, changes in occupancy schedules, changes in energy usage behaviors, changes to appliances and electronics installed in the home, and beginning or ending a home business. For more information, please refer to the Evaluation Report published on NYSERDA’s website at: https://www.nyserda.ny.gov/-/media/Files/Publications/PPSER/Program-Evaluation/2012ContractorReports/2012-EmPower-New-York-Impact-Report.pdf. This dataset includes the following data points for projects completed after January 1, 2018: Reporting Period, Project ID, Project County, Project City, Project ZIP, Gas Utility, Electric Utility, Project Completion Date, Total Project Cost (USD), Pre-Retrofit Home Heating Fuel Type, Year Home Built, Size of Home, Number of Units, Job Type, Type of Dwelling, Measure Type, Estimated Annual kWh Savings, Estimated Annual MMBtu Savings, First Year Modeled Energy Savings $ Estimate (USD). How does your organization use this dataset? What other NYSERDA or energy-related datasets would you like to see on Open NY? Let us know by emailing OpenNY@nyserda.ny.gov.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
A Home for Everyone is the City of Boise’s (city) initiative to address needs in the community by supporting the development and preservation of housing affordable to residents on Boise budgets. A Home for Everyone has three core goals: produce new homes affordable at 60% of area median income, create permanent supportive housing for households experiencing homelessness, and preserve home affordable at 80% of area median income. This dataset includes information about all homes that count toward the city’s Home for Everyone goals.
While the “produce affordable housing” and “create permanent supportive housing” goals are focused on supporting the development of new housing, the preservation goal is focused on maintaining existing housing affordable. As a result, many of the data fields related to new development are not relevant to preservation projects. For example, zoning incentives are only applicable to new construction projects.
Data may be unavailable for some projects and details are subject to change until construction is complete. Addresses are excluded for projects with fewer than five homes for privacy reasons.
The dataset includes details on the number of “homes”. We use the word "home" to refer to any single unit of housing regardless of size, type, or whether it is rented or owned. For example, a building with 40 apartments counts as 40 homes, and a single detached house counts as one home.
The dataset includes details about the phase of each project when a project involves constructing new housing. The process for building a new development is as follows: First, one must receive approval from the city’s Planning Division, which is also known as being “entitled.” Next, one must apply for and receive a permit from the city’s Building Division before beginning construction. Finally, once construction is complete and all city inspections have been passed, the building can be occupied.
To contribute to a city goal, homes must meet affordability requirements based on a standard called area median income. The city considers housing affordable if is targeted to households earning at or below 80% of the area median income. For a three-person household in Boise, that equates to an annual income of $60,650 and monthly housing cost of $1,516. Deeply affordable housing sets the income limit at 60% of area median income, or even 30% of area median income. See Boise Income Guidelines for more details.Project Name – The name of each project. If a row is related to the Home Improvement Loan program, that row aggregates data for all homes that received a loan in that quarter or year. Primary Address – The primary address for the development. Some developments encompass multiple addresses.Project Address(es) – Includes all addresses that are included as part of the development project.Parcel Number(s) – The identification code for all parcels of land included in the development.Acreage – The number of acres for the parcel(s) included in the project.Planning Permit Number – The identification code for all permits the development has received from the Planning Division for the City of Boise. The number and types of permits required vary based on the location and type of development.Date Entitled – The date a development was approved by the City’s Planning Division.Building Permit Number – The identification code for all permits the development has received from the city’s Building Division.Date Building Permit Issued – Building permits are required to begin construction on a development.Date Final Certificate of Occupancy Issued – A certificate of occupancy is the final approval by the city for a development, once construction is complete. Not all developments require a certificate of occupancy.Studio – The number of homes in the development that are classified as a studio. A studio is typically defined as a home in which there is no separate bedroom. A single room serves as both a bedroom and a living room.1-Bedroom – The number of homes in a development that have exactly one bedroom.2-Bedroom – The number of homes in a development that have exactly two bedrooms.3-Bedroom – The number of homes in a development that have exactly three bedrooms.4+ Bedroom – The number of homes in a development that have four or more bedrooms.# of Total Project Units – The total number of homes in the development.# of units toward goals – The number of homes in a development that contribute to either the city’s goal to produce housing affordable at or under 60% of area median income, or the city’s goal to create permanent supportive housing for households experiencing homelessness. Rent at or under 60% AMI - The number of homes in a development that are required to be rented at or below 60% of area median income. See the description of the dataset above for an explanation of area median income or see Boise Income Guidelines for more details. Boise defines a home as “affordable” if it is rented or sold at or below 80% of area median income.Rent 61-80% AMI – The number of homes in a development that are required to be rented at between 61% and 80% of area median income. See the description of the dataset above for an explanation of area median income or see Boise Income Guidelines for more details. Boise defines a home as “affordable” if it is rented or sold at or below 80% of area median income.Rent 81-120% AMI - The number of homes in a development that are required to be rented at between 81% and 120% of area median income. See the description of the dataset above for an explanation of area median income or see Boise Income Guidelines for more details.Own at or under 60% AMI - The number of homes in a development that are required to be sold at or below 60% of area median income. See the description of the dataset above for an explanation of area median income or see Boise Income Guidelines for more details. Boise defines a home as “affordable” if it is rented or sold at or below 80% of area median income.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘CT Qualified Census Tracts’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/2109deb6-e5d4-4ce8-a4db-49f64db79930 on 27 January 2022.
