When analyzing the ratio of homelessness to state population, New York, Vermont, and Oregon had the highest rates in 2023. However, Washington, D.C. had an estimated ** homeless individuals per 10,000 people, which was significantly higher than any of the 50 states. Homeless people by race The U.S. Department of Housing and Urban Development performs homeless counts at the end of January each year, which includes people in both sheltered and unsheltered locations. The estimated number of homeless people increased to ******* in 2023 – the highest level since 2007. However, the true figure is likely to be much higher, as some individuals prefer to stay with family or friends - making it challenging to count the actual number of homeless people living in the country. In 2023, nearly half of the people experiencing homelessness were white, while the number of Black homeless people exceeded *******. How many veterans are homeless in America? The number of homeless veterans in the United States has halved since 2010. The state of California, which is currently suffering a homeless crisis, accounted for the highest number of homeless veterans in 2022. There are many causes of homelessness among veterans of the U.S. military, including post-traumatic stress disorder (PTSD), substance abuse problems, and a lack of affordable housing.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The graph displays the top 15 states by an estimated number of homeless people in the United States for the year 2025. The x-axis represents U.S. states, while the y-axis shows the number of homeless individuals in each state. California has the highest homeless population with 187,084 individuals, followed by New York with 158,019, while Hawaii places last in this dataset with 11,637. This bar graph highlights significant differences across states, with some states like California and New York showing notably higher counts compared to others, indicating regional disparities in homelessness levels across the country.
In 2023, there were about ******* homeless people estimated to be living in the United States, the highest number of homeless people recorded within the provided time period. In comparison, the second-highest number of homeless people living in the U.S. within this time period was in 2007, at *******. How is homelessness calculated? Calculating homelessness is complicated for several different reasons. For one, it is challenging to determine how many people are homeless as there is no direct definition for homelessness. Additionally, it is difficult to try and find every single homeless person that exists. Sometimes they cannot be reached, leaving people unaccounted for. In the United States, the Department of Housing and Urban Development calculates the homeless population by counting the number of people on the streets and the number of people in homeless shelters on one night each year. According to this count, Los Angeles City and New York City are the cities with the most homeless people in the United States. Homelessness in the United States Between 2022 and 2023, New Hampshire saw the highest increase in the number of homeless people. However, California was the state with the highest number of homeless people, followed by New York and Florida. The vast amount of homelessness in California is a result of multiple factors, one of them being the extreme high cost of living, as well as opposition to mandatory mental health counseling and drug addiction. However, the District of Columbia had the highest estimated rate of homelessness per 10,000 people in 2023. This was followed by New York, Vermont, and Oregon.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Yearly statewide and by-Continuum of Care total counts of individuals receiving homeless response services by age group, race, gender, veteran status, and disability status.
This data comes from the Homelessness Data Integration System (HDIS), a statewide data warehouse which compiles and processes data from all 44 California Continuums of Care (CoC)—regional homelessness service coordination and planning bodies. Each CoC collects data about the people it serves through its programs, such as homelessness prevention services, street outreach services, permanent housing interventions and a range of other strategies aligned with California’s Housing First objectives.
The dataset uploaded reflects the 2024 HUD Data Standard Changes. Previously, Race and Ethnicity are separate files but are now combined.
Information updated as of 2/06/2025.
This database contains the data reported in the Annual Homeless Assessment Report to Congress (AHAR). It represents a point-In-time count (PIT) of homeless individuals, as well as a housing inventory count (HIC) conducted annually.
The data represent the most comprehensive national-level assessment of homelessness in America, including PIT and HIC estimates of homelessness, as well as estimates of chronically homeless persons, homeless veterans, and homeless children and youth.
These data can be trended over time and correlated with other metrics of housing availability and affordability, in order to better understand the particular type of housing resources that may be needed from a social determinants of health perspective.
HUD captures these data annually through the Continuum of Care (CoC) program. CoC-level reporting data have been crosswalked to county levels for purposes of analysis of this dataset.
