35 datasets found
  1. U

    United States US: Prevalence of HIV: Total: % of Population Aged 15-49

    • ceicdata.com
    Updated May 15, 2009
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2009). United States US: Prevalence of HIV: Total: % of Population Aged 15-49 [Dataset]. https://www.ceicdata.com/en/united-states/health-statistics/us-prevalence-of-hiv-total--of-population-aged-1549
    Explore at:
    Dataset updated
    May 15, 2009
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2008 - Dec 1, 2014
    Area covered
    United States
    Description

    United States US: Prevalence of HIV: Total: % of Population Aged 15-49 data was reported at 0.500 % in 2014. This stayed constant from the previous number of 0.500 % for 2013. United States US: Prevalence of HIV: Total: % of Population Aged 15-49 data is updated yearly, averaging 0.500 % from Dec 2008 (Median) to 2014, with 7 observations. The data reached an all-time high of 0.500 % in 2014 and a record low of 0.500 % in 2014. United States US: Prevalence of HIV: Total: % of Population Aged 15-49 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Health Statistics. Prevalence of HIV refers to the percentage of people ages 15-49 who are infected with HIV.; ; UNAIDS estimates.; Weighted Average;

  2. Find Ryan White HIV/AIDS Medical Care Providers

    • catalog.data.gov
    • healthdata.gov
    • +3more
    Updated Jul 26, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Health Resources and Services Administration, Department of Health & Human Services (2023). Find Ryan White HIV/AIDS Medical Care Providers [Dataset]. https://catalog.data.gov/dataset/find-ryan-white-hiv-aids-medical-care-providers
    Explore at:
    Dataset updated
    Jul 26, 2023
    Description

    The Find Ryan White HIV/AIDS Medical Care Providers tool is a locator that helps people living with HIV/AIDS access medical care and related services. Users can search for Ryan White-funded medical care providers near a specific complete address, city and state, state and county, or ZIP code. Search results are sorted by distance away and include the Ryan White HIV/AIDS facility name, address, approximate distance from the search point, telephone number, website address, and a link for driving directions. HRSA's Ryan White program funds an array of grants at the state and local levels in areas where most needed. These grants provide medical and support services to more than a half million people who otherwise would be unable to afford care.

  3. d

    DOHMH HIV Service Directory

    • catalog.data.gov
    • data.cityofnewyork.us
    • +2more
    Updated Jan 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2025). DOHMH HIV Service Directory [Dataset]. https://catalog.data.gov/dataset/dohmh-hiv-service-directory
    Explore at:
    Dataset updated
    Jan 17, 2025
    Dataset provided by
    data.cityofnewyork.us
    Description

    This directory is for at-risk for HIV and eligible persons living with HIV in New York City seeking HIV medical and supportive services. The agencies and their listed programs receive CDC and Ryan White Part-A funding to provide: Targeted-Testing among Priority Populations, Food and Nutrition Services, Health Education and Risk Reduction Services, Harm Reduction Services, Legal Services, Mental Health Services, Case Management and Care Coordination Services, and Supportive Counseling Services. To be eligible to recieve these services, prospective clients must: 1)be HIV-positive; 2) have a total household income below 435% of the Federal Poverty Level (FPL) (this is the same as the income eligible guidelines for the New York State AIDS Drug Assistance Program (ADAP) and higher than the income eligiblity guidelines for Medicaid in New York State); and 3) reside in New York City or the counties of Westchester, Rockland, and Putnam. For providers, to make a referral, please contact the program directly using the information provided in the diretory (please be sure to call before directing clients to the program). When making a referral, you may also find it useful to talk to your client about executing a release of information form authorizing you to share confidential health and HIV-related information with another service provider in order to coordinate care (for more information, go to https://www.health.ny.gov/diseases/aids/providers/forms/informedconsent.htm).

  4. a

    Nigeria - HIV Statistics by State

    • nigeria.africageoportal.com
    Updated Nov 5, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GRID3 (2020). Nigeria - HIV Statistics by State [Dataset]. https://nigeria.africageoportal.com/datasets/GRID3::nigeria-hiv-statistics-by-state/about
    Explore at:
    Dataset updated
    Nov 5, 2020
    Dataset authored and provided by
    GRID3
    Area covered
    Description

    This shapefile provides HIV statistics by state that can be used in conjunction with the co-morbidities risk profile to provide more nuance on levels of risk by state. Note that values of 0 mean there is no data for that particular state.The source of data for HIV prevalence rates is the Nigeria Institute for Health Metrics and Evaluation (IHME), HIV Prevalence Geospatial Estimates 2000-2017.