--- Dataset description provided by original source is as follows ---
This dataset provides access to Qualified Census Tracts (QCTs) in Connecticut to assist in administration of American Rescue Plan (ARP) funds.
The Secretary of HUD must designate QCTs, which are areas where either 50 percent or more of the households have an income less than 60 percent of the AMGI for such year or have a poverty rate of at least 25 percent.
HUD designates QCTs based on new income and poverty data released in the American Community Survey (ACS). Specifically, HUD relies on the most recent three sets of ACS data to ensure that anomalous estimates, due to sampling, do not affect the QCT status of tracts.
QCTs are identified for the purpose of Low-Income Housing Credits under IRC Section 42, with the purpose of increasing the availability of low-income rental housing by providing an income tax credit to certain owners of newly constructed or substantially rehabilitated low-income rental housing projects.
Also included are the number of households from the 2010 census (the “p0150001” variable), the average poverty rate using the 2014-2018 ACS data (the “pov_rate_18” variable), and the ratio of Tract Average Household Size Adjusted Income Limit to Tract Median Household Income using the 2014-2018 ACS data (the “inc_factor_18” variable). For the last variable mentioned in the previous paragraph, the income limit is the limit for being considered a very low income household (size-adjusted and based on Area Mean Gross Income). This value is divided by the median household income for the given tract, to get a sense of how the limit and median incomes compare. For example, if ratio>1, it implies that the tract is very low income because the limit income is greater than the median income. This ratio is a compact way to include the separate variables for the household income limit and median household income for each tract.
--- Original source retains full ownership of the source dataset ---
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the median household income in White House. It can be utilized to understand the trend in median household income and to analyze the income distribution in White House by household type, size, and across various income brackets.
The dataset will have the following datasets when applicable
Please note: The 2020 1-Year ACS estimates data was not reported by the Census Bureau due to the impact on survey collection and analysis caused by COVID-19. Consequently, median household income data for 2020 is unavailable for large cities (population 65,000 and above).
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Explore our comprehensive data analysis and visual representations for a deeper understanding of White House median household income. You can refer the same here
This dataset provides access to Qualified Census Tracts (QCTs) in Connecticut to assist in administration of American Rescue Plan (ARP) funds. The Secretary of HUD must designate QCTs, which are areas where either 50 percent or more of the households have an income less than 60 percent of the AMGI for such year or have a poverty rate of at least 25 percent. HUD designates QCTs based on new income and poverty data released in the American Community Survey (ACS). Specifically, HUD relies on the most recent three sets of ACS data to ensure that anomalous estimates, due to sampling, do not affect the QCT status of tracts. QCTs are identified for the purpose of Low-Income Housing Credits under IRC Section 42, with the purpose of increasing the availability of low-income rental housing by providing an income tax credit to certain owners of newly constructed or substantially rehabilitated low-income rental housing projects. Also included are the number of households from the 2010 census (the “p0150001” variable), the average poverty rate using the 2014-2018 ACS data (the “pov_rate_18” variable), and the ratio of Tract Average Household Size Adjusted Income Limit to Tract Median Household Income using the 2014-2018 ACS data (the “inc_factor_18” variable). For the last variable mentioned in the previous paragraph, the income limit is the limit for being considered a very low income household (size-adjusted and based on Area Mean Gross Income). This value is divided by the median household income for the given tract, to get a sense of how the limit and median incomes compare. For example, if ratio>1, it implies that the tract is very low income because the limit income is greater than the median income. This ratio is a compact way to include the separate variables for the household income limit and median household income for each tract.
