Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Release Date: 2021-05-20.Release Schedule:.The data in this file come from the 2017 Economic Census. For information about economic census planned data product releases, see Economic Census: About: 2017 Release Schedules...Key Table Information:.Includes only establishments of firms with payroll...Data Items and Other Identifying Records:.Number of establishments.Sales, value of shipments, or revenue ($1,000).Type of payer revenue ($1,000).Response coverage of type of payer inquiry (%)..Each record includes a code which represents a specific type of payer category...Geography Coverage:.The data are shown for employer establishments at the U.S. and state levels. For information about economic census geographies, including changes for 2017, see Economic Census: Economic Geographies...Industry Coverage:.The data are shown at the 4-digit code level for 2017 NAICS codes beginning with 621, 622, and 623. For information about NAICS, see Economic Census: Technical Documentation: Economic Census Code Lists...Footnotes:.Not applicable...FTP Download:.Download the entire table at: https://www2.census.gov/programs-surveys/economic-census/data/2017/sector62/EC1762TYPEPAYER.zip..API Information:.Economic census data are housed in the Census Bureau API. For more information, see Explore Data: Developers: Available APIs: Economic Census..Methodology:.To maintain confidentiality, the U.S. Census Bureau suppresses data to protect the identity of any business or individual. The census results in this file contain sampling and/or nonsampling error. Data users who create their own estimates using data from this file should cite the U.S. Census Bureau as the source of the original data only...To comply with disclosure avoidance guidelines, data rows with fewer than three contributing establishments are not presented. Additionally, establishment counts are suppressed when other select statistics in the same row are suppressed. For detailed information about the methods used to collect and produce statistics, including sampling, eligibility, questions, data collection and processing, data quality, review, weighting, estimation, coding operations, confidentiality protection, sampling error, nonsampling error, and more, see Economic Census: Technical Documentation: Methodology...Symbols:.D - Withheld to avoid disclosing data for individual companies; data are included in higher level totals.N - Not available or not comparable.S - Estimate does not meet publication standards because of high sampling variability, poor response quality, or other concerns about the estimate quality. Unpublished estimates derived from this table by subtraction are subject to these same limitations and should not be attributed to the U.S. Census Bureau. For a description of publication standards and the total quantity response rate, see link to program methodology page..X - Not applicable.A - Relative standard error of 100% or more.r - Revised.s - Relative standard error exceeds 40%.For a complete list of symbols, see Economic Census: Technical Documentation: Data Dictionary.. .Source:.U.S. Census Bureau, 2017 Economic Census.For information about the economic census, see Business and Economy: Economic Census...Contact Information:.U.S. Census Bureau.For general inquiries:. (800) 242-2184/ (301) 763-5154. ewd.outreach@census.gov.For specific data questions:. (800) 541-8345.For additional contacts, see Economic Census: About: Contact Us.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
U.S. Census BlocksThis feature layer, utilizing National Geospatial Data Asset (NGDA) data from the U.S. Census Bureau (USCB), displays Census Blocks in the United States. A brief description of Census Blocks, per USCB, is that "Census blocks are statistical areas bounded by visible features such as roads, streams, and railroad tracks, and by nonvisible boundaries such as property lines, city, township, school district, county limits and short line-of-sight extensions of roads." Also, "the smallest level of geography you can get basic demographic data for, such as total population by age, sex, and race."Census Block 1007Data currency: This cached Esri federal service is checked weekly for updates from its enterprise federal source (Census Blocks) and will support mapping, analysis, data exports and OGC API – Feature access.NGDAID: 69 (Series Information for 2020 Census Block State-based TIGER/Line Shapefiles, Current)OGC API Features Link: (U.S. Census Blocks - OGC Features) copy this link to embed it in OGC Compliant viewersFor more information, please visit: What are census blocksFor feedback please contact: Esri_US_Federal_Data@esri.comNGDA Data SetThis data set is part of the NGDA Governmental Units, and Administrative and Statistical Boundaries Theme Community. Per the Federal Geospatial Data Committee (FGDC), this theme is defined as the "boundaries that delineate geographic areas for uses such as governance and the general provision of services (e.g., states, American Indian reservations, counties, cities, towns, etc.), administration and/or for a specific purpose (e.g., congressional districts, school districts, fire districts, Alaska Native Regional Corporations, etc.), and/or provision of statistical data (census tracts, census blocks, metropolitan and micropolitan statistical areas, etc.). Boundaries for these various types of geographic areas are either defined through a documented legal description or through criteria and guidelines. Other boundaries may include international limits, those of federal land ownership, the extent of administrative regions for various federal agencies, as well as the jurisdictional offshore limits of U.S. sovereignty. Boundaries associated solely with natural resources and/or cultural entities are excluded from this theme and are included in the appropriate subject themes."For other NGDA Content: Esri Federal Datasets