You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.sdoh_hud_pit_homelessness
What has been the change in the number of homeless veterans in the state of New York’s CoC Regions since 2012? Determine how the patterns of homeless veterans have changes across the state of New York
homeless_2018 AS (
SELECT Homeless_Veterans AS Vet18, CoC_Name
FROM bigquery-public-data.sdoh_hud_pit_homelessness.hud_pit_by_coc
WHERE SUBSTR(CoC_Number,0,2) = "NY" AND Count_Year = 2018
),
veterans_change AS ( SELECT homeless_2012.COC_Name, Vet12, Vet18, Vet18 - Vet12 AS VetChange FROM homeless_2018 JOIN homeless_2012 ON homeless_2018.CoC_Name = homeless_2012.CoC_Name )
SELECT * FROM veterans_change
<p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute"><abbr title="OpenDocument Spreadsheet" class="gem-c-attachment_abbr">ODS</abbr></span>, <span class="gem-c-attachment_attribute">309 KB</span></p>
<p class="gem-c-attachment_metadata">
This file is in an <a href="https://www.gov.uk/guidance/using-open-document-formats-odf-in-your-organisation" target="_self" class="govuk-link">OpenDocument</a> format
For quarterly local authority-level tables prior to the latest financial year, see the Statutory homelessness release pages.
<p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute"><abbr title="OpenDocument Spreadsheet" class="gem-c-attachment_abbr">ODS</abbr></span>, <span class="gem-c-attachment_attribute">1.19 MB</span></p>
<p class="gem-c-attachment_metadata">
This file is in an <a href="https://www.gov.uk/guidance/using-open-document-formats-odf-in-your-organisation" target="_self" class="govuk-link">OpenDocument</a> format
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Homelessness Report April 2025. Published by Department of Housing, Local Government, and Heritage. Available under the license Creative Commons Attribution Share-Alike 4.0 (CC-BY-SA-4.0).Homelessness data Official homelessness data is produced by local authorities through the Pathway Accommodation and Support System (PASS). PASS was rolled-out nationally during the course of 2013. The Department’s official homelessness statistics are published on a monthly basis and refer to the number of homeless persons accommodated in emergency accommodation funded and overseen by housing authorities during a specific count week, typically the last full week of the month. The reports are produced through the Pathway Accommodation & Support System (PASS), collated on a regional basis and compiled and published by the Department. Homelessness reporting commenced in this format in 2014. The format of the data may change or vary over time due to administrative and/or technology changes and improvements. The administration of homeless services is organised across nine administrative regions, with one local authority in each of the regions, “the lead authority”, having overall responsibility for the disbursement of Exchequer funding. In each region a Joint Homelessness Consultative Forum exists which includes representation from the relevant State and non-governmental organisations involved in the delivery of homeless services in a particular region. Delegated arrangements are governed by an annually agreed protocol between the Department and the lead authority in each region. These protocols set out the arrangements, responsibilities and financial/performance data reporting requirements for the delegation of funding from the Department. Under Sections 38 and 39 of the Housing (Miscellaneous Provisions) Act 2009 a statutory Management Group exists for each regional forum. This is comprised of representatives from the relevant housing authorities and the Health Service Executive, and it is the responsibility of the Management Group to consider issues around the need for homeless services and to plan for the implementation, funding and co-ordination of such services. In relation to the terms used in the report for the accommodation types see explanation below: PEA - Private Emergency Accommodation: this may include hotels, B&Bs and other residential facilities that are used on an emergency basis. Supports are provided to services users on a visiting supports basis. STA - Supported Temporary Accommodation: accommodation, including family hubs, hostels, with onsite professional support. TEA - Temporary Emergency Accommodation: emergency accommodation with no (or minimal) support....
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The most recent rate of homelessness is calculated using ACS population estimates from the previous year, unless otherwise noted.