Knowing who your consumers are is essential for businesses, marketers, and researchers. This detailed demographic file offers an in-depth look at American consumers, packed with insights about personal details, household information, financial status, and lifestyle choices. Let's take a closer look at the data:
Personal Identifiers and Basic Demographics At the heart of this dataset are the key details that make up a consumer profile:
Unique IDs (PID, HHID) for individuals and households Full names (First, Middle, Last) and suffixes Gender and age Date of birth Complete location details (address, city, state, ZIP) These identifiers are critical for accurate marketing and form the base for deeper analysis.
Geospatial Intelligence This file goes beyond just listing addresses by including rich geospatial data like:
Latitude and longitude Census tract and block details Codes for Metropolitan Statistical Areas (MSA) and Core-Based Statistical Areas (CBSA) County size codes Geocoding accuracy This allows for precise geographic segmentation and localized marketing.
Housing and Property Data The dataset covers a lot of ground when it comes to housing, providing valuable insights for real estate professionals, lenders, and home service providers:
Homeownership status Dwelling type (single-family, multi-family, etc.) Property values (market, assessed, and appraised) Year built and square footage Room count, amenities like fireplaces or pools, and building quality This data is crucial for targeting homeowners with products and services like refinancing or home improvement offers.
Wealth and Financial Data For a deeper dive into consumer wealth, the file includes:
Estimated household income Wealth scores Credit card usage Mortgage info (loan amounts, rates, terms) Home equity estimates and investment property ownership These indicators are invaluable for financial services, luxury brands, and fundraising organizations looking to reach affluent individuals.
Lifestyle and Interests One of the most useful features of the dataset is its extensive lifestyle segmentation:
Hobbies and interests (e.g., gardening, travel, sports) Book preferences, magazine subscriptions Outdoor activities (camping, fishing, hunting) Pet ownership, tech usage, political views, and religious affiliations This data is perfect for crafting personalized marketing campaigns and developing products that align with specific consumer preferences.
Consumer Behavior and Purchase Habits The file also sheds light on how consumers behave and shop:
Online and catalog shopping preferences Gift-giving tendencies, presence of children, vehicle ownership Media consumption (TV, radio, internet) Retailers and e-commerce businesses will find this behavioral data especially useful for tailoring their outreach.
Demographic Clusters and Segmentation Pre-built segments like:
Household, neighborhood, family, and digital clusters Generational and lifestage groups make it easier to quickly target specific demographics, streamlining the process for market analysis and campaign planning.
Ethnicity and Language Preferences In today's multicultural market, knowing your audience's cultural background is key. The file includes:
Ethnicity codes and language preferences Flags for Hispanic/Spanish-speaking households This helps ensure culturally relevant and sensitive communication.
Education and Occupation Data The dataset also tracks education and career info:
Education level and occupation codes Home-based business indicators This data is essential for B2B marketers, recruitment agencies, and education-focused campaigns.
Digital and Social Media Habits With everyone online, digital behavior insights are a must:
Internet, TV, radio, and magazine usage Social media platform engagement (Facebook, Instagram, LinkedIn) Streaming subscriptions (Netflix, Hulu) This data helps marketers, app developers, and social media managers connect with their audience in the digital space.
Political and Charitable Tendencies For political campaigns or non-profits, this dataset offers:
Political affiliations and outlook Charitable donation history Volunteer activities These insights are perfect for cause-related marketing and targeted political outreach.
Neighborhood Characteristics By incorporating census data, the file provides a bigger picture of the consumer's environment:
Population density, racial composition, and age distribution Housing occupancy and ownership rates This offers important context for understanding the demographic landscape.