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Release Date: 2021-02-18.Release Schedule:.The data in this file come from the 2017 Economic Census. For information about economic census planned data product releases, see Economic Census: About: 2017 Release Schedules...Key Table Information:.Includes only establishments of firms with payroll...Data Items and Other Identifying Records:.Number of establishments.Sales, value of shipments, or revenue ($1,000).Total inventories, beginning of year ($1,000).Total inventories, end of year ($1,000).Total storage capacity, December 31, excluding liquified petroleum gas (1,000 gallons).Refined petroleum products storage capacity, December 31 (1,000 gallons).Crude oil storage capacity, December 31 (1,000 gallons)..Each record includes a code which represents the owner type of establishments...Geography Coverage:.The data are shown for employer establishments of firms at the U.S. and State levels. For information about economic census geographies, including changes for 2017, see Economic Census: Economic Geographies...Industry Coverage:.The data are shown for NAICS code 4247101. For information about NAICS, see Economic Census: Technical Documentation: Economic Census Code Lists...Footnotes:.Not applicable...FTP Download:.Download the entire table at: https://www2.census.gov/programs-surveys/economic-census/data/2017/sector42/EC1742PETRSTAT.zip..API Information:.Economic census data are housed in the Census Bureau API. For more information, see Explore Data: Developers: Available APIs: Economic Census..Methodology:.To maintain confidentiality, the U.S. Census Bureau suppresses data to protect the identity of any business or individual. The census results in this file contain sampling and/or nonsampling error. Data users who create their own estimates using data from this file should cite the U.S. Census Bureau as the source of the original data only...To comply with disclosure avoidance guidelines, data rows with fewer than three contributing establishments are not presented. Additionally, establishment counts are suppressed when other select statistics in the same row are suppressed. For detailed information about the methods used to collect and produce statistics, including sampling, eligibility, questions, data collection and processing, data quality, review, weighting, estimation, coding operations, confidentiality protection, sampling error, nonsampling error, and more, see Economic Census: Technical Documentation: Methodology...Symbols:.D - Withheld to avoid disclosing data for individual companies; data are included in higher level totals.N - Not available or not comparable.S - Estimate does not meet publication standards because of high sampling variability, poor response quality, or other concerns about the estimate quality. Unpublished estimates derived from this table by subtraction are subject to these same limitations and should not be attributed to the U.S. Census Bureau. For a description of publication standards and the total quantity response rate, see link to program methodology page..X - Not applicable.A - Relative standard error of 100% or more.r - Revised.s - Relative standard error exceeds 40%.For a complete list of symbols, see Economic Census: Technical Documentation: Data Dictionary.. .Source:.U.S. Census Bureau, 2017 Economic Census.For information about the economic census, see Business and Economy: Economic Census...Contact Information:.U.S. Census Bureau.For general inquiries:. (800) 242-2184/ (301) 763-5154. ewd.outreach@census.gov.For specific data questions:. (800) 541-8345.For additional contacts, see Economic Census: About: Contact Us.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
U.S. Census Block Groups This feature layer, utilizing National Geospatial Data Asset (NGDA) data from the U.S. Census Bureau (USCB), displays Census block groups in the 50 states, the District of Columbia, and Puerto Rico. Per the USCB, "Block Groups (BGs) are clusters of blocks within the same census tract. Each census tract contains at least one BG, and BGs are uniquely numbered within census tracts. BGs have a valid code range of 0 through 9. BGs have the same first digit of their 4-digit census block number from the same decennial census. BGs coded 0 are intended to only include water area, no land area, and they are generally in territorial seas, coastal water, and Great Lakes water areas. Block groups generally contain between 600 and 3,000 people. A BG usually covers a contiguous area but never crosses county or census tract boundaries. They may, however, cross the boundaries of other geographic entities like county subdivisions, places, urban areas, voting districts, congressional districts, and American Indian / Alaska Native / Native Hawaiian areas." Block Group 2 - Census Tract 010400 (Santa Fe, NM area) Data version: This cached Esri federal service is checked weekly for updates from its enterprise federal source (Census Block Groups) and will support mapping, analysis, data exports and OGC API – Feature access.NGDAID: 70 (Series Information for Block Group State-based TIGER/Line Shapefiles, Current)OGC API Features Link: (U.S. Census Block Groups - OGC Features) copy this link to embed it in OGC Compliant viewersFor more information, please visit: What are census blocks?For feedback please contact: Esri_US_Federal_Data@esri.com NGDA Data Set This data set is part of the NGDA Governmental Units, and Administrative and Statistical Boundaries Theme Community. Per the Federal Geospatial Data Committee (FGDC), this theme is defined as the "boundaries that delineate geographic areas for uses such as governance and the general provision of services (e.g., states, American Indian reservations, counties, cities, towns, etc.), administration and/or for a specific purpose (e.g., congressional districts, school districts, fire districts, Alaska Native Regional Corporations, etc.), and/or provision of statistical data (census tracts, census blocks, metropolitan and micropolitan statistical areas, etc.). Boundaries for these various types of geographic areas are either defined through a documented legal description or through criteria and guidelines. Other boundaries may include international limits, those of federal land ownership, the extent of administrative regions for various federal agencies, as well as the jurisdictional offshore limits of U.S. sovereignty. Boundaries associated solely with natural resources and/or cultural entities are excluded from this theme and are included in the appropriate subject themes." For other NGDA Content: Esri Federal Datasets
Facebook
TwitterThis data package has the purpose to offer data for socio-economic indicators and to cover as much as possible the entire this indicator category with regard to the indicator type and to the geographic level. The major sources of the data are the U.S. Census Bureau and the U.S. Bureau for Labor Statistics. Another used sources of data are the U.S. Department of Housing and Urban Development and the U.S. Department of Housing and the U.S. Department Of Agriculture (Economic Research Service).
