The number of Twitter users in the United States was forecast to continuously increase between 2024 and 2028 by in total 4.3 million users (+5.32 percent). After the ninth consecutive increasing year, the Twitter user base is estimated to reach 85.08 million users and therefore a new peak in 2028. Notably, the number of Twitter users of was continuously increasing over the past years.User figures, shown here regarding the platform twitter, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of Twitter users in countries like Canada and Mexico.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Researcher(s): Alexandros Mokas, Eleni Kamateri
Supervisor: Ioannis Tsampoulatidis
This repository contains 3 social media datasets:
2 Post-processing datasets: These datasets contain post-processing data extracted from the analysis of social media posts collected for two different use cases during the first two years of the Deepcube project. More specifically, these include:
1 Annotated dataset: An additional anottated dataset was created that contains post-processing data along with annotations of Twitter posts collected for UC2 for the years 2010-2022. More specifically, it includes:
For every social media post retrieved from Twitter and Instagram, a preprocessing step was performed. This involved a three-step analysis of each post using the appropriate web service. First, the location of the post was automatically extracted from the text using a location extraction service. Second, the images included in the post were analyzed using a concept extraction service, which identified and provided the top ten concepts that best described the image. These concepts included items such as "person," "building," "drought," "sun," and so on. Finally, the sentiment expressed in the post's text was determined by using a sentiment analysis service. The sentiment was classified as either positive, negative, or neutral.
After the social media posts were preprocessed, they were visualized using the Social Media Web Application. This intuitive, user-friendly online application was designed for both expert and non-expert users and offers a web-based user interface for filtering and visualizing the collected social media data. The application provides various filtering options, an interactive map, a timeline, and a collection of graphs to help users analyze the data. Moreover, this application provides users with the option to download aggregated data for specific periods by applying filters and clicking the "Download Posts" button. This feature allows users to easily extract and analyze social media data outside of the web application, providing greater flexibility and control over data analysis.
The dataset is provided by INFALIA.
INFALIA, being a spin-off of the CERTH institute and a partner of a research EU project, releases this dataset containing Tweets IDs and post pre-processing data for the sole purpose of enabling the validation of the research conducted within the DeepCube. Moreover, Twitter Content provided in this dataset to third parties remains subject to the Twitter Policy, and those third parties must agree to the Twitter Terms of Service, Privacy Policy, Developer Agreement, and Developer Policy (https://developer.twitter.com/en/developer-terms) before receiving this download.
The number of Reddit users in the United States was forecast to continuously increase between 2024 and 2028 by in total 10.3 million users (+5.21 percent). After the ninth consecutive increasing year, the Reddit user base is estimated to reach 208.12 million users and therefore a new peak in 2028. Notably, the number of Reddit users of was continuously increasing over the past years.User figures, shown here with regards to the platform reddit, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period and count multiple accounts by persons only once. Reddit users encompass both users that are logged in and those that are not.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of Reddit users in countries like Mexico and Canada.
Unlock the power of ready-to-use data sourced from developer communities and repositories with Developer Community and Code Datasets.
Data Sources:
GitHub: Access comprehensive data about GitHub repositories, developer profiles, contributions, issues, social interactions, and more.
StackShare: Receive information about companies, their technology stacks, reviews, tools, services, trends, and more.
DockerHub: Dive into data from container images, repositories, developer profiles, contributions, usage statistics, and more.
Developer Community and Code Datasets are a treasure trove of public data points gathered from tech communities and code repositories across the web.
With our datasets, you'll receive:
Choose from various output formats, storage options, and delivery frequencies:
Why choose our Datasets?
Fresh and accurate data: Access complete, clean, and structured data from scraping professionals, ensuring the highest quality.
Time and resource savings: Let us handle data extraction and processing cost-effectively, freeing your resources for strategic tasks.
Customized solutions: Share your unique data needs, and we'll tailor our data harvesting approach to fit your requirements perfectly.