Predictive Consumer Indexes The dataset includes forward-looking indicators in categories like:
Fashion, automotive, and beauty products Health, home decor, pet products, sports, and travel These predictive insights help businesses anticipate consumer trends and needs.
Contact Information Finally, the file includes ke...
HOME Income Limits are calculated using the same methodology that HUD uses for calculating the income limits for the Section 8 program. These limits are based on HUD estimates of median family income, with adjustments based on family size. The Department's methodology for calculating nationwide median family income figures is described in Notice PDR-2001-01. For more information about how HUD calculates the HOME Program income limits, visit huduser.gov, the website for HUD's Office of Policy Development and Research, for more general information.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘ Zillow Housing Aspirations Report’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yamqwe/zillow-housing-aspirations-reporte on 13 February 2022.
--- Dataset description provided by original source is as follows ---
Additional Data Products
Product: Zillow Housing Aspirations Report
Date: April 2017
Definitions
Home Types and Housing Stock
- All Homes: Zillow defines all homes as single-family, condominium and co-operative homes with a county record. Unless specified, all series cover this segment of the housing stock.
- Condo/Co-op: Condominium and co-operative homes.
- Multifamily 5+ units: Units in buildings with 5 or more housing units, that are not a condominiums or co-ops.
- Duplex/Triplex: Housing units in buildings with 2 or 3 housing units.
Additional Data Products
- Zillow Home Value Forecast (ZHVF): The ZHVF is the one-year forecast of the ZHVI. Our forecast methodology is methodology post.
- Zillow creates our negative equity data using our own data in conjunction with data received through our partnership with TransUnion, a leading credit bureau. We match estimated home values against actual outstanding home-related debt amounts provided by TransUnion. To read more about how we calculate our negative equity metrics, please see our here.
- Cash Buyers: The share of homes in a given area purchased without financing/in cash. To read about how we calculate our cash buyer data, please see our research brief.
- Mortgage Affordability, Rental Affordability, Price-to-Income Ratio, Historical ZHVI, Historical ZHVI and Houshold Income are calculated as a part of Zillow’s quarterly Affordability Indices. To calculate mortgage affordability, we first calculate the mortgage payment for the median-valued home in a metropolitan area by using the metro-level Zillow Home Value Index for a given quarter and the 30-year fixed mortgage interest rate during that time period, provided by the Freddie Mac Primary Mortgage Market Survey (based on a 20 percent down payment). Then, we consider what portion of the monthly median household income (U.S. Census) goes toward this monthly mortgage payment. Median household income is available with a lag. For quarters where median income is not available from the U.S. Census Bureau, we calculate future quarters of median household income by estimating it using the Bureau of Labor Statistics’ Employment Cost Index. The affordability forecast is calculated similarly to the current affordability index but uses the one year Zillow Home Value Forecast instead of the current Zillow Home Value Index and a specified interest rate in lieu of PMMS. It also assumes a 20 percent down payment. We calculate rent affordability similarly to mortgage affordability; however we use the Zillow Rent Index, which tracks the monthly median rent in particular geographical regions, to capture rental prices. Rents are chained back in time by using U.S. Census Bureau American Community Survey data from 2006 to the start of the Zillow Rent Index, and Decennial Census for all other years.
- The mortgage rate series is the average mortgage rate quoted on Zillow Mortgages for a 30-year, fixed-rate mortgage in 15-minute increments during business hours, 6:00 AM to 5:00 PM Pacific. It does not include quotes for jumbo loans, FHA loans, VA loans, loans with mortgage insurance or quotes to consumers with credit scores below 720. Federal holidays are excluded. The jumbo mortgage rate series is the average jumbo mortgage rate quoted on Zillow Mortgages for a 30-year, fixed-rate, jumbo mortgage in one-hour increments during business hours, 6:00 AM to 5:00 PM Pacific Time. It does not include quotes to consumers with credit scores below 720. Traditional federal holidays and hours with insufficient sample sizes are excluded.
About Zillow Data (and Terms of Use Information)
- Zillow is in the process of transitioning some data sources with the goal of producing published data that is more comprehensive, reliable, accurate and timely. As this new data is incorporated, the publication of select metrics may be delayed or temporarily suspended. We look forward to resuming our usual publication schedule for all of our established datasets as soon as possible, and we apologize for any inconvenience. Thank you for your patience and understanding.