  5. S

    AIDS deaths by county by year

    • health.data.ny.gov
    application/rdfxml +5
    Updated Mar 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York State Department of Health (2024). AIDS deaths by county by year [Dataset]. https://health.data.ny.gov/Health/AIDS-deaths-by-county-by-year/rbib-5irw
    Explore at:
    application/rssxml, json, xml, csv, application/rdfxml, tsvAvailable download formats
    Dataset updated
    Mar 7, 2024
    Authors
    New York State Department of Health
    Description

    This dataset contains death counts, crude rates and adjusted rates for selected causes of death by county and region. For more information, check out: http://www.health.ny.gov/statistics/vital_statistics/, or go to the "About" tab.

  6. HIV-AIDS Indicator and Impact Survey 2018 - Nigeria

    • catalog.ihsn.org
    Updated Jan 14, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Federal Ministry of Health (FMOH) (2022). HIV-AIDS Indicator and Impact Survey 2018 - Nigeria [Dataset]. https://catalog.ihsn.org/catalog/9945
    Explore at:
    Dataset updated
    Jan 14, 2022
    Dataset provided by
    Federal Ministry of Health and Social Welfarehttps://www.health.gov.ng/
    University of Maryland (UMB)
    National Agency for the Control of AIDS (NACA)
    Time period covered
    2018
    Area covered
    Nigeria
    Description

    Abstract

    The 2018 Nigeria AIDS Indicator and Impact Survey (NAIIS) is a cross-sectional survey that will assess the prevalence of key human immunodeficiency virus (HIV)-related health indicators. This survey is a two-stage cluster survey of 88,775 randomly-selected households in Nigeria, sampled from among 3,551 nationally-representative sample clusters. The survey is expected to include approximately 168,029 participants, ages 15-64 years and children, ages 0-14 years, from the selected household. The 2018 NAIIS will characterize HIV incidence, prevalence, viral load suppression, CD4 T-cell distribution, and risk behaviors in a household-based, nationally-representative sample of the population of Nigeria, and will describe uptake of key HIV prevention, care, and treatment services. The 2018 NAIIS will also estimate the prevalence of hepatitis B virus (HBV), hepatitis C virus (HCV) infections, and HBV/HIV and HCV/HIV co-infections.

    Geographic coverage

    National coverage, the survey covered the Federal Republic and was undertaken in each state and the Federal Capital.

    Analysis unit

    Household Health Survey

    Universe

    1. Women and men aged 15-64 years living in residential households and visitors who slept in the household the night before the survey
    2. Children aged 0-14 years living in residential households and child visitors who slept in the household the night before the survey

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    This cross-sectional, household-based survey uses a two-stage cluster sampling design (enumeration area followed by households). The target population is people 15-64 and children ages 0-14 years. The overall size and distribution of the sample is determined by analysis of existing estimates of national HIV incidence, sub-national HIV prevalence, and the number of HIV-positive cases needed to obtain estimates of VLS among adults 15-64 years for each of the 36 states and the FCT while not unnecessarily inflating the sample size needed.

    From a sampling perspective, the three primary objectives of this proposal are based on competing demands, one focused on national incidence and the other on state-level estimates in a large number of states (37). Since the denominator used for estimating VLS is HIV-positive individuals, the required minimum number of blood draws in a stratum is inversely proportional to the expected HIV prevalence rate in that stratum. This objective requires a disproportionate amount of sample to be allocated to states with the lowest prevalence. A review of state-level prevalence estimates for sources in the last 3 to 5 years shows that state-level estimates are often divergent from one source to the next, making it difficult to ascertain the sample size needed to obtain the roughly 100 PLHIV needed to achieve a 95% confidence interval (CI) of +/- 10 for VLS estimates.

    An equal-size approach is proposed with a sample size of 3,700 blood specimens in each state. Three-thousand seven hundred specimens will be sufficiently large to obtain robust estimates of HIV prevalence and VLS among HIV-infected individuals in most states. In states with a HIV prevalence above 2.5%, we can anticipate 95% CI of less than +/-10% and relative standard errors (RSEs) of less than 11% for estimates of VLS. In these states, with HIV prevalence above 2.5%, the anticipated 95% CI around prevalence is +/- 0.7% to a high of 1.1-1.3% in states with prevalence above 6%. In states with prevalence between 1.2 and 2.5% HIV prevalence estimates would remain robust with 95% CI of +/- 0.5-0.6% and RSE of less than 20% while 95% CI around VLS would range between 10-15% (and RSE below 15%). With this proposal only a few states, with HIV prevalence below 1.0%, would have less than robust estimates for VLS and HIV prevalence.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Three questionnaires were used for the 2018 NAIIS: Household Questionnaire, Adult Questionnaire, and Early Adolescent Questionnaire (10-14 Years).

