Cristiano Ronaldo has one of the most popular Instagram accounts as of April 2024.
The Portuguese footballer is the most-followed person on the photo sharing app platform with 628 million followers. Instagram's own account was ranked first with roughly 672 million followers.
How popular is Instagram?
Instagram is a photo-sharing social networking service that enables users to take pictures and edit them with filters. The platform allows users to post and share their images online and directly with their friends and followers on the social network. The cross-platform app reached one billion monthly active users in mid-2018. In 2020, there were over 114 million Instagram users in the United States and experts project this figure to surpass 127 million users in 2023.
Who uses Instagram?
Instagram audiences are predominantly young – recent data states that almost 60 percent of U.S. Instagram users are aged 34 years or younger. Fall 2020 data reveals that Instagram is also one of the most popular social media for teens and one of the social networks with the biggest reach among teens in the United States.
Celebrity influencers on Instagram
Many celebrities and athletes are brand spokespeople and generate additional income with social media advertising and sponsored content. Unsurprisingly, Ronaldo ranked first again, as the average media value of one of his Instagram posts was 985,441 U.S. dollars.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Youtube social network and ground-truth communities Dataset information Youtube is a video-sharing web site that includes a social network. In the Youtube social network, users form friendship each other and users can create groups which other users can join. We consider such user-defined groups as ground-truth communities. This data is provided by Alan Mislove et al.
We regard each connected component in a group as a separate ground-truth community. We remove the ground-truth communities which have less than 3 nodes. We also provide the top 5,000 communities with highest quality which are described in our paper. As for the network, we provide the largest connected component.
more info : https://snap.stanford.edu/data/com-Youtube.html
As of April 2024, almost 32 percent of global Instagram audiences were aged between 18 and 24 years, and 30.6 percent of users were aged between 25 and 34 years. Overall, 16 percent of users belonged to the 35 to 44 year age group.
Instagram users
With roughly one billion monthly active users, Instagram belongs to the most popular social networks worldwide. The social photo sharing app is especially popular in India and in the United States, which have respectively 362.9 million and 169.7 million Instagram users each.
Instagram features
One of the most popular features of Instagram is Stories. Users can post photos and videos to their Stories stream and the content is live for others to view for 24 hours before it disappears. In January 2019, the company reported that there were 500 million daily active Instagram Stories users. Instagram Stories directly competes with Snapchat, another photo sharing app that initially became famous due to it’s “vanishing photos” feature.
As of the second quarter of 2021, Snapchat had 293 million daily active users.
As of April 2024, around 16.5 percent of global active Instagram users were men between the ages of 18 and 24 years. More than half of the global Instagram population worldwide was aged 34 years or younger.
Teens and social media
As one of the biggest social networks worldwide, Instagram is especially popular with teenagers. As of fall 2020, the photo-sharing app ranked third in terms of preferred social network among teenagers in the United States, second to Snapchat and TikTok. Instagram was one of the most influential advertising channels among female Gen Z users when making purchasing decisions. Teens report feeling more confident, popular, and better about themselves when using social media, and less lonely, depressed and anxious.
Social media can have negative effects on teens, which is also much more pronounced on those with low emotional well-being. It was found that 35 percent of teenagers with low social-emotional well-being reported to have experienced cyber bullying when using social media, while in comparison only five percent of teenagers with high social-emotional well-being stated the same. As such, social media can have a big impact on already fragile states of mind.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is structured as a graph, where nodes represent users and edges capture their interactions, including tweets, retweets, replies, and mentions. Each node provides detailed user attributes, such as unique ID, follower and following counts, and verification status, offering insights into each user's identity, role, and influence in the mental health discourse. The edges illustrate user interactions, highlighting engagement patterns and types of content that drive responses, such as tweet impressions. This interconnected structure enables sentiment analysis and public reaction studies, allowing researchers to explore engagement trends and identify the mental health topics that resonate most with users.