Data Source: HUD's Annual Homeless Assessment Report (AHAR) Point-in-Time (PIT) Estimates by State and American Community Survey (ACS) 1-Year Estimates
Why this MattersSafe, adequate, and stable housing is a human right and essential for the health and well-being of individuals, families, and communities.People who experience homelessness also struggle to maintain access to healthcare, employment, education, healthy relationships, and other basic necessities in life, according to the DC Interagency Council on Homelessness Strategic Plan.BIPOC populations are disproportionately affected by homelessness due to housing discrimination, mass incarceration, and other policies that have limited socioeconomic opportunities for Black, Latino, and other people of color.
The District's Response Strategic investments in proven strategies for driving down homelessness, including the Career Mobility Action Plan (Career MAP) program, operation of non-congregate housing, and expansion of the District’s shelter capacity.Homelessness prevention programs for at-risk individuals and families, such as emergency rental assistance, targeted affordable housing, and permanent supporting housing.Programs and services to enhance resident’s economic and employment security and ensure access to affordable housing.
This dataset contains two tables on the percent of household overcrowding (> 1.0 persons per room) and severe overcrowding (> 1.5 persons per room) for California, its regions, counties, and cities/towns. Data is from the U.S. Department of Housing and Urban Development (HUD), Comprehensive Housing Affordability Strategy (CHAS) and U.S. Census American Community Survey (ACS). The table is part of a series of indicators in the Healthy Communities Data and Indicators Project (HCI) of the Office of Health Equity: Healthy Communities Data and Indicators Project of the Office of Health Equity. Residential crowding has been linked to an increased risk of infection from communicable diseases, a higher prevalence of respiratory ailments, and greater vulnerability to homelessness among the poor. Residential crowding reflects demographic and socioeconomic conditions. Older-adult immigrant and recent immigrant communities, families with low income and renter-occupied households are more likely to experience household crowding. A form of residential overcrowding known as "doubling up"—co-residence with family members or friends for economic reasons—is the most commonly reported prior living situation for families and individuals before the onset of homelessness. More information about the data table and a data dictionary can be found in the About/Attachments section.The household crowding table is part of a series of indicators in the Healthy Communities Data and Indicators Project (HCI) of the Office of Health Equity. The goal of HCI is to enhance public health by providing data, a standardized set of statistical measures, and tools that a broad array of sectors can use for planning healthy communities and evaluating the impact of plans, projects, policy, and environmental changes on community health. The creation of healthy social, economic, and physical environments that promote healthy behaviors and healthy outcomes requires coordination and collaboration across multiple sectors, including transportation, housing, education, agriculture and others. Statistical metrics, or indicators, are needed to help local, regional, and state public health and partner agencies assess community environments and plan for healthy communities that optimize public health. More information on HCI can be found here: https://www.cdph.ca.gov/Programs/OHE/CDPH%20Document%20Library/Accessible%202%20CDPH_Healthy_Community_Indicators1pager5-16-12.pdf
The format of the household overcrowding tables is based on the standardized data format for all HCI indicators. As a result, this data table contains certain variables used in the HCI project (e.g., indicator ID, and indicator definition). Some of these variables may contain the same value for all observations.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The peer-reviewed publication for this dataset has been published in Data & Policy, and can be accessed here: https://arxiv.org/abs/2406.16527 Please cite this when using the dataset.
This dataset has been produced as a result of the “Systematic Review of Outcomes Contracts using Machine Learning” (SyROCCo) project. The goal of the project was to apply machine learning techniques to a systematic review process of outcomes-based contracting (OBC). The purpose of the systematic review was to gather and curate, for the first time, all of the existing evidence on OBC. We aimed to map the current state of the evidence, synthesise key findings from across the published studies, and provide accessible insights to our policymaker and practitioner audiences.
OBC is a model for the provision of public services wherein a service provider receives payment, in-part or in-full, only upon the achievement of pre-agreed outcomes.
The data used to conduct the review consists of 1,952 individual studies of OBC. They include peer reviewed journal articles, book chapters, doctoral dissertations, and assorted ‘grey literature’ - that is, reports and evaluations produced outside of traditional academic publications. Those studies were manually filtered by experts on the topic from an initial search of over 11,000 results.
The full text of the articles was obtained from their PDF versions and preprocessed. This involved text format normalisation, removing acknowledgements and bibliographic references.