- All data accessed and downloaded from this page is free for public use by consumers, media, analysts, academics etc., consistent with our published Terms of Use. Proper and clear attribution of all data to Zillow is required.
- For other data requests or inquiries for Zillow Real Estate Research, contact us here.
- All files are time series unless noted otherwise.
- To download all Zillow metrics for specific levels of geography, click here.
- To download a crosswalk between Zillow regions and federally defined regions for counties and metro areas, click here.
- Unless otherwise noted, all series cover single-family residences, condominiums and co-op homes only.
Source: https://www.zillow.com/research/data/
This dataset was created by Zillow Data and contains around 200 samples along with Unnamed: 1, Unnamed: 0, technical information and other features such as: - Unnamed: 1 - Unnamed: 0 - and more.
- Analyze Unnamed: 1 in relation to Unnamed: 0
- Study the influence of Unnamed: 1 on Unnamed: 0
- More datasets
If you use this dataset in your research, please credit Zillow Data
--- Original source retains full ownership of the source dataset ---
This database automatically captures metadata, the source of which is the GOVERNMENT OF THE REPUBLIC OF SLOVENIA STATISTICAL OFFICE OF THE REPUBLIC OF SLOVENIA and corresponds to the source database entitled "Median burden of housing costs by household income classes, Slovenia, annually".
The actual data is available in PC-Axis format (.px). Among the additional links, you can access the pages of the source portal for insight and selection of data, and there is also the PX-Win program, which can be downloaded for free. Both allow you to select data for display, change the format of the printout and save it in different formats, as well as view and print tables of unlimited size and some basic statistical analyses and graphical representations.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Public Use Database (PUDB) is released annually to meet FHFA’s requirement under 12 U.S.C. 4543 and 4546(d) to publicly disclose data about the Enterprises’ single-family and multifamily mortgage acquisitions. The datasets supply mortgage lenders, planners, researchers, policymakers, and housing advocates with information concerning the flow of mortgage credit in America’s neighborhoods. Beginning with data for mortgages acquired in 2018, FHFA has ordered that the PUDB be expanded to include additional data that is the same as the data definitions used by the regulations implementing the Home Mortgage Disclosure Act, as required by 12 U.S.C. 4543(a)(2) and 4546(d)(1).The PUDB single-family datasets include loan-level records that include data elements on the income, race, and sex of each borrower as well as the census tract location of the property, loan-to-value (LTV) ratio, age of mortgage note, and affordability of the mortgage. New for 2018 are the inclusion of the borrower’s debt-to-income (DTI) ratio and detailed LTV ratio data at the census tract level. The PUDB multifamily property-level datasets include information on the unpaid principal balance and type of seller/servicer from which the Enterprise acquired the mortgage. New for 2018 is the inclusion of property size data at the census tract level. The multifamily unit-class files also include information on the number and affordability of the units in the property. Both the single-family and multifamily datasets include indicators of whether the purchases are from “underserved” census tracts, as defined in terms of median income and minority percentage of population.Prior to 2010 the single-family PUDB consisted of three files: Census Tract, National A, and National B files. With the 2010 PUDB a fourth file, National C, was added to provide information on high-cost mortgages acquired by the Enterprises. The single-family Census Tract file includes information on the location of the property based on the 2010 Census for acquisition years 2012 through 2021, and the 2020 Census beginning with the 2022 acquisition year. The National files contain other information but lack detailed geographic information in order to protect Enterprise proprietary data. The multifamily datasets also consist of a Census Tract file, and a National file without detailed geographic information.Several dashboards are available to analyze the data:Enterprise Multifamily Public Use Database DashboardThe Enterprise Multifamily Public Use Database (PUDB) Dashboard provides users an interactive way to generate and visualize Enterprise PUDB data of multifamily mortgage acquisitions by Fannie Mae and Freddie Mac. It shows characteristics about multifamily loans, properties and units at the national level, and characteristics about multifamily loans and properties at the state level. It includes key statistics, time series charts, and state maps of multifamily housing characteristics such as median loan amount, number of properties, average number of units per property, and unit affordability. The underlying aggregate statistics presented in the dashboard come from three multifamily data files in the Enterprise PUDB, updated annually since 2008, including two property-level datasets and a data file on the size and affordability of individual units.Enterprise Multifamily Public Use DashboardPress Release - FHFA Releases Data Visualization Dashboard for Enterprises’ Multifamily Mortgage AcquisitionsMortgage Loan and Natural Disaster DashboardFHFA published an interactive Mortgage Loan and Natural Disaster Dashboard that combines FHFA’s PUDB reports on single-family and multifamily acquisitions for the regulated entities, FEMA’s National Risk Index (NRI), and FHFA’s Duty to Serve 2023 High-Needs rural areas. Desired geographies can be exported to .pdf and Excel from the Public Use Database and National Risk Index Dashboard.Mortgage Loan and Natural Disaster DashboardMortgage Loan and Natural Disaster Dashboard FAQs
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median household incomes for various household sizes in Red House, New York, as reported by the U.S. Census Bureau. The dataset highlights the variation in median household income with the size of the family unit, offering valuable insights into economic trends and disparities within different household sizes, aiding in data analysis and decision-making.