Legal compliance: Partner with a trusted leader in ethical data collection. Oxylabs is trusted by Fortune 500 companies and adheres to GDPR and CCPA standards.
Pricing Options:
Standard Datasets: choose from various ready-to-use datasets with standardized data schemas, priced from $1,000/month.
Custom Datasets: Tailor datasets from any public web domain to your unique business needs. Contact our sales team for custom pricing.
Experience a seamless journey with Oxylabs:
Empower your data-driven decisions with Oxylabs Developer Community and Code Datasets!
How much time do people spend on social media? As of 2024, the average daily social media usage of internet users worldwide amounted to 143 minutes per day, down from 151 minutes in the previous year. Currently, the country with the most time spent on social media per day is Brazil, with online users spending an average of three hours and 49 minutes on social media each day. In comparison, the daily time spent with social media in the U.S. was just two hours and 16 minutes. Global social media usageCurrently, the global social network penetration rate is 62.3 percent. Northern Europe had an 81.7 percent social media penetration rate, topping the ranking of global social media usage by region. Eastern and Middle Africa closed the ranking with 10.1 and 9.6 percent usage reach, respectively. People access social media for a variety of reasons. Users like to find funny or entertaining content and enjoy sharing photos and videos with friends, but mainly use social media to stay in touch with current events friends. Global impact of social mediaSocial media has a wide-reaching and significant impact on not only online activities but also offline behavior and life in general. During a global online user survey in February 2019, a significant share of respondents stated that social media had increased their access to information, ease of communication, and freedom of expression. On the flip side, respondents also felt that social media had worsened their personal privacy, increased a polarization in politics and heightened everyday distractions.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Facebook and YouTube are still the most used social media platforms today.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Over the last ten years, social media has become a crucial data source for businesses and researchers, providing a space where people can express their opinions and emotions. To analyze this data and classify emotions and their polarity in texts, natural language processing (NLP) techniques such as emotion analysis (EA) and sentiment analysis (SA) are employed. However, the effectiveness of these tasks using machine learning (ML) and deep learning (DL) methods depends on large labeled datasets, which are scarce in languages like Spanish. To address this challenge, researchers use data augmentation (DA) techniques to artificially expand small datasets. This study aims to investigate whether DA techniques can improve classification results using ML and DL algorithms for sentiment and emotion analysis of Spanish texts. Various text manipulation techniques were applied, including transformations, paraphrasing (back-translation), and text generation using generative adversarial networks, to small datasets such as song lyrics, social media comments, headlines from national newspapers in Chile, and survey responses from higher education students. The findings show that the Convolutional Neural Network (CNN) classifier achieved the most significant improvement, with an 18% increase using the Generative Adversarial Networks for Sentiment Text (SentiGan) on the Aggressiveness (Seriousness) dataset. Additionally, the same classifier model showed an 11% improvement using the Easy Data Augmentation (EDA) on the Gender-Based Violence dataset. The performance of the Bidirectional Encoder Representations from Transformers (BETO) also improved by 10% on the back-translation augmented version of the October 18 dataset, and by 4% on the EDA augmented version of the Teaching survey dataset. These results suggest that data augmentation techniques enhance performance by transforming text and adapting it to the specific characteristics of the dataset. Through experimentation with various augmentation techniques, this research provides valuable insights into the analysis of subjectivity in Spanish texts and offers guidance for selecting algorithms and techniques based on dataset features.
The Reddit Subreddit Dataset by Dataplex offers a comprehensive and detailed view of Reddit’s vast ecosystem, now enhanced with appended AI-generated columns that provide additional insights and categorization. This dataset includes data from over 2.1 million subreddits, making it an invaluable resource for a wide range of analytical applications, from social media analysis to market research.
Dataset Overview:
This dataset includes detailed information on subreddit activities, user interactions, post frequency, comment data, and more. The inclusion of AI-generated columns adds an extra layer of analysis, offering sentiment analysis, topic categorization, and predictive insights that help users better understand the dynamics of each subreddit.