The corpus was then connected to the INDIGO Impact Bond Dataset. Projects and organisations mentioned in this latter dataset were searched for in the article’s corpus to relate both datasets.
Other types of information that were identified in the texts were 1) financial mechanisms (type of outcomes-based instrument); using a list of terms related to those financial mechanisms based on prior discussions with a policy advisory group (Picker et al., 2021); 2) references to the 17 Sustainable Development Goals (SDGs) defined by the United Nations General Assembly in the 2030 Agenda; 3) country names mentioned in each article and income levels related to the countries; according to the World Classification of Income Levels 2022 by the World Bank.
Three machine learning techniques were applied to the corpus:
Policy areas identification. A query-driven topic model (QDTM) (Fang et al., 2021) was used to determine the probability of an article belonging to different policy areas (health, education, homelessness, criminal justice, employment and training, child and family welfare, and agriculture and environment), using all text of the article as input. The QDTM is a semi-supervised machine learning algorithm that allows users to specify their prior knowledge in the form of simple queries in words or phrases and return query-related topics.
Named Entity Recognition. Three named entity recognition models were applied: “en_core_web_lg” and “en_core_web_trf” models from the python package ‘spaCy’ and the “ner-ontonotes-large” English model from ‘Flair’. “en_core_web_trf” is based on the RoBERTa-base transformer model. ‘Flair’ is a bi-LSTM character-based model. All models were trained on the “OntoNotes 5” data source (Marcus et al., 2011) and are able to identify geographical locations, organisation names, and laws and regulations. An ensemble method was adopted, considering the entities that appear simultaneously in the results of any two models as the correct entities.
Semantic text similarity. We calculated the similarity score between articles. The 10,000 most frequently mentioned words were first extracted from all the articles’ titles and abstracts and the text vectorization technique TF*IDF was applied to convert each article’s abstract into an importance score vector based on these words. Using these numerical vectors, the cosine similarity between different articles was calculated.
The SyROCCo Dataset includes references to the 1952 studies of OBCs mentioned above and the results of the previous processing steps and techniques. Each entry of the dataset contains the following information.
The basic information of each document is its title, abstract, authors, published years, DOI and Article ID:
Title: Title of the document.
Abstract: Text of the abstract.
Authors: Authors of a study.
Published Years: Published Years of a study.
DOI: DOI link of a study.
Article ID: ID of the document selected during the screening process.
The probability of a study belonging to each policy area:
policy_sector_health: The probability of a study belongs to the policy sector “health”.
policy_sector_education: The probability of a study belongs to the policy sector “education”.
policy_sector_homelessness: The probability of a study belongs to the policy sector “homelessness”.
policy_sector_criminal: The probability of a study belongs to the policy sector “criminal”
policy_sector_employment: The probability of a study belongs to the policy sector “employment”
policy_sector_child: The probability of a study belongs to the policy sector “child”.
policy_sector_environment: The probability of a study belongs to the policy sector “environment”.
Other types of information such as financial mechanisms, Sustainable Development Goals, and different types of named entities:
financial_mechanisms: Financial mechanisms mentioned in a study.
top_financial_mechanisms: The financial mechanisms mentioned in a study are listed in descending order according to the number of times they are mentioned, and include the corresponding context of the mentions.
top_sgds: Sustainable Development Goals mentioned in a study are listed in descending order according to the number of times they are mentioned, and include the corresponding context of the mentions.
top_countries: Country names mentioned in a study are listed in descending order according to the number of times they are mentioned, and include the corresponding context of the mentions. This entry is also used to determine the income level of the mentioned counties.
top_Project: Indigo projects mentioned in a study are listed in descending order according to the number of times they are mentioned, and include the corresponding context of the mentions.
top_GPE: Geographical locations mentioned in a study are listed in descending order according to the number of times they are mentioned, and include the corresponding context of the mentions.
top_LAW: Relevant laws and regulations mentioned in a study are listed in descending order according to the number of times they are mentioned, and include the corresponding context of the mentions.
top_ORG: Organisations mentioned in a study are listed in descending order according to the number of times they are mentioned, and include the corresponding context of the mentions.