The dataset consists of three files: 1. Edges Data: Contains graph data essential for social network analysis, including fields for UserID (Source), UserID (Destination), Post/Tweet ID, and Date of Relationship. This file enables analysis of user connections without including tweet content, maintaining compliance with Twitter/X’s data-sharing policies. 2. Nodes Data: Offers user-specific details relevant to network analysis, including UserID, Account Creation Date, Follower and Following counts, Verified Status, and Date Joined Twitter. This file allows researchers to examine user behavior (e.g., identifying influential users or spam-like accounts) without direct reference to tweet content. 3. Twitter/X Content Data: This file contains only the raw tweet text as a single-column dataset, without associated user identifiers or metadata. By isolating the text, we ensure alignment with anonymization standards observed in similar published datasets, safeguarding user privacy in compliance with Twitter/X's data guidelines. This content is crucial for addressing the research focus on mental health discourse in social media. (References to prior Data in Brief publications involving Twitter/X data informed the dataset's structure.)
https://brightdata.com/licensehttps://brightdata.com/license
Gain valuable insights with our comprehensive Social Media Dataset, designed to help businesses, marketers, and analysts track trends, monitor engagement, and optimize strategies. This dataset provides structured and reliable social media data from multiple platforms.
Dataset Features
User Profiles: Access public social media profiles, including usernames, bios, follower counts, engagement metrics, and more. Ideal for audience analysis, influencer marketing, and competitive research. Posts & Content: Extract posts, captions, hashtags, media (images/videos), timestamps, and engagement metrics such as likes, shares, and comments. Useful for trend analysis, sentiment tracking, and content strategy optimization. Comments & Interactions: Analyze user interactions, including replies, mentions, and discussions. This data helps brands understand audience sentiment and engagement patterns. Hashtag & Trend Tracking: Monitor trending hashtags, topics, and viral content across platforms to stay ahead of industry trends and consumer interests.
Customizable Subsets for Specific Needs Our Social Media Dataset is fully customizable, allowing you to filter data based on platform, region, keywords, engagement levels, or specific user profiles. Whether you need a broad dataset for market research or a focused subset for brand monitoring, we tailor the dataset to your needs.
Popular Use Cases
Brand Monitoring & Reputation Management: Track brand mentions, customer feedback, and sentiment analysis to manage online reputation effectively. Influencer Marketing & Audience Analysis: Identify key influencers, analyze engagement metrics, and optimize influencer partnerships. Competitive Intelligence: Monitor competitor activity, content performance, and audience engagement to refine marketing strategies. Market Research & Consumer Insights: Analyze social media trends, customer preferences, and emerging topics to inform business decisions. AI & Predictive Analytics: Leverage structured social media data for AI-driven trend forecasting, sentiment analysis, and automated content recommendations.
Whether you're tracking brand sentiment, analyzing audience engagement, or monitoring industry trends, our Social Media Dataset provides the structured data you need. Get started today and customize your dataset to fit your business objectives.
MuMiN is a misinformation graph dataset containing rich social media data (tweets, replies, users, images, articles, hashtags), spanning 21 million tweets belonging to 26 thousand Twitter threads, each of which have been semantically linked to 13 thousand fact-checked claims across dozens of topics, events and domains, in 41 different languages, spanning more than a decade.
MuMiN fills a gap in the existing misinformation datasets in multiple ways:
By having a large amount of social media information which have been semantically linked to fact-checked claims on an individual basis. By featuring 41 languages, enabling evaluation of multilingual misinformation detection models. By featuring both tweets, articles, images, social connections and hashtags, enabling multimodal approaches to misinformation detection.
MuMiN features two node classification tasks, related to the veracity of a claim:
Claim classification: Determine the veracity of a claim, given its social network context. Tweet classification: Determine the likelihood that a social media post to be fact-checked is discussing a misleading claim, given its social network context.
To use the dataset, see the "Getting Started" guide and tutorial at the MuMiN website.
As of January 2024, Instagram was slightly more popular with men than women, with men accounting for 50.6 percent of the platform’s global users. Additionally, the social media app was most popular amongst younger audiences, with almost 32 percent of users aged between 18 and 24 years.
Instagram’s Global Audience
As of January 2024, Instagram was the fourth most popular social media platform globally, reaching two billion monthly active users (MAU). This number is projected to keep growing with no signs of slowing down, which is not a surprise as the global online social penetration rate across all regions is constantly increasing.