2.1 Million Subreddits with Enhanced AI Insights: The dataset covers over 2.1 million subreddits and now includes AI-enhanced columns that provide: - Sentiment Analysis: AI-driven sentiment scores for posts and comments, allowing users to gauge community mood and reactions. - Topic Categorization: Automated categorization of subreddit content into relevant topics, making it easier to filter and analyze specific types of discussions. - Predictive Insights: AI models that predict trends, content virality, and user engagement, helping users anticipate future developments within subreddits.
Sourced Directly from Reddit:
All social media data in this dataset is sourced directly from Reddit, ensuring accuracy and authenticity. The dataset is updated regularly, reflecting the latest trends and user interactions on the platform. This ensures that users have access to the most current and relevant data for their analyses.
Key Features:
Use Cases:
Data Quality and Reliability:
The Reddit Subreddit Dataset emphasizes data quality and reliability. Each record is carefully compiled from Reddit’s vast database, ensuring that the information is both accurate and up-to-date. The AI-generated columns further enhance the dataset's value, providing automated insights that help users quickly identify key trends and sentiments.
Integration and Usability:
The dataset is provided in a format that is compatible with most data analysis tools and platforms, making it easy to integrate into existing workflows. Users can quickly import, analyze, and utilize the data for various applications, from market research to academic studies.
User-Friendly Structure and Metadata:
The data is organized for easy navigation and analysis, with metadata files included to help users identify relevant subreddits and data points. The AI-enhanced columns are clearly labeled and structured, allowing users to efficiently incorporate these insights into their analyses.
Ideal For:
This dataset is an essential resource for anyone looking to understand the intricacies of Reddit's vast ecosystem, offering the data and AI-enhanced insights needed to drive informed decisions and strategies across various fields. Whether you’re tracking emerging trends, analyzing user behavior, or conduc...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
TrueFace is a first dataset of social media processed real and synthetic faces, obtained by the successful StyleGAN generative models, and shared on Facebook, Twitter and Telegram.
Images have historically been a universal and cross-cultural communication medium, capable of reaching people of any social background, status or education. Unsurprisingly though, their social impact has often been exploited for malicious purposes, like spreading misinformation and manipulating public opinion. With today's technologies, the possibility to generate highly realistic fakes is within everyone's reach. A major threat derives in particular from the use of synthetically generated faces, which are able to deceive even the most experienced observer. To contrast this fake news phenomenon, researchers have employed artificial intelligence to detect synthetic images by analysing patterns and artifacts introduced by the generative models. However, most online images are subject to repeated sharing operations by social media platforms. Said platforms process uploaded images by applying operations (like compression) that progressively degrade those useful forensic traces, compromising the effectiveness of the developed detectors. To solve the synthetic-vs-real problem "in the wild", more realistic image databases, like TrueFace, are needed to train specialised detectors.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Tiktok network graph with 5,638 nodes and 318,986 unique links, representing up to 790,599 weighted links between labels, using Gephi network analysis software.
Source of:
Peña-Fernández, Simón, Larrondo-Ureta, Ainara, & Morales-i-Gras, Jordi. (2022). Current affairs on TikTok. Virality and entertainment for digital natives. Profesional De La Información, 31(1), 1–12. https://doi.org/10.5281/zenodo.5962655
Abstract:
Since its appearance in 2018, TikTok has become one of the most popular social media platforms among digital natives because of its algorithm-based engagement strategies, a policy of public accounts, and a simple, colorful, and intuitive content interface. As happened in the past with other platforms such as Facebook, Twitter, and Instagram, various media are currently seeking ways to adapt to TikTok and its particular characteristics to attract a younger audience less accustomed to the consumption of journalistic material. Against this background, the aim of this study is to identify the presence of the media and journalists on TikTok, measure the virality and engagement of the content they generate, describe the communities created around them, and identify the presence of journalistic use of these accounts. For this, 23,174 videos from 143 accounts belonging to media from 25 countries were analyzed. The results indicate that, in general, the presence and impact of the media in this social network are low and that most of their content is oriented towards the creation of user communities based on viral content and entertainment. However, albeit with a lesser presence, one can also identify accounts and messages that adapt their content to the specific characteristics of TikTok. Their virality and engagement figures illustrate that there is indeed a niche for current affairs on this social network.