Key observations
https://i.neilsberg.com/ch/red-house-ny-median-household-income-by-household-size.jpeg" alt="Red House, New York median household income, by household size (in 2022 inflation-adjusted dollars)">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Household Sizes:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Red House town median household income. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer shows census tracts that meet the following definitions: Census tracts with median household incomes at or below 80 percent of the statewide median income or with median household incomes at or below the threshold designated as low income by the Department of Housing and Community Development’s list of state income limits adopted under Healthy and Safety Code section 50093 and/or Census tracts receiving the highest 25 percent of overall scores in CalEnviroScreen 4.0 or Census tracts lacking overall scores in CalEnviroScreen 4.0 due to data gaps, but receiving the highest 5 percent of CalEnviroScreen 4.0 cumulative population burden scores or Census tracts identified in the 2017 DAC designation as disadvantaged, regardless of their scores in CalEnviroScreen 4.0 or Lands under the control of federally recognized Tribes.
This dataset contains existing multifamily rental sites in the City of Detroit with housing units that have been preserved as affordable since 2018 with assistance from the public sector.
Over time, affordable units are at risk of falling off line, either due to obsolescence or conversion to market-rate rents. This dataset contains occupied multifamily rental housing sites (typically 5+ units) in the City of Detroit, including those that have units that have been preserved as affordable since 2015 through public funding, regulatory agreements, and other means of assistance from the public sector. Data are collected from developers, other governmental departments and agencies, and proprietary data sources by various teams within the Housing and Revitalization Department, led by the Preservation Team. Data have been tracked since 2018 in service of citywide housing preservation goals. This reflects HRD's current knowledge of multifamily units in the city and will be updated as the department's knowledge changes. For more information about the City's multifamily affordable housing policies and goals, visit here.
Affordability level for affordable units are measured by the percentage of the Area Median Income (AMI) that a household could earn for that unit to be considered affordable for them. For example, a unit that rents at a 60% AMI threshold would be affordable to a household earning 60% or less of the median income for the area. Rent affordability is typically defined as housing costs consuming 30% or less of monthly income. Regulated housing programs are designed to serve households based on certain income benchmarks relative to AMI, and these income benchmarks vary based on household size. Detroit city's AMI levels are set by the Department of Housing and Urban Development (HUD) for the Detroit-Warren-Livonia, MI Metro Fair Market Rent (FMR) area. For more information on AMI in Detroit, visit here.
This dataset contains multifamily affordable and market-rate housing sites (typically 5+ units) in the City of Detroit that have been built or rehabbed since 2015, or are currently under construction. Most sites are rental housing, though some are for sale. The data are collected from developers, other government departments and agencies, and proprietary data sources in order to track new multifamily and affordable housing construction and rehabilitation occurring in throughout the city, in service of the City's multifamily affordable housing goals. Data are compiled by various teams within the Housing and Revitalization Department (HRD), led by the Preservation Team. This dataset reflects HRD's current knowledge of multifamily units under construction in the city and will be updated as the department's knowledge changes. For more information about the City's multifamily affordable housing policies and goals, visit here.Affordability level for affordable units are measured by the percentage of the Area Median Income (AMI) that a household could earn for that unit to be considered affordable for them. For example, a unit that rents at a 60% AMI threshold would be affordable to a household earning 60% or less of the median income for the area. Rent affordability is typically defined as housing costs consuming 30% or less of monthly income. Regulated housing programs are designed to serve households based on certain income benchmarks relative to AMI, and these income benchmarks vary based on household size. Detroit city's AMI levels are set by the Department of Housing and Urban Development (HUD) for the Detroit-Warren-Livonia, MI Metro Fair Market Rent (FMR) area. For more information on AMI in Detroit, visit here.