As of January 2024, the country with the largest Instagram audience was India with 362.9 million users, followed by the United States with 169.7 million users.
Who is winning over the generations?
Even though Instagram’s audience is almost twice the size of TikTok’s on a global scale, TikTok has shown itself to be a fierce competitor, particularly amongst younger audiences. TikTok was the most downloaded mobile app globally in 2022, generating 672 million downloads. As of 2022, Generation Z in the United States spent more time on TikTok than on Instagram monthly.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
These datasets contain public comments on social media from the three-month period specifically tagged with the keywords "breastfeeding" and "formula milk". The datasets are mainly about infant feeding, allowing us to do exploratory data analysis from the public point of view.
status_id : Numerical assigned id which is unique
created_at : Posted day-time
text : Posted text (character base)
display_ text_ width : Length of the comment (number of characters)
country : Country of the post
day : Posted the day of the week
This data is suitable for text mining with sentiment analysis. There are some examples below:
• Which feeding method has more audience than the other? • What are the top 10 popular words for each feeding method? • Does the country parameter influence sentiment on infant feeding strategies? • Is there a particular situation (like a special week of organisations) for the increasing trend of the topic? • Which day of the week do people share positive comments mostly?
The number of Twitter users in the United States was forecast to continuously increase between 2024 and 2028 by in total 4.3 million users (+5.32 percent). After the ninth consecutive increasing year, the Twitter user base is estimated to reach 85.08 million users and therefore a new peak in 2028. Notably, the number of Twitter users of was continuously increasing over the past years.User figures, shown here regarding the platform twitter, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of Twitter users in countries like Canada and Mexico.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains a social network of Last.fm users that are part of the LFM-1b dataset [1] and has been created using the Last.fm API [2].
More specifically, we have adopted the breadth-first-search sampling strategy with LFM-1b users as seed nodes and crawled friends up to two hops away (friends and friends of friends). We have kept only those edges where both nodes connected by an edge are part of the original LFM-1b dataset. These edges are stored in the 'LFM-1b_social_ties.txt' file which contains 78,989 edges between 11,792 unique users.
Additionally, we have stored demographic and playcount information for each of these users in the 'LFM-1b_users.txt' file.
This dataset has been used as input for the purposes of studying homophily and link prediction with user preferences for mainstream, novelty, and diversity in music [3] and to reproduce the experiments from that study, we have also provided an open-source GitHub repository [4].
[1] http://www.cp.jku.at/datasets/LFM-1b/
[2] https://www.last.fm/api
[3] Duricic, T., Kowald, D., Schedl, M., & Lex, E. (2021, November). My friends also prefer diverse music: homophily and link prediction with user preferences for mainstream, novelty, and diversity in music. In Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (pp. 447-454).
[4] https://github.com/tduricic/homophily-lastfm
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Foursquare data downloaded from https://sites.google.com/site/yangdingqi/home/foursquare-dataset This dataset includes long-term (about 22 months from Apr. 2012 to Jan. 2014) global-scale check-in data collected from Foursquare, and also two snapshots of user social networks before and after the check-in data collection period (see more details in our paper). The check-in dataset contains 22,809,624 checkins by 114,324 users on 3,820,891 venues. The social network data contains 363,704 (old) and 607,333 (new) friendships. Due to frequent requests, we also include the raw check-in dataset containing 90,048,627 checkins by 2,733,324 users on 11,180,160 venues.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
By [source]
This dataset provides an in-depth look at the dynamics of social interaction, particularly in Hong Kong. It contains comprehensive information regarding individuals, households and interactions between individuals such as their ages, frequency and duration of contact, and genders. This data can be utilized to evaluate various social and economic trends, behaviors, as well as dynamics observed at different levels. For example, this data set is an ideal tool to recognize population-level trends such as age and gender diversification of contacts or investigate the structure of social networks in addition to the implications of contact patterns on health and economic outcomes. Additionally, it offers valuable insights into dissimilar groups of people including their permanent residence activities related to work or leisure by enabling one to understand their interactions along with contact dynamics within their respective populations. Ultimately this dataset is key for attaining a comprehensive understanding of social contact dynamics which are fundamental for grasping why these interactions are crucial in Hong Kong's society today
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset provides detailed information about the social contact dynamics in Hong Kong. With this dataset, it is possible to gain a comprehensive understanding of the patterns of various forms of social contact - from permanent residence and work contacts to leisure contacts. This guide will provide an overview and guidelines on how to use this dataset for analysis.