In 2023, the around 11.1 percent of the population was living below the national poverty line in the United States. Poverty in the United StatesAs shown in the statistic above, the poverty rate among all people living in the United States has shifted within the last 15 years. The United Nations Educational, Scientific and Cultural Organization (UNESCO) defines poverty as follows: “Absolute poverty measures poverty in relation to the amount of money necessary to meet basic needs such as food, clothing, and shelter. The concept of absolute poverty is not concerned with broader quality of life issues or with the overall level of inequality in society.” The poverty rate in the United States varies widely across different ethnic groups. American Indians and Alaska Natives are the ethnic group with the most people living in poverty in 2022, with about 25 percent of the population earning an income below the poverty line. In comparison to that, only 8.6 percent of the White (non-Hispanic) population and the Asian population were living below the poverty line in 2022. Children are one of the most poverty endangered population groups in the U.S. between 1990 and 2022. Child poverty peaked in 1993 with 22.7 percent of children living in poverty in that year in the United States. Between 2000 and 2010, the child poverty rate in the United States was increasing every year; however,this rate was down to 15 percent in 2022. The number of people living in poverty in the U.S. varies from state to state. Compared to California, where about 4.44 million people were living in poverty in 2022, the state of Minnesota had about 429,000 people living in poverty.
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
This dataset presents the total number of distinct specialist homeless services clients. The client counts are based on the location where the client resided in the week before their first support period in the financial year. Each client contributes only once, even if they had multiple support periods during the financial year. The data spans the financial years of 2014-15 to 2018-19 and is aggregated to 2016 Australian Statistical Geography Standard (ASGS) Greater Capital City Statistical Areas (GCCSA). The Specialist Homelessness Services Collection (SHSC) data accompanies the Specialist Homelessness Services Annual Report 2018-19. For further information about this dataset, visit the Australian Institute of Health and Welfare - SHSC Data Cubes User Guide. Notes: Caution should be used when comparing data for 2017-18 onwards with data for 2014-15 to 2016-17 in sub-state data cubes. Data for 2011-12 to 2016-17 at the state, territory and national levels are weighted to account for agency non-response and invalid statistical linkage keys (SLK), and have been rounded to the nearest integer. Due to improvements in agency response and rates of SLK validity, data from 2017–18 are no longer weighted. The removal of weighting does not constitute a break in time series, and these data are directly comparable with weighted counts for earlier years. As the weighting method is not suitable for sub-state units, the data in the sub-state cubes are not weighted.
https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/
Dataset for the maps accompanying the Housing in Aotearoa New Zealand: 2025 report. This dataset contains data for severe housing deprivation from the 2018 and 2023 Censuses.
Data is available by health district.
Severe housing deprivation has data for the census usually resident population from the 2018 and 2023 Censuses, including:
Map shows the estimated prevalence rate of severe housing deprivation (per 10,000 people) for the census usually resident population for the 2023 Census.
Download lookup file from Stats NZ ArcGIS Online or embedded attachment in Stats NZ geographic data service. Download data table (excluding the geometry column for CSV files) using the instructions in the Koordinates help guide.
Footnotes
Geographical boundaries
Statistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018.
Subnational census usually resident population
The census usually resident population count of an area (subnational count) is a count of all people who usually live in that area and were present in New Zealand on census night. It excludes visitors from overseas, visitors from elsewhere in New Zealand, and residents temporarily overseas on census night. For example, a person who usually lives in Christchurch city and is visiting Wellington city on census night will be included in the census usually resident population count of Christchurch city.
Population counts
Stats NZ publishes a number of different population counts, each using a different definition and methodology. Population statistics – user guide has more information about different counts.
Caution using time series
Time series data should be interpreted with care due to changes in census methodology and differences in response rates between censuses. The 2023 and 2018 Censuses used a combined census methodology (using census responses and administrative data), while the 2013 Census used a full-field enumeration methodology (with no use of administrative data).