The number of Instagram users in the United Kingdom was forecast to continuously increase between 2024 and 2028 by in total 2.1 million users (+7.02 percent). After the ninth consecutive increasing year, the Instagram user base is estimated to reach 32 million users and therefore a new peak in 2028. Notably, the number of Instagram users of was continuously increasing over the past years.User figures, shown here with regards to the platform instagram, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period and count multiple accounts by persons only once.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Please cite the following paper when using this dataset:N. Thakur, "Twitter Big Data as a Resource for Exoskeleton Research: A Large-Scale Dataset of about 140,000 Tweets from 2017–2022 and 100 Research Questions", Journal of Analytics, Volume 1, Issue 2, 2022, pp. 72-97, DOI: https://doi.org/10.3390/analytics1020007AbstractThe exoskeleton technology has been rapidly advancing in the recent past due to its multitude of applications and diverse use cases in assisted living, military, healthcare, firefighting, and industry 4.0. The exoskeleton market is projected to increase by multiple times its current value within the next two years. Therefore, it is crucial to study the degree and trends of user interest, views, opinions, perspectives, attitudes, acceptance, feedback, engagement, buying behavior, and satisfaction, towards exoskeletons, for which the availability of Big Data of conversations about exoskeletons is necessary. The Internet of Everything style of today’s living, characterized by people spending more time on the internet than ever before, with a specific focus on social media platforms, holds the potential for the development of such a dataset by the mining of relevant social media conversations. Twitter, one such social media platform, is highly popular amongst all age groups, where the topics found in the conversation paradigms include emerging technologies such as exoskeletons. To address this research challenge, this work makes two scientific contributions to this field. First, it presents an open-access dataset of about 140,000 Tweets about exoskeletons that were posted in a 5-year period from 21 May 2017 to 21 May 2022. Second, based on a comprehensive review of the recent works in the fields of Big Data, Natural Language Processing, Information Retrieval, Data Mining, Pattern Recognition, and Artificial Intelligence that may be applied to relevant Twitter data for advancing research, innovation, and discovery in the field of exoskeleton research, a total of 100 Research Questions are presented for researchers to study, analyze, evaluate, ideate, and investigate based on this dataset.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The current dataset contains 237M Tweet IDs for Twitter posts that mentioned "COVID" as a keyword or as part of a hashtag (e.g., COVID-19, COVID19) between March and July of 2020. Sampling Method: hourly requests sent to Twitter Search API using Social Feed Manager, an open source software that harvests social media data and related content from Twitter and other platforms. NOTE: 1) In accordance with Twitter API Terms, only Tweet IDs are provided as part of this dataset. 2) To recollect tweets based on the list of Tweet IDs contained in these datasets, you will need to use tweet 'rehydration' programs like Hydrator (https://github.com/DocNow/hydrator) or Python library Twarc (https://github.com/DocNow/twarc). 3) This dataset, like most datasets collected via the Twitter Search API, is a sample of the available tweets on this topic and is not meant to be comprehensive. Some COVID-related tweets might not be included in the dataset either because the tweets were collected using a standardized but intermittent (hourly) sampling protocol or because tweets used hashtags/keywords other than COVID (e.g., Coronavirus or #nCoV). 4) To broaden this sample, consider comparing/merging this dataset with other COVID-19 related public datasets such as: https://github.com/thepanacealab/covid19_twitter https://ieee-dataport.org/open-access/corona-virus-covid-19-tweets-dataset https://github.com/echen102/COVID-19-TweetIDs
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IntroductionThe relationship between students’ smartphone addiction, social media use, video games play, and their academic performance has been widely studied, yet the existing literature presents inconsistent findings. This meta-analysis synthesizes current research to provide a comprehensive examination of the impact of these technologies on academic achievement.MethodsA total of 63 studies (yielding 64 effect sizes) were included, encompassing a sample of 124,166 students from 28 countries. The meta-analysis utilized correlation coefficients and sample sizes, reporting results based on the random effects model. Key statistics such as the Fisher’s Z value, confidence intervals, and heterogeneity (Q) test results were considered, and publication bias was assessed using Begg and Mazumdar’s rank correlation test, with the Kendall Tau coefficient determining bias significance.Results and discussionThe meta-analysis revealed a small but statistically significant negative association between smartphone use, social media use, video game playing, and students’ academic performance [Q(64) = 2501.93, p