Exploring Trends and Dynamics:
To begin exploring the trends and dynamics of social contact in Hong Kong, start by looking at demographic factors such as age, gender, ethnicity, and educational attainment associated with different types of contacts (permanent residence/work/leisure). Consider the frequency and duration of contacts within these segments to identify any potential differences between them. Additionally, look at how these factors interact with each other – observe which segments have higher levels of interaction with each other or if there are any differences between different population groups based on their demographic characteristics. This can be done through visualizations such as line graphs or bar charts which can illustrate trends across timeframes or population demographics more clearly than raw numbers would alone.
Investigating Social Networks:
The data collected through this dataset also allows for investigation into social networks – understanding who connects with who in both real-life interactions as well as through digital channels (if applicable). Focus on analyzing individual or family networks rather than larger groups in order to get a clearer picture without having too much complexity added into the analysis time. Analyze commonalities among individuals within a network even after controlling for certain factors that could affect interaction such as age or gender – utilize clustering techniques for this step if appropriate– then focus on comparing networks between individuals/families overall using graph theory methods such as length distributions (the average number of relationships one has) , degrees (the number of links connected from one individual or family unit), centrality measures(identifying individuals who serve an important role bridging two different parts fo he network) etc., These methods will help provide insights into varying structures between large groups rather than focusing only on small-scale personal connections among friends / colleagues / relatives which may not always offer accurate portrayals due to their naturally limited scope
Modeling Health Implications:
Finally, consider modeling health implications stemming from these observed patterns– particularly implications that may not be captured by simpler measures like count per contact hour (which does not differentiate based on intensity). Take into account aspects like viral transmission risk by analyzing secondary effects generated from contact events captured in the data – things like physical proximity when multiple people meet up together over multiple days
- Analyzing the age, gender and contact dynamics of different areas within Hong Kong to understand the local population trends and behavior.
- Investigating the structure of social networks to study how patterns of contact vary among socio economic backgro...
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
A list of the most popular (top 100 by followers) Instagram, Twitter, YouTube, Twitch, and TikTok users. NB! For YouTube the followers are subscribers and the posts are videos.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The results might surprise you when looking at internet users that are active on social media in each country.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset includes long-term (about 22 months from Apr. 2012 to Jan. 2014) global-scale check-in data collected from Foursquare, and also two snapshots of user social networks before and after the check-in data collection period (see more details in our paper). The check-in dataset contains 22,809,624 checkins by 114,324 users on 3,820,891 venues. The social network data contains 363,704 (old) and 607,333 (new) friendships. Due to frequent requests, we also include the raw check-in dataset containing 90,048,627 checkins by 2,733,324 users on 11,180,160 venues.Please cite our paper if you publish material based on this dataset:+ Dingqi Yang, Bingqing Qu, Jie Yang, Philippe Cudre-Mauroux, Revisiting User Mobility and Social Relationships in LBSNs: A Hypergraph Embedding Approach, In Proc. of The Web Conference (WWW'19). May. 2019, San Francisco, USA. + Dingqi Yang, Bingqing Qu, Jie Yang, Philippe Cudre-Mauroux, LBSN2Vec++: Heterogeneous Hypergraph Embedding for Location-Based Social Networks, IEEE Transactions on Knowledge and Data Engineering (TKDE), 2020.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset comprises 4,038 tweets in Spanish, related to discussions about artificial intelligence (AI), and was created and utilized in the publication "Enhancing Sentiment Analysis on Social Media: Integrating Text and Metadata for Refined Insights," (10.1109/IE61493.2024.10599899) presented at the 20th International Conference on Intelligent Environments. It is designed to support research on public perception, sentiment, and engagement with AI topics on social media from a Spanish-speaking perspective. Each entry includes detailed annotations covering sentiment analysis, user engagement metrics, and user profile characteristics, among others.