Facebook
Twitterhttps://www.icpsr.umich.edu/web/ICPSR/studies/4204/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/4204/terms
This is a special extract of the 2000 Census 5-Percent Public Use Microdata Samples (PUMS) created by the National Archive of Computerized Data on Aging (NACDA). The file combines the individual 5-percent state files for all 50 states, the District of Columbia, and Puerto Rico as released by the United States Census Bureau into a single analysis file. The file contains information on all households that contain at least one person aged 65 years or more in residence as of the 2000 Census enumeration. The file contains individual records on all persons aged 65 and older living in households as well as individual records for all other members residing in each of these households. Consequently, this file can be used to examine both the characteristics of the elderly in the United States as well as the characteristics of individuals who co-reside with persons aged 65 and older as of the year 2000. All household variables from the household-specific "Household record" of the 2000 PUMS are appended to the end of each individual level record. This file is not a special product of the Census Bureau and is not a resample of the PUMS data specific to the elderly population. While it is comparable to the 1990 release CENSUS OF POPULATION AND HOUSING, 1990: [UNITED STATES]: PUBLIC USE MICRODATA SAMPLE: 3-PERCENT ELDERLY SAMPLE (ICPSR 6219), the sampling procedures and weights for the 2000 file reflect the methodology that applies to the 5-percent PUMS release CENSUS OF POPULATION AND HOUSING, 2000 [UNITED STATES]: PUBLIC USE MICRODATA SAMPLE: 5-PERCENT SAMPLE (ICPSR 13568). Person variables cover age, sex, relationship to householder, educational attainment, school enrollment, race, Hispanic origin, ancestry, language spoken at home, citizenship, place of birth, year of immigration, place of residence in 1985, marital status, number of children ever born, military service, mobility and personal care limitation, work limitation status, employment status, occupation, industry, class of worker, hours worked last week, weeks worked in 1989, usual hours worked per week, temporary absence from work, place of work, time of departure for work, travel time to work, means of transportation to work, total earnings, total income, wages and salary income, farm and nonfarm self-employment income, Social Security income, public assistance income, retirement income, and rent, dividends, and net rental income. Housing variables include area type, state and area of residence, farm/nonfarm status, type of structure, year structure was built, vacancy and boarded-up status, number of rooms and bedrooms, presence or absence of a telephone, presence or absence of complete kitchen and plumbing facilities, type of sewage facilities, type of water source, type of heating fuel used, property value, tenure, year moved into house/apartment, type of household/family, type of group quarters, household language, number of persons in the household, number of persons and workers in the family, status of mortgage, second mortgage, and home equity loan, number of vehicles available, household income, sales of agricultural products, payments for rent, mortgage and property tax, condominium fees, mobile home costs, and cost of electricity, water, heating fuel, and flood/fire/hazard insurance.
Facebook
Twitterhttps://www.usa.gov/government-works/https://www.usa.gov/government-works/
All data was collected from US Census official site: data.census.gov
The first row in all data files contains column descriptions. It should be ignored in the load, e.g.:
df = pd.read_csv('ACSST5Y2018.S0101-Data.csv', skiprows=[1], low_memory=False)
Next, if you need county CFIPS, it can be exctracted from the GEO_ID column:
df['CFIPS'] = df['GEO_ID'].apply(lambda x: int(x.split('US')[-1]))
American Community Survey (ACS) data derived from S0101 AGE AND SEX: - ACSST5Y2018.S0101-Data.csv - ACSST5Y2018.S0101-Column-Metadata.csv - ACSST5Y2019.S0101-Data.csv - ACSST5Y2019.S0101-Column-Metadata.csv - ACSST5Y2020.S0101-Data.csv - ACSST5Y2020.S0101-Column-Metadata.csv - ACSST5Y2021.S0101-Data.csv - ACSST5Y2021.S0101-Column-Metadata.csv
Includes basic info on population and age structure
American Community Survey (ACS) data derived from DP05ACS DEMOGRAPHIC AND HOUSING ESTIMATES: - ACSDP5Y2018.DP05-Data.csv - ACSDP5Y2018.DP05-Column-Metadata.csv - ACSDP5Y2019.DP05-Data.csv - ACSDP5Y2019.DP05-Column-Metadata.csv - ACSDP5Y2020.DP05-Data.csv - ACSDP5Y2020.DP05-Column-Metadata.csv - ACSDP5Y2021.DP05-Data.csv - ACSDP5Y2021.DP05-Column-Metadata.csv
Includes detailed info on demographic structure: age, race, sex, etc
County Business Patterns (CBP) data derived from: - CB1800CBP All Sectors: County Business Patterns, including ZIP Code Business Patterns, by Legal Form of Organization and Employment Size Class for the U.S., States, and Selected Geographies: 2018 - CBP2018.CB1800CBP-Data.csv - CBP2018.CB1800CBP-Column-Metadata.csv - CB1900CBP All Sectors: County Business Patterns, including ZIP Code Business Patterns, by Legal Form of Organization and Employment Size Class for the U.S., States, and Selected Geographies: 2019 - CBP2019.CB1900CBP-Data.csv - CBP2019.CB1900CBP-Column-Metadata.csv - CB2000CBP All Sectors: County Business Patterns, including ZIP Code Business Patterns, by Legal Form of Organization and Employment Size Class for the U.S., States, and Selected Geographies: 2020 - CBP2020.CB2000CBP-Data.csv - CBP2020.CB2000CBP-Column-Metadata.csv
Includes info on number of establishments, payroll, and other metrics by different business size (less than 5 employees, 5 to 9 employees, etc).