IMPORTANT! PLEASE READ DISCLAIMER BEFORE USING DATA. The Residential Existing Homes Program is a market transformation program that uses Building Performance Institute (BPI) Goldstar contractors to install comprehensive energy-efficient improvements. The program is designed to use building science and a whole-house approach to reduce energy use in the State’s existing one-to-four family and low-rise multifamily residential buildings and capture heating fuel and electricity-related savings. The Program provides income-based incentives, including an assisted subsidy for households with income up to 80% of the State or Median County Income, whichever is higher to install eligible energy efficiency improvements including building shell measures, high efficiency heating and cooling measures, ENERGY STAR appliances and lighting.
D I S C L A I M E R: Estimated Annual kWh Savings, Estimated Annual MMBtu Savings, and First Year Energy Savings $ Estimate represent contractor reported savings derived from energy modeling software calculations and not actual realized energy savings. The accuracy of the Estimated Annual kWh Savings and Estimated Annual MMBtu Savings for projects has been evaluated by an independent third party. The results of the impact analysis indicate that, on average, actual savings amount to 35 percent of the Estimated Annual kWh Savings and 65 percent of the Estimated Annual MMBtu Savings. The analysis did not evaluate every single project, but rather a sample of projects from 2007 and 2008, so the results are applicable to the population on average but not necessarily to any individual project which could have over or under achieved in comparison to the evaluated savings. The results from the impact analysis will be updated when more recent information is available. Many factors influence the degree to which estimated savings are realized, including proper calibration of the savings model and the savings algorithms used in the modeling software. Some reasons individual households may realize savings different from those projected include, but are not limited to, changes in the number or needs of household members, changes in occupancy schedules, changes in energy usage behaviors, changes to appliances and electronics installed in the home, and beginning or ending a home business. Beginning November 2017, the Program requires the use of HPXML-compliant modeling software tools and data quality protocols have been implemented to more accurately project savings. For more information, please refer to the Evaluation Report published on NYSERDA’s website at: http://www.nyserda.ny.gov/-/media/Files/Publications/PPSER/Program-Evaluation/2012ContractorReports/2012-HPwES-Impact-Report-with-Appendices.pdf.
The New York Residential Existing Homes (One to Four Units) dataset includes the following data points for projects completed during Green Jobs Green-NY, beginning November 15, 2010: Home Performance Project ID, Home Performance Site ID, Project County, Project City, Project Zip, Gas Utility, Electric Utility, Project Completion Date, Customer Type, Low-Rise or Home Performance Indicator, Total Project Cost (USD), Total Incentives (USD), Type of Program Financing, Amount Financed Through Program (USD), Pre-Retrofit Home Heating Fuel Type, Year Home Built, Size of Home, Volume of Home, Number of Units, Measure Type, Estimated Annual kWh Savings, Estimated Annual MMBtu Savings, First Year Energy Savings $ Estimate (USD), Homeowner Received Green Jobs-Green NY Free/Reduced Cost Audit (Y/N).
How does your organization use this dataset? What other NYSERDA or energy-related datasets would you like to see on Open NY? Let us know by emailing OpenNY@nyserda.ny.gov.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median household incomes for various household sizes in White House, TN, as reported by the U.S. Census Bureau. The dataset highlights the variation in median household income with the size of the family unit, offering valuable insights into economic trends and disparities within different household sizes, aiding in data analysis and decision-making.
Key observations
https://i.neilsberg.com/ch/white-house-tn-median-household-income-by-household-size.jpeg" alt="White House, TN median household income, by household size (in 2022 inflation-adjusted dollars)">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Household Sizes:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for White House median household income. You can refer the same here