Severe housing deprivation time series
The 2018 estimates of severe housing deprivation have been updated using the 2023 methodology for estimating severe housing deprivation. Severe housing deprivation (homelessness) estimates – updated methodology: 2023 Census has more information.
Severe housing deprivation
Figures in this map and geospatial file exclude Women’s refuge data, as well as estimates for children living in non-private dwellings. Severe housing deprivation (homelessness) estimates – updated methodology: 2023 Census has more information.
About the 2023 Census dataset
For information on the 2023 Census dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings.
Data quality
The quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.
Quality rating of a variable
The quality rating of a variable provides an overall evaluation of data quality for that variable, usually at the highest levels of classification. The quality ratings shown are for the 2023 Census unless stated. There is variability in the quality of data at smaller geographies. Data quality may also vary between censuses, for subpopulations, or when cross tabulated with other variables or at lower levels of the classification. Data quality ratings for 2023 Census variables has more information on quality ratings by variable.
Census usually resident population count concept quality rating
The census usually resident population count is rated as very high quality.
Census usually resident population count – 2023 Census: Information by concept has more information, for example, definitions and data quality.
Quality of severe housing deprivation data
Severe housing deprivation (homelessness) estimates – updated methodology: 2023 Census has more information on the data quality of this variable.
Using data for good
Stats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga”.
Confidentiality
The 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.
Inconsistencies in definitions
Please note that there may be differences in definitions between census classifications and those used for other data collections.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundOpioid use disorder (OUD) is a growing public health crisis, with opioids involved in an overwhelming majority of drug overdose deaths in the United States in recent years. While medications for opioid use disorder (MOUD) effectively reduce overdose mortality, only a minority of patients are able to access MOUD; additionally, those with unstable housing receive MOUD at even lower rates.ObjectiveBecause MOUD access is a multifactorial issue, we leverage machine learning techniques to assess and rank the variables most important in predicting whether any individual receives MOUD. We also seek to explain why persons experiencing homelessness have lower MOUD access and identify potential targets for action.MethodsWe utilize a gradient boosted decision tree algorithm (specifically, XGBoost) to train our model on SAMHSA’s Treatment Episode Data Set-Admissions, using anonymized demographic and clinical information for over half a million opioid admissions to treatment facilities across the United States. We use Shapley values to quantify and interpret the predictive power and influencing direction of individual features (i.e., variables).ResultsOur model is effective in predicting access to MOUD with an accuracy of 85.97% and area under the ROC curve of 0.9411. Notably, roughly half of the model’s predictive power emerges from facility type (23.34%) and geographic location (18.71%); other influential factors include referral source (6.74%), history of prior treatment (4.41%), and frequency of opioid use (3.44%). We also find that unhoused patients go to facilities that overall have lower MOUD treatment rates; furthermore, relative to housed (i.e., independent living) patients at these facilities, unhoused patients receive MOUD at even lower rates. However, we hypothesize that if unhoused patients instead went to the facilities that housed patients enter at an equal percent (but still received MOUD at the lower unhoused rates), 89.50% of the disparity in MOUD access would be eliminated.ConclusionThis study demonstrates the utility of a model that predicts MOUD access and both ranks the influencing variables and compares their individual positive or negative contribution to access. Furthermore, we examine the lack of MOUD treatment among persons with unstable housing and consider approaches for improving access.
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
This dataset presents the number of distinct specialist homeless services clients by client type, sex and age group. The client counts are based on the location where the client resided in the week before their first support period in the financial year. Each client contributes only once, even if they had multiple support periods during the financial year. The data spans the financial years of 2014-15 to 2018-19 and is aggregated to 2016 Australian Statistical Geography Standard (ASGS) Greater Capital City Statistical Areas (GCCSA). The Specialist Homelessness Services Collection (SHSC) data accompanies the Specialist Homelessness Services Annual Report 2018-19. For further information about this dataset, visit the Australian Institute of Health and Welfare - SHSC Data Cubes User Guide. Notes: Caution should be used when comparing data for 2017-18 onwards with data for 2014-15 to 2016-17 in sub-state data cubes. Data for 2011-12 to 2016-17 at the state, territory and national levels are weighted to account for agency non-response and invalid statistical linkage keys (SLK), and have been rounded to the nearest integer. Due to improvements in agency response and rates of SLK validity, data from 2017–18 are no longer weighted. The removal of weighting does not constitute a break in time series, and these data are directly comparable with weighted counts for earlier years. As the weighting method is not suitable for sub-state units, the data in the sub-state cubes are not weighted.