American Community Survey (ACS) data derived from B28003 PRESENCE OF A COMPUTER AND TYPE OF INTERNET SUBSCRIPTION IN HOUSEHOLD: - ACSDT5Y2018.B28003-Data.csv - ACSDT5Y2018.B28003-Column-Metadata.csv - ACSDT5Y2019.B28003-Data.csv - ACSDT5Y2019.B28003-Column-Metadata.csv - ACSDT5Y2020.B28003-Data.csv - ACSDT5Y2020.B28003-Column-Metadata.csv - ACSDT5Y2021.B28003-Data.csv - ACSDT5Y2021.B28003-Column-Metadata.csv
American Community Survey (ACS) data derived from S2801 TYPES OF COMPUTERS AND INTERNET SUBSCRIPTIONS: - ACSST5Y2018.S2801-Data.csv - ACSST5Y2018.S2801-Column-Metadata.csv - ACSST5Y2019.S2801-Data.csv - ACSST5Y2019.S2801-Column-Metadata.csv - ACSST5Y2020.S2801-Data.csv - ACSST5Y2020.S2801-Column-Metadata.csv - ACSST5Y2021.S2801-Data.csv - ACSST5Y2021.S2801-Column-Metadata.csv
Facebook
TwitterOpen Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
The Travel Time to Work indicator compares the mean, or average, commute time for Champaign County residents to the mean commute time for residents of Illinois and the United States as a whole. On its own, mean travel time of all commuters on all mode types could be reflective of a number of different conditions. Congestion, mode choice, changes in residential patterns, changes in the location of major employment centers, and changes in the transit network can all impact travel time in different and often conflicting ways. Since the onset of the COVID-19 pandemic in 2020, the workplace location (office vs. home) is another factor that can impact the mean travel time of an area. We don’t recommend trying to draw any conclusions about conditions in Champaign County, or anywhere else, based on mean travel time alone.
However, when combined with other indicators in the Mobility category (and other categories), mean travel time to work is a valuable measure of transportation behaviors in Champaign County.
Champaign County’s mean travel time to work is lower than the mean travel time to work in Illinois and the United States. Based on this figure, the state of Illinois has the longest commutes of the three analyzed areas.
The year-to-year fluctuations in mean travel time have been statistically significant in the United States since 2014, and in Illinois most recently in 2021 and 2022. Champaign County’s year-to-year fluctuations in mean travel time were statistically significant from 2021 to 2022, the first time since this data first started being tracked in 2005.
Mean travel time data was sourced from the U.S. Census Bureau’s American Community Survey (ACS) 1-Year Estimates, which are released annually.
As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.
Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.
For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Travel Time to Work.
Sources: U.S. Census Bureau; American Community Survey, 2024 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using data.census.gov; (18 November 2025).; U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using data.census.gov; (16 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using data.census.gov; (10 October 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using data.census.gov; (17 October 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using data.census.gov; (29 March 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using data.census.gov; (29 March 2021).; U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (14 September 2017).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).
Facebook
Twitter"""
This dataset provides a detailed breakdown of demographic information for counties across the United States, derived from the U.S. Census Bureau's 2023 American Community Survey (ACS). The data includes population counts by gender, race, and ethnicity, alongside unique identifiers for each county using State and County FIPS codes.
The dataset includes the following columns: - County: Name of the county. - State: Name of the state the county belongs to. - State FIPS Code: Federal Information Processing Standard (FIPS) code for the state. - County FIPS Code: FIPS code for the county. - FIPS: Combined State and County FIPS codes, a unique identifier for each county. - Total Population: Total population in the county. - Male Population: Number of males in the county. - Female Population: Number of females in the county. - Total Race Responses: Total race-related responses recorded in the survey. - White Alone: Number of individuals identifying as White alone. - Black or African American Alone: Number of individuals identifying as Black or African American alone. - Hispanic or Latino: Number of individuals identifying as Hispanic or Latino.