Tweets were gathered through the Twitter API v1.1 by targeting keywords and hashtags associated with artificial intelligence, focusing specifically on content in Spanish. The dataset captures a wide array of discussions, offering a holistic view of the Spanish-speaking public's sentiment towards AI.
Guerrero-Contreras, G., Balderas-Díaz, S., Serrano-Fernández, A., & Muñoz, A. (2024, June). Enhancing Sentiment Analysis on Social Media: Integrating Text and Metadata for Refined Insights. In 2024 International Conference on Intelligent Environments (IE) (pp. 62-69). IEEE.
This dataset is aimed at academic researchers and practitioners with interests in:
The dataset is provided in CSV format, ensuring compatibility with a wide range of data analysis tools and programming environments.
The dataset is available under the Creative Commons Attribution 4.0 International (CC BY 4.0) license, permitting sharing, copying, distribution, transmission, and adaptation of the work for any purpose, including commercial, provided proper attribution is given.
Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
Facebook Meta: Unveiling the Next Era of Social Media
Facebook, the leading social media platform, has embarked on a transformative journey, rebranding itself as Meta. This bold move marks a significant shift in their vision and strategy, as they aim to redefine social media and explore the potential of the metaverse. In this dataset, we delve into the world of Facebook Meta, providing a comprehensive overview of its features, impact, and the implications for the future of social media.
Columns | Description |
---|---|
Page Name | The name of the Facebook page being analyzed |
Beginning of Interval | The starting point of the analyzed time period |
Page Likes | The total number of likes the page has received |
Page Like Growth | The increase or decrease in the number of page likes during the analyzed time period |
Followers | The total number of followers the page has |
Follower Growth | The change in the number of followers during the analyzed time period |
Post Count | The total number of posts made on the page |
Total Interactions | The overall number of interactions (such as likes, comments, and shares) on the page's posts |
Interaction Growth | The change in the total interactions during the analyzed time period |
Interaction Rate | The rate at which interactions occur on the page's posts, usually measured as a percentage |
Interactions Per Post | The average number of interactions per post |
Comments | The number of comments received on the page's posts |
Shares | The number of times the page's posts were shared by users |
Total Reactions (including Likes) | The total number of reactions (such as likes, angry, haha, wow, sad, love) received on the page's posts |
Likes | The number of likes received on the page's posts |
Angry | The number of angry reactions received on the page's posts |
Haha | The number of haha reactions received on the page's posts |
Wow | The number of wow reactions received on the page's posts |
Sad | The number of sad reactions received on the page's posts |
Love | The number of love reactions received on the page's posts |
Photo Posts | The number of posts that include photos |
Photo Interactions | The number of interactions on photo posts |
Photo Interaction Rate | The rate at which interactions occur on photo posts |
Link Posts | The number of posts that include links |
Link Interactions | The number of interactions on link posts |
Link Interaction Rate | The rate at which interactions occur on link posts |
Status Posts | The number of text-based status posts |
Status Interactions | The number of interactions on status posts |
Status Interaction Rate | The rate at which interactions occur on status posts |
Facebook Video Posts (excluding Live) | The number of posts that include recorded videos (excluding live videos) |
Facebook Video Interactions (excluding Live) | The number of interactions on recorded |
Facebook Video Interaction Rate (excluding Live) | The rate at which interactions occur on recorded video posts (excluding live videos) |
Facebook Live Video Posts | The number of posts that include live videos |
Facebook Live Interactions | The number of interactions on live video posts |
Facebook Live Interaction Rate | The rate at which interactions occur on live video posts |
The Metaverse: Facebook Meta introduces the concept of the metaverse, a virtual reality space where users can interact and engage in a variety of experiences. This immersive environment goes beyond the confines of traditional social media, offering a new level of connectivity, creativity, and shared experiences.
Enhanced Virtual Reality (VR) Capabilities: One of the key elements of Facebook Meta is its focus on VR technology. By leveraging their Oculus virtual reality platform, Meta aims to bring people together in virtual spaces, transcending physical boundaries. Users can connect, play games, attend events, and explore new dimensions through virtual reality.