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset comprises 4,038 tweets in Spanish, related to discussions about artificial intelligence (AI), and was created and utilized in the publication "Enhancing Sentiment Analysis on Social Media: Integrating Text and Metadata for Refined Insights," (10.1109/IE61493.2024.10599899) presented at the 20th International Conference on Intelligent Environments. It is designed to support research on public perception, sentiment, and engagement with AI topics on social media from a Spanish-speaking perspective. Each entry includes detailed annotations covering sentiment analysis, user engagement metrics, and user profile characteristics, among others.
Tweets were gathered through the Twitter API v1.1 by targeting keywords and hashtags associated with artificial intelligence, focusing specifically on content in Spanish. The dataset captures a wide array of discussions, offering a holistic view of the Spanish-speaking public's sentiment towards AI.
Guerrero-Contreras, G., Balderas-Díaz, S., Serrano-Fernández, A., & Muñoz, A. (2024, June). Enhancing Sentiment Analysis on Social Media: Integrating Text and Metadata for Refined Insights. In 2024 International Conference on Intelligent Environments (IE) (pp. 62-69). IEEE.
This dataset is aimed at academic researchers and practitioners with interests in:
The dataset is provided in CSV format, ensuring compatibility with a wide range of data analysis tools and programming environments.
The dataset is available under the Creative Commons Attribution 4.0 International (CC BY 4.0) license, permitting sharing, copying, distribution, transmission, and adaptation of the work for any purpose, including commercial, provided proper attribution is given.
According to a March 2024 survey conducted in the United States, 32 percent of adults reported feeling that social media had neither a positive nor negative effect on their own mental health. Only seven percent of social media users said that online platforms had a very positive effect on their mental health, while 12 percent of users said it had a very negative impact. Furthermore, 22 percent of respondents said social media had a somewhat negative effect on their mental health. Is social media addictive? A 2023 survey of individuals between 11 and 59 years old in the United States found that over 73 percent of TikTok users agreed that the platform was addictive. Furthermore, nearly 27 percent of those surveyed reported experiencing negative psychological effects related to TikTok use. Users belonging to Generation Z were the most likely to say that TikTok is addictive, yet millennials felt the negative effects of using the app more so than Gen Z. In the U.S., it is also not uncommon for social media users to take breaks from using online platforms, and as of March 2024, over a third of adults in the country had done so. Following mental health-related content Although online users may be aware of the negative and addictive aspects of social media, it is also a useful tool for finding supportive content. In a global survey conducted in 2023, 32 percent of social media users followed therapists and mental health professionals on social media. Overall, 24 percent of respondents said that they followed people on social media if they had the same condition as they did. Between January 2020 and March 2023, British actress and model Cara Delevingne was the celebrity mental health activist with the highest growth in searches tying her name to the topic.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Please cite the following paper when using this dataset:
N. Thakur, “A Large-Scale Dataset of Twitter Chatter about Online Learning during the Current COVID-19 Omicron Wave,” Journal of Data, vol. 7, no. 8, p. 109, Aug. 2022, doi: 10.3390/data7080109
Abstract
The COVID-19 Omicron variant, reported to be the most immune evasive variant of COVID-19, is resulting in a surge of COVID-19 cases globally. This has caused schools, colleges, and universities in different parts of the world to transition to online learning. As a result, social media platforms such as Twitter are seeing an increase in conversations, centered around information seeking and sharing, related to online learning. Mining such conversations, such as Tweets, to develop a dataset can serve as a data resource for interdisciplinary research related to the analysis of interest, views, opinions, perspectives, attitudes, and feedback towards online learning during the current surge of COVID-19 cases caused by the Omicron variant. Therefore this work presents a large-scale public Twitter dataset of conversations about online learning since the first detected case of the COVID-19 Omicron variant in November 2021. The dataset is compliant with the privacy policy, developer agreement, and guidelines for content redistribution of Twitter and the FAIR principles (Findability, Accessibility, Interoperability, and Reusability) principles for scientific data management.