NAME field for clarity.This dataset is highly versatile and suitable for: - Demographic Analysis: - Analyze population distribution by gender, race, and ethnicity. - Geographic Studies: - Use FIPS codes to map counties geographically. - Data Visualizations: - Create visual insights into demographic trends across counties.
Special thanks to the U.S. Census Bureau for making this data publicly available and to the Kaggle community for fostering a collaborative space for data analysis and exploration. """
Facebook
TwitterMore details about each file are in the individual file descriptions.
This is a dataset from the U.S. Census Bureau hosted by the Federal Reserve Economic Database (FRED). FRED has a data platform found here and they update their information according the amount of data that is brought in. Explore the U.S. Census Bureau using Kaggle and all of the data sources available through the U.S. Census Bureau organization page!
This dataset is maintained using FRED's API and Kaggle's API.
Cover photo by Joshua Ness on Unsplash
Unsplash Images are distributed under a unique Unsplash License.
Facebook
TwitterOpen Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
The residential vacancy rate is the percentage of residential units that are unoccupied, or vacant, in a given year. The U.S. Census Bureau defines occupied housing units as “owner-occupied” or “renter-occupied.” Vacant housing units are not classified by tenure in this way, as they are not occupied by an owner or renter.
The residential vacancy rate serves as an indicator of the condition of the area’s housing market. Low residential vacancy rates indicate that demand for housing is high compared to the housing supply. However, the aggregate residential vacancy rate is lacking in granularity. For example, the housing market for rental units in the area and the market for buying a unit in the same area may be very different, and the aggregate rate will not show those distinct conditions. Furthermore, the vacancy rate may be high, or low, for a variety of reasons. A high vacancy rate may result from a falling population, but it may also result from a recent construction spree that added many units to the total stock.
The residential vacancy rate in Champaign County appears to have fluctuated between 8% and 14% from 2005 through 2022, reaching a peak near 14% in 2019. In 2023, this rate dropped to about 7%, its lowest value since 2005. However, this rate was calculated using the American Community Survey’s (ACS) estimated number of vacant houses per year, which has year-to-year fluctuations that are largely not statistically significant. Thus, we cannot establish a trend for this data.
The residential vacancy rate data shown here was calculated using the estimated total housing units and estimated vacant housing units from the U.S. Census Bureau’s American Community Survey 1-Year Estimates, which are released annually.
As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.
Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.
For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Occupancy Status.
Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table B25002, generated by CCRPC staff; using data.census.gov; (17 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table B25002, generated by CCRPC staff; using data.census.gov; (25 September 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table B25002, generated by CCRPC staff; using data.census.gov; (4 October 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table B25002, generated by CCRPC staff; using data.census.gov; (8 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table B25002, generated by CCRPC staff; using data.census.gov; (8 June 2021).; U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table B25002, generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table B25002, generated by CCRPC staff; using American FactFinder; (14 September 2017).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table B25002, generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table B25002; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table SB25002; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table B25002; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table B25002; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table B25002; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table B25002; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table B25002; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table B25002; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table B25002; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table B25002; generated by CCRPC staff; using American FactFinder; (16 March 2016).
Facebook
Twitterhttps://www.icpsr.umich.edu/web/ICPSR/studies/6219/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/6219/terms
These data from the 1990 Census comprise a sample of households with at least one person 60 years and older, plus a sample of persons 60 years and older in group quarters. The data are grouped into housing variables and person variables. Housing variables include area type, state and area of residence, farm/nonfarm status, type of structure, year structure was built, vacancy and boarded-up status, number of rooms and bedrooms, presence or absence of a telephone, presence or absence of complete kitchen and plumbing facilities, type of sewage facilities, type of water source, type of heating fuel used, property value, tenure, year moved into house/apartment, type of household/family, type of group quarters, household language, number of persons in the household, number of persons and workers in the family, status of mortgage, second mortgage, and home equity loan, number of vehicles available, household income, sales of agricultural products, payments for rent, mortgage and property tax, condominium fees, mobile home costs, and cost of electricity, water, heating fuel, and flood/fire/hazard insurance. Person variables cover age, sex, relationship to householder, educational attainment, school enrollment, race, Hispanic origin, ancestry, language spoken at home, citizenship, place of birth, year of immigration, place of residence in 1985, marital status, number of children ever born, military service, mobility and personal care limitation, work limitation status, employment status, occupation, industry, class of worker, hours worked last week, weeks worked in 1989, usual hours worked per week, temporary absence from work, place of work, time of departure for work, travel time to work, means of transportation to work, total earnings, total income, wages and salary income, farm and nonfarm self-employment income, Social Security income, public assistance income, retirement income, and rent, dividends, and net rental income.