This dataset includes the attendance rate for public school students PK-12 by student group and by district during the 2021-2022 school year. Student groups include: Students experiencing homelessness Students with disabilities Students who qualify for free/reduced lunch English learners All high needs students Non-high needs students Students by race/ethnicity (Hispanic/Latino of any race, Black or African American, White, All other races) Attendance rates are provided for each student group by district and for the state. Students who are considered high needs include students who are English language learners, who receive special education, or who qualify for free and reduced lunch. When no attendance data is displayed in a cell, data have been suppressed to safeguard student confidentiality, or to ensure that statistics based on a very small sample size are not interpreted as equally representative as those based on a sufficiently larger sample size. For more information on CSDE data suppression policies, please visit http://edsight.ct.gov/relatedreports/BDCRE%20Data%20Suppression%20Rules.pdf.
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
This dataset presents the total number of distinct specialist homeless services clients. The client counts are based on the location where the client resided in the week before their first support period in the financial year. Each client contributes only once, even if they had multiple support periods during the financial year. The data spans the financial years of 2014-15 to 2018-19 and is aggregated to 2016 Australian Statistical Geography Standard (ASGS) Greater Capital City Statistical Areas (GCCSA). The Specialist Homelessness Services Collection (SHSC) data accompanies the Specialist Homelessness Services Annual Report 2018-19. For further information about this dataset, visit the Australian Institute of Health and Welfare - SHSC Data Cubes User Guide. Notes:
Caution should be used when comparing data for 2017-18 onwards with data for 2014-15 to 2016-17 in sub-state data cubes. Data for 2011-12 to 2016-17 at the state, territory and national levels are weighted to account for agency non-response and invalid statistical linkage keys (SLK), and have been rounded to the nearest integer. Due to improvements in agency response and rates of SLK validity, data from 2017–18 are no longer weighted. The removal of weighting does not constitute a break in time series, and these data are directly comparable with weighted counts for earlier years. As the weighting method is not suitable for sub-state units, the data in the sub-state cubes are not weighted.
Clients are considered to be homeless if they are living in any of the following circumstances: No shelter or improvised dwelling, Short-term temporary accommodation, House, townhouse or flat (couch surfing or with no tenure).
Clients are considered to be at risk of homelessness if they are living in any of the following circumstances: Public or community housing (renter or rent free), Private or other housing (renter, rent-free or owner), Institutional settings.
AURIN has spatially enabled the original data.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Summary of key findings and future recommendations from included studies.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Study criteria (Population, Concept, Context and Evidence sources).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Example search string from PsychoInfo and Medline databases on the OVID platform.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
When analyzing the ratio of homelessness to state population, New York, Vermont, and Oregon had the highest rates in 2023. However, Washington, D.C. had an estimated ** homeless individuals per 10,000 people, which was significantly higher than any of the 50 states. Homeless people by race The U.S. Department of Housing and Urban Development performs homeless counts at the end of January each year, which includes people in both sheltered and unsheltered locations. The estimated number of homeless people increased to ******* in 2023 – the highest level since 2007. However, the true figure is likely to be much higher, as some individuals prefer to stay with family or friends - making it challenging to count the actual number of homeless people living in the country. In 2023, nearly half of the people experiencing homelessness were white, while the number of Black homeless people exceeded *******. How many veterans are homeless in America? The number of homeless veterans in the United States has halved since 2010. The state of California, which is currently suffering a homeless crisis, accounted for the highest number of homeless veterans in 2022. There are many causes of homelessness among veterans of the U.S. military, including post-traumatic stress disorder (PTSD), substance abuse problems, and a lack of affordable housing.