Data Description
The dataset comprises a total of 52,984 Tweet IDs (that correspond to the same number of Tweets) about online learning that were posted on Twitter from 9th November 2021 to 13th July 2022. The earliest date was selected as 9th November 2021, as the Omicron variant was detected for the first time in a sample that was collected on this date. 13th July 2022 was the most recent date as per the time of data collection and publication of this dataset.
The dataset consists of 9 .txt files. An overview of these dataset files along with the number of Tweet IDs and the date range of the associated tweets is as follows. Table 1 shows the list of all the synonyms or terms that were used for the dataset development.
Filename: TweetIDs_November_2021.txt (No. of Tweet IDs: 1283, Date Range of the associated Tweet IDs: November 1, 2021 to November 30, 2021)
Filename: TweetIDs_December_2021.txt (No. of Tweet IDs: 10545, Date Range of the associated Tweet IDs: December 1, 2021 to December 31, 2021)
Filename: TweetIDs_January_2022.txt (No. of Tweet IDs: 23078, Date Range of the associated Tweet IDs: January 1, 2022 to January 31, 2022)
Filename: TweetIDs_February_2022.txt (No. of Tweet IDs: 4751, Date Range of the associated Tweet IDs: February 1, 2022 to February 28, 2022)
Filename: TweetIDs_March_2022.txt (No. of Tweet IDs: 3434, Date Range of the associated Tweet IDs: March 1, 2022 to March 31, 2022)
Filename: TweetIDs_April_2022.txt (No. of Tweet IDs: 3355, Date Range of the associated Tweet IDs: April 1, 2022 to April 30, 2022)
Filename: TweetIDs_May_2022.txt (No. of Tweet IDs: 3120, Date Range of the associated Tweet IDs: May 1, 2022 to May 31, 2022)
Filename: TweetIDs_June_2022.txt (No. of Tweet IDs: 2361, Date Range of the associated Tweet IDs: June 1, 2022 to June 30, 2022)
Filename: TweetIDs_July_2022.txt (No. of Tweet IDs: 1057, Date Range of the associated Tweet IDs: July 1, 2022 to July 13, 2022)
The dataset contains only Tweet IDs in compliance with the terms and conditions mentioned in the privacy policy, developer agreement, and guidelines for content redistribution of Twitter. The Tweet IDs need to be hydrated to be used. For hydrating this dataset the Hydrator application (link to download and a step-by-step tutorial on how to use Hydrator) may be used.
Table 1. List of commonly used synonyms, terms, and phrases for online learning and COVID-19 that were used for the dataset development
Terminology
List of synonyms and terms
COVID-19
Omicron, COVID, COVID19, coronavirus, coronaviruspandemic, COVID-19, corona, coronaoutbreak, omicron variant, SARS CoV-2, corona virus
online learning
online education, online learning, remote education, remote learning, e-learning, elearning, distance learning, distance education, virtual learning, virtual education, online teaching, remote teaching, virtual teaching, online class, online classes, remote class, remote classes, distance class, distance classes, virtual class, virtual classes, online course, online courses, remote course, remote courses, distance course, distance courses, virtual course, virtual courses, online school, virtual school, remote school, online college, online university, virtual college, virtual university, remote college, remote university, online lecture, virtual lecture, remote lecture, online lectures, virtual lectures, remote lectures
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Media by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Media. The dataset can be utilized to understand the population distribution of Media by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Media. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Media.