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Release Date: 2021-05-06.Release Schedule:.The data in this file come from the 2017 Economic Census. For information about economic census planned data product releases, see Economic Census: About: 2017 Release Schedules...Key Table Information:.Includes only establishments of firms with payroll...Data Items and Other Identifying Records:.Number of establishments.Sales, value of shipments, or revenue ($1,000).Response coverage of primary type of food service inquiry (%)..Geography Coverage:.The data are shown for employer establishments of firms at the U.S. and States level. For information about economic census geographies, including changes for 2017, see Economic Census: Economic Geographies...Industry Coverage:.The data are shown at the 6-digit 2017 NAICS code level starting with NAICS code 722513. For information about NAICS, see Economic Census: Technical Documentation: Economic Census Code Lists...Footnotes:.Not applicable...FTP Download:.Download the entire table at: https://www2.census.gov/programs-surveys/economic-census/data/2017/sector72/EC1772FOODSVC.zip..API Information:.Economic census data are housed in the Census Bureau API. For more information, see Explore Data: Developers: Available APIs: Economic Census..Methodology:.To maintain confidentiality, the U.S. Census Bureau suppresses data to protect the identity of any business or individual. The census results in this file contain sampling and/or nonsampling error. Data users who create their own estimates using data from this file should cite the U.S. Census Bureau as the source of the original data only...To comply with disclosure avoidance guidelines, data rows with fewer than three contributing establishments are not presented. Additionally, establishment counts are suppressed when other select statistics in the same row are suppressed. For detailed information about the methods used to collect and produce statistics, including sampling, eligibility, questions, data collection and processing, data quality, review, weighting, estimation, coding operations, confidentiality protection, sampling error, nonsampling error, and more, see Economic Census: Technical Documentation: Methodology...Symbols:.D - Withheld to avoid disclosing data for individual companies; data are included in higher level totals.N - Not available or not comparable.S - Estimate does not meet publication standards because of high sampling variability, poor response quality, or other concerns about the estimate quality. Unpublished estimates derived from this table by subtraction are subject to these same limitations and should not be attributed to the U.S. Census Bureau. For a description of publication standards and the total quantity response rate, see link to program methodology page..X - Not applicable.A - Relative standard error of 100% or more.r - Revised.s - Relative standard error exceeds 40%.For a complete list of symbols, see Economic Census: Technical Documentation: Data Dictionary.. .Source:.U.S. Census Bureau, 2017 Economic Census.For information about the economic census, see Business and Economy: Economic Census...Contact Information:.U.S. Census Bureau.For general inquiries:. (800) 242-2184/ (301) 763-5154. ewd.outreach@census.gov.For specific data questions:. (800) 541-8345.For additional contacts, see Economic Census: About: Contact Us.
Facebook
TwitterOpen Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
The estimated median household income and estimated median family income are two separate measures: every family is a household, but not every household is a family. According to the U.S. Census Bureau definitions of the terms, a family “includes a householder and one or more people living in the same household who are related to the householder by birth, marriage, or adoption,”[1] while a household “includes all the people who occupy a housing unit,” including households of just one person[2]. When evaluated together, the estimated median household income and estimated median family income provide a thorough picture of household-level economics in Champaign County.
Both estimated median household income and estimated median family income were higher in 2024 than in 2005. The change in estimated median household income between 2023 and 2024 was not statistically significant. However, the increase in estimated median family income between 2023 and 2024 was statistically significant. Estimated median family income is consistently higher than estimated median household income, largely due to the definitions of each term, and the types of household that are measured and are not measured in each category.
Median income data was sourced from the U.S. Census Bureau’s American Community Survey (ACS) 1-Year Estimates, which are released annually.
As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.
Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.
For interested data users, the 2020 ACS 1-Year Experimental data release includes datasets on Median Household Income in the Past 12 Months (in 2020 Inflation-Adjusted Dollars) and Median Family Income in the Past 12 Months (in 2020 Inflation-Adjusted Dollars).
[1] U.S. Census Bureau. (Date unknown). Glossary. “Family Household.” (Accessed 19 April 2016).
[2] U.S. Census Bureau. (Date unknown). Glossary. “Household.” (Accessed 19 April 2016).
Sources: U.S. Census Bureau; American Community Survey, 2024 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using data.census.gov; (2 December 2025).; U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using data.census.gov; (17 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using data.census.gov; (18 September 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using data.census.gov; (3 October 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using data.census.gov; (7 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using data.census.gov; (7 June 2021).;U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using American FactFinder; (14 September 2017).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using American FactFinder; (16 March 2016).
Facebook
TwitterOpen Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
This poverty rate data shows what percentage of the measured population* falls below the poverty line. Poverty is closely related to income: different “poverty thresholds” are in place for different sizes and types of household. A family or individual is considered to be below the poverty line if that family or individual’s income falls below their relevant poverty threshold. For more information on how poverty is measured by the U.S. Census Bureau (the source for this indicator’s data), visit the U.S. Census Bureau’s poverty webpage.
The poverty rate is an important piece of information when evaluating an area’s economic health and well-being. The poverty rate can also be illustrative when considered in the contexts of other indicators and categories. As a piece of data, it is too important and too useful to omit from any indicator set.
The poverty rate for all individuals in the measured population in Champaign County has hovered around roughly 20% since 2005. However, it reached its lowest rate in 2021 at 14.9%, and its second lowest rate in 2023 at 16.3%. Although the American Community Survey (ACS) data shows fluctuations between years, given their margins of error, none of the differences between consecutive years’ estimates are statistically significant, making it impossible to identify a trend.