Avatars and Digital Identity: With the metaverse, users can create personalized avatars that represent their digital identity. These avatars allow individuals to express themselves creatively and engage in virtual interactions with others. Meta is working towards enabling more realistic and customizable avatars to enhance the social experience within the metaverse.
Social Connections and Communities: Facebook Meta emphasizes the importance of social connections and communities within the metaverse. Users can join interest-based groups, form communities, and connect with like-minded individuals. This promotes collaboration, knowledge sharing, and fosters a sense of belonging within the virtual space.
New Content Formats: As part of Meta's expansion, the pl...
The Reddit Subreddit Dataset by Dataplex offers a comprehensive and detailed view of Reddit’s vast ecosystem, now enhanced with appended AI-generated columns that provide additional insights and categorization. This dataset includes data from over 2.1 million subreddits, making it an invaluable resource for a wide range of analytical applications, from social media analysis to market research.
Dataset Overview:
This dataset includes detailed information on subreddit activities, user interactions, post frequency, comment data, and more. The inclusion of AI-generated columns adds an extra layer of analysis, offering sentiment analysis, topic categorization, and predictive insights that help users better understand the dynamics of each subreddit.
2.1 Million Subreddits with Enhanced AI Insights: The dataset covers over 2.1 million subreddits and now includes AI-enhanced columns that provide: - Sentiment Analysis: AI-driven sentiment scores for posts and comments, allowing users to gauge community mood and reactions. - Topic Categorization: Automated categorization of subreddit content into relevant topics, making it easier to filter and analyze specific types of discussions. - Predictive Insights: AI models that predict trends, content virality, and user engagement, helping users anticipate future developments within subreddits.
Sourced Directly from Reddit:
All social media data in this dataset is sourced directly from Reddit, ensuring accuracy and authenticity. The dataset is updated regularly, reflecting the latest trends and user interactions on the platform. This ensures that users have access to the most current and relevant data for their analyses.
Key Features:
Use Cases:
Data Quality and Reliability:
The Reddit Subreddit Dataset emphasizes data quality and reliability. Each record is carefully compiled from Reddit’s vast database, ensuring that the information is both accurate and up-to-date. The AI-generated columns further enhance the dataset's value, providing automated insights that help users quickly identify key trends and sentiments.
Integration and Usability:
The dataset is provided in a format that is compatible with most data analysis tools and platforms, making it easy to integrate into existing workflows. Users can quickly import, analyze, and utilize the data for various applications, from market research to academic studies.
User-Friendly Structure and Metadata:
The data is organized for easy navigation and analysis, with metadata files included to help users identify relevant subreddits and data points. The AI-enhanced columns are clearly labeled and structured, allowing users to efficiently incorporate these insights into their analyses.
Ideal For:
This dataset is an essential resource for anyone looking to understand the intricacies of Reddit's vast ecosystem, offering the data and AI-enhanced insights needed to drive informed decisions and strategies across various fields. Whether you’re tracking emerging trends, analyzing user behavior, or conduc...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average person has 8-9 social media accounts. This has doubled since 2013, when the average person just had 4-5 accounts.
Cristiano Ronaldo has one of the most popular Instagram accounts as of April 2024.
The Portuguese footballer is the most-followed person on the photo sharing app platform with 628 million followers. Instagram's own account was ranked first with roughly 672 million followers.
How popular is Instagram?
Instagram is a photo-sharing social networking service that enables users to take pictures and edit them with filters. The platform allows users to post and share their images online and directly with their friends and followers on the social network. The cross-platform app reached one billion monthly active users in mid-2018. In 2020, there were over 114 million Instagram users in the United States and experts project this figure to surpass 127 million users in 2023.
Who uses Instagram?
Instagram audiences are predominantly young – recent data states that almost 60 percent of U.S. Instagram users are aged 34 years or younger. Fall 2020 data reveals that Instagram is also one of the most popular social media for teens and one of the social networks with the biggest reach among teens in the United States.
Celebrity influencers on Instagram
Many celebrities and athletes are brand spokespeople and generate additional income with social media advertising and sponsored content. Unsurprisingly, Ronaldo ranked first again, as the average media value of one of his Instagram posts was 985,441 U.S. dollars.