Key observations
Largest age group (population): Male # 25-29 years (16) | Female # 60-64 years (13). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Media Population by Gender. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Media by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Media. The dataset can be utilized to understand the population distribution of Media by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Media. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Media.
Key observations
Largest age group (population): Male # 25-29 years (379) | Female # 30-34 years (326). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Media Population by Gender. You can refer the same here
Data Access: The data in the research collection provided may only be used for research purposes. Portions of the data are copyrighted and have commercial value as data, so you must be careful to use it only for research purposes. Due to these restrictions, the collection is not open data. Please download the Agreement at Data Sharing Agreement and send the signed form to fakenewstask@gmail.com .
Citation
Please cite our work as
@article{shahi2021overview, title={Overview of the CLEF-2021 CheckThat! lab task 3 on fake news detection}, author={Shahi, Gautam Kishore and Stru{\ss}, Julia Maria and Mandl, Thomas}, journal={Working Notes of CLEF}, year={2021} }
Problem Definition: Given the text of a news article, determine whether the main claim made in the article is true, partially true, false, or other (e.g., claims in dispute) and detect the topical domain of the article. This task will run in English.
Subtask 3A: Multi-class fake news detection of news articles (English) Sub-task A would detect fake news designed as a four-class classification problem. The training data will be released in batches and roughly about 900 articles with the respective label. Given the text of a news article, determine whether the main claim made in the article is true, partially true, false, or other. Our definitions for the categories are as follows:
False - The main claim made in an article is untrue.
Partially False - The main claim of an article is a mixture of true and false information. The article contains partially true and partially false information but cannot be considered 100% true. It includes all articles in categories like partially false, partially true, mostly true, miscaptioned, misleading etc., as defined by different fact-checking services.
True - This rating indicates that the primary elements of the main claim are demonstrably true.
Other- An article that cannot be categorised as true, false, or partially false due to lack of evidence about its claims. This category includes articles in dispute and unproven articles.
Subtask 3B: Topical Domain Classification of News Articles (English) Fact-checkers require background expertise to identify the truthfulness of an article. The categorisation will help to automate the sampling process from a stream of data. Given the text of a news article, determine the topical domain of the article (English). This is a classification problem. The task is to categorise fake news articles into six topical categories like health, election, crime, climate, election, education. This task will be offered for a subset of the data of Subtask 3A.
Input Data
The data will be provided in the format of Id, title, text, rating, the domain; the description of the columns is as follows:
Task 3a
Task 3b
Output data format
Task 3a
Sample File
public_id, predicted_rating
1, false
2, true
Task 3b
Sample file
public_id, predicted_domain
1, health
2, crime
Additional data for Training
To train your model, the participant can use additional data with a similar format; some datasets are available over the web. We don't provide the background truth for those datasets. For testing, we will not use any articles from other datasets. Some of the possible source:
IMPORTANT!
Evaluation Metrics
This task is evaluated as a classification task. We will use the F1-macro measure for the ranking of teams. There is a limit of 5 runs (total and not per day), and only one person from a team is allowed to submit runs.
Submission Link: https://competitions.codalab.org/competitions/31238
Related Work
The number of Twitter users in the United States was forecast to continuously increase between 2024 and 2028 by in total 4.3 million users (+5.32 percent). After the ninth consecutive increasing year, the Twitter user base is estimated to reach 85.08 million users and therefore a new peak in 2028. Notably, the number of Twitter users of was continuously increasing over the past years.User figures, shown here regarding the platform twitter, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of Twitter users in countries like Canada and Mexico.