Poverty rate data was sourced from the U.S. Census Bureau’s American Community Survey 1-Year Estimates, which are released annually.
As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.
Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.
For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Poverty Status in the Past 12 Months by Age.
*According to the U.S. Census Bureau document “How Poverty is Calculated in the ACS," poverty status is calculated for everyone but those in the following groups: “people living in institutional group quarters (such as prisons or nursing homes), people in military barracks, people in college dormitories, living situations without conventional housing, and unrelated individuals under 15 years old."
Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (17 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (25 September 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (16 September 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (8 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (8 June 2021).; U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (14 September 2017).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).
Facebook
TwitterOpen Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
This commuter mode share data shows the estimated percentages of commuters in Champaign County who traveled to work using each of the following modes: drove alone in an automobile; carpooled; took public transportation; walked; biked; went by motorcycle, taxi, or other means; and worked at home. Commuter mode share data can illustrate the use of and demand for transit services and active transportation facilities, as well as for automobile-focused transportation projects.
Driving alone in an automobile is by far the most prevalent means of getting to work in Champaign County, accounting for about 64 percent of all work trips in 2024. This is a statistically significant decrease since 2023, which was the first year that matched pre-COVID-19 pandemic levels of driving alone.
The percentage of workers who commuted by all other means to a workplace outside the home also decreased from 2019 to 2021, most of these modes reaching a record low since this data first started being tracked in 2005. All of these modes except public transportation saw increases from 2023 to 2024, but they were not statistically significant. The percentage of people walking to work saw a statistically significant increase from 2022 to 2024.
Meanwhile, the percentage of people in Champaign County who worked at home more than quadrupled from 2019 to 2021, reaching a record high over 18 percent. It is a safe assumption that this can be attributed to the increase of employers allowing employees to work at home when the COVID-19 pandemic began in 2020.
The work from home figure decreased to 11.2 percent in 2023, but which is the first statistically significant decrease since the pandemic began. However, this figure saw a statistically significant increase from 2023 to 2024, rising back from 15.1 percent in 2024. This figure is about 3.3 times higher than 2019, despite the COVID-19 emergency ending in 2023.
Commuter mode share data was sourced from the U.S. Census Bureau’s American Community Survey (ACS) 1-Year Estimates, which are released annually.
As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.
Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.
For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Means of Transportation to Work.
Sources: U.S. Census Bureau; American Community Survey, 2024 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using data.census.gov; (19 November 2024).; U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using data.census.gov; (18 September 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using data.census.gov; (10 October 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using data.census.gov; (14 October 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using data.census.gov; (26 March 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using data.census.gov; (26 March 2021).; U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (14 September 2017).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).
Facebook
TwitterThis intermediate level data set was extracted from the census bureau database. There are 48842 instances of data set, mix of continuous and discrete (train=32561, test=16281).
The data set has 15 attribute which include age, sex, education level and other relevant details of a person. The data set will help to improve your skills in Exploratory Data Analysis, Data Wrangling, Data Visualization and Classification Models.
Feel free to explore the data set with multiple supervised and unsupervised learning techniques. The Following description gives more details on this data set:
age: the age of an individual.workclass: The type of work or employment of an individual. It can have the following categories:
Final Weight: The weights on the CPS files are controlled to independent estimates of the civilian noninstitutional population of the US. These are prepared monthly for us by Population Division here at the Census Bureau. We use 3 sets of controls.These are: 1. A single cell estimate of the population 16+ for each state. 2. Controls for Hispanic Origin by age and sex. 3. Controls by Race, age and sex.
We use all three sets of controls in our weighting program and "rake" through them 6 times so that by the end we come back to all the controls we used.
People with similar demographic characteristics should have similar weights. There is one important caveat to remember about this statement. That is that since the CPS sample is actually a collection of 51 state samples, each with its own probability of selection, the statement only applies within state.
education: The highest level of education completed. education-num: The number of years of education completed. marital-status: The marital status. occupation: Type of work performed by an individual.relationship: The relationship status.race: The race of an individual. sex: The gender of an individual.capital-gain: The amount of capital gain (financial profit).capital-loss: The amount of capital loss an individual has incurred.hours-per-week: The number of hours works per week.native-country: The country of origin or the native country.income: The income level of an individual and serves as the target variable. It indicates whether the income is greater than $50,000 or less than or equal to $50,000, denoted as (>50K, <=50K).
Facebook
TwitterOpen Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
Source: U.S. Census Bureau; American Community Survey, 2019-2023 American Community Survey 5-Year Estimates, Table S1401; generated by CCRPC staff; using data.census.gov; https://data.census.gov/cedsci/; (12 February 2025).
Facebook
TwitterThe TIGER/Line Roads County-based dataset was released August 08, 2024, by the United States Census Bureau (USCB) and is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics (BTS) National Transportation Atlas Database (NTAD). The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. The All Roads Shapefile includes all features within the MTDB Super Class "Road/Path Features" distinguished where the MAF/TIGER Feature Classification Code (MTFCC) for the feature in MTDB that begins with "S". This includes all primary, secondary, local neighborhood, and rural roads, city streets, vehicular trails (4wd), ramps, service drives, alleys, parking lot roads, private roads for service vehicles (logging, oil fields, ranches, etc.), bike paths or trails, bridle/horse paths, walkways/pedestrian trails, and stairways. A data dictionary, or other source of attribute information, is accessible at https://doi.org/10.21949/1529082
Facebook
TwitterOpen Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
The estimated median age gives an idea of the age distribution of the population in a given area. A greater median age would suggest that the area of interest has a relatively large number of older residents, while a lower median age suggests that the area has a relatively large number of younger residents.
Champaign County’s estimated median age has risen for over a decade, but has always stayed between 28 and 31. Year-to-year changes from 2017 to 2019 were statistically significant, but not from 2019 to 2023. The Champaign County estimated median age has been consistently younger than the estimated median ages of the United States and State of Illinois. Champaign County’s figure is likely impacted to some degree by the large student population associated with the University of Illinois.
The estimated median age does not provide a significant amount of detail, and it does not provide any information on why the estimated median age is what it is. However, when placed in the context of other pieces of data and other indicators, it is a valuable starting point in understanding county demographics.
Estimated median age data was sourced from the U.S. Census Bureau’s American Community Survey (ACS) 1-Year Estimates, which are released annually.
As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.
Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.
For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Median Age by Sex.
Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table S0101; generated by CCRPC staff; using data.census.gov; (8 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table S0101; generated by CCRPC staff; using data.census.gov; (6 October 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table S0101; generated by CCRPC staff; using data.census.gov; (13 October 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table S0101; generated by CCRPC staff; using data.census.gov; (7 April 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table S0101; generated by CCRPC staff; using data.census.gov; (7 April 2021).; U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table S0101; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table S0101; generated by CCRPC staff; using American FactFinder; (14 September 2017).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table S0101; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table S0101; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table S0101; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table S0101; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table S0101; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table S0101; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table S0101; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table S0101; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table S0101; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table S0101; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table S0101; generated by CCRPC staff; using American FactFinder; (16 March 2016).
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Release Date: 2021-05-20.Release Schedule:.The data in this file come from the 2017 Economic Census. For information about economic census planned data product releases, see Economic Census: About: 2017 Release Schedules...Key Table Information:.Includes only establishments of firms with payroll...Data Items and Other Identifying Records:.Number of establishments.Sales, value of shipments, or revenue ($1,000).Type of payer revenue ($1,000).Response coverage of type of payer inquiry (%)..Each record includes a code which represents a specific type of payer category...Geography Coverage:.The data are shown for employer establishments at the U.S. and state levels. For information about economic census geographies, including changes for 2017, see Economic Census: Economic Geographies...Industry Coverage:.The data are shown at the 4-digit code level for 2017 NAICS codes beginning with 621, 622, and 623. For information about NAICS, see Economic Census: Technical Documentation: Economic Census Code Lists...Footnotes:.Not applicable...FTP Download:.Download the entire table at: https://www2.census.gov/programs-surveys/economic-census/data/2017/sector62/EC1762TYPEPAYER.zip..API Information:.Economic census data are housed in the Census Bureau API. For more information, see Explore Data: Developers: Available APIs: Economic Census..Methodology:.To maintain confidentiality, the U.S. Census Bureau suppresses data to protect the identity of any business or individual. The census results in this file contain sampling and/or nonsampling error. Data users who create their own estimates using data from this file should cite the U.S. Census Bureau as the source of the original data only...To comply with disclosure avoidance guidelines, data rows with fewer than three contributing establishments are not presented. Additionally, establishment counts are suppressed when other select statistics in the same row are suppressed. For detailed information about the methods used to collect and produce statistics, including sampling, eligibility, questions, data collection and processing, data quality, review, weighting, estimation, coding operations, confidentiality protection, sampling error, nonsampling error, and more, see Economic Census: Technical Documentation: Methodology...Symbols:.D - Withheld to avoid disclosing data for individual companies; data are included in higher level totals.N - Not available or not comparable.S - Estimate does not meet publication standards because of high sampling variability, poor response quality, or other concerns about the estimate quality. Unpublished estimates derived from this table by subtraction are subject to these same limitations and should not be attributed to the U.S. Census Bureau. For a description of publication standards and the total quantity response rate, see link to program methodology page..X - Not applicable.A - Relative standard error of 100% or more.r - Revised.s - Relative standard error exceeds 40%.For a complete list of symbols, see Economic Census: Technical Documentation: Data Dictionary.. .Source:.U.S. Census Bureau, 2017 Economic Census.For information about the economic census, see Business and Economy: Economic Census...Contact Information:.U.S. Census Bureau.For general inquiries:. (800) 242-2184/ (301) 763-5154. ewd.outreach@census.gov.For specific data questions:. (800) 541-8345.For additional contacts, see Economic Census: About: Contact Us.