    Cleaning operations

    During the household data collection, questionnaire and laboratory data were transmitted between tablets via Bluetooth connection. This facilitated synchronization of household rosters and ensured data collection for each participant followed the correct pathway. All field data collected in CSPro and the Laboratory Data Management System (LDMS) were transmitted to a central server using File Transfer Protocol Secure (FTPS) over a 4G or 3G telecommunication provider at least once a day. Questionnaire data cleaning was conducted using CSPro and SAS 9.4 (SAS Institute Inc., Cary, North Carolina, United States). Laboratory data were cleaned and merged with the final questionnaire database using unique specimen barcodes and study identification numbers.

    Response rate

    A total of 101,267 households were selected, 89,345 were occupied and 83,909 completed the household interview . • For adults aged 15-64 years, interview response rate was 91.6% for women and 88.2% for men; blood draw response rate was 92.9% for women and 93.6% for men. • For adolescents aged 10-14 years, interview response rate was 86.8% for women and 86.2% for men; blood draw response rate was 91.2% for women and 92.3% for men. • For children aged 0-9 years, blood draw response rate was 68.5% for women and men.

    Sampling error estimates

    Estimates from sample surveys are affected by two types of errors: non-sampling errors and sampling errors. Non-sampling errors result from mistakes made during data collection, e.g., misinterpretation of an HIV test result and data management errors such as transcription errors during data entry. While NAIIS implemented numerous quality assurance and control measures to minimize non-sampling errors, these were impossible to avoid and difficult to evaluate statistically. In contrast, sampling errors can be evaluated statistically. Sampling errors are a measure of the variability between all possible samples.

    The sample of respondents selected for NAIIS was only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples could yield results that differed somewhat from the results of the actual sample selected. Although the degree of variability cannot be known exactly, it can be estimated from the survey results. The standard error, which is the square root of the variance, is the usual measurement of sampling error for a statistic (e.g., proportion, mean, rate, count). In turn, the standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of approximately plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.

    NAIIS utilized a multi-stage stratified sample design, which required complex calculations to obtain sampling errors. The Taylor linearization method of variance estimation was used for survey estimates that are proportions, e.g., HIV prevalence. The Jackknife repeated replication method was used for variance estimation of more complex statistics such as rates, e.g., annual HIV incidence and counts such as the number of people living with HIV.

    The Taylor linearization method treats any percentage or average as a ratio estimate, , where y represents the total sample value for variable y and x represents the total number of cases in the group or subgroup under consideration. The variance of r is computed using the formula given below, with the standard error being the square root of the variance: in which Where represents the stratum, which varies from 1 to H, is the total number of clusters selected in the hth stratum, is the sum of the weighted values of variable y in the ith cluster in the hth stratum, is the sum of the weighted number of cases in the ith cluster in the hth stratum and, f is the overall sampling fraction, which is so small that it is ignored.

    In addition to the standard error, the design effect for each estimate is also calculated. The design effect is defined as the ratio of the standard error using the given sample design to the standard error that would result if a simple random sample had been used. A design effect of 1.0 indicates that the sample design is as efficient as a simple random sample, while a value greater than 1.0 indicates the increase in the sampling error due to the use of a more complex and less statistically efficient design. Confidence limits for the estimates, which are calculated as where t(0.975, K) is the 97.5th percentile of a t-distribution with K degrees of freedom, are also computed.

    Data appraisal

    Remote data quality check was carried out using data editor

  7. S

    AIDS deaths. year by age

    • health.data.ny.gov
    application/rdfxml +5
    Updated Nov 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York State Department of Health (2023). AIDS deaths. year by age [Dataset]. https://health.data.ny.gov/Health/AIDS-deaths-year-by-age/nviy-dazu
    Explore at:
    csv, application/rdfxml, json, xml, application/rssxml, tsvAvailable download formats
    Dataset updated
    Nov 10, 2023
    Authors
    New York State Department of Health
    Description

    This dataset contains death counts and crude rates by region, age group, and selected cause of death. For more information, check out: http://www.health.ny.gov/statistics/vital_statistics/, or go to the "About" tab.

  8. s

    Data from: Spatial distribution and determinants of HIV high burden in the...

    • scholardata.sun.ac.za
    Updated Sep 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Olatunji O Adetokunboh; Elisha B. Are (2024). Spatial distribution and determinants of HIV high burden in the Southern African sub-region [Dataset]. http://doi.org/10.25413/sun.26976469.v1
    Explore at:
    Dataset updated
    Sep 11, 2024
    Dataset provided by
    SUNScholarData
    Authors
    Olatunji O Adetokunboh; Elisha B. Are
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Southern Africa
    Description

    Spatial analysis at different levels can help understand spatial variation of human immunodeficiency virus (HIV) infection, disease drivers, and targeted interventions. Combining spatial analysis and the evaluation of the determinants of the HIV burden in Southern African countries is essential for a better understanding of the disease dynamics in high-burden settings.The study countries were selected based on the availability of demographic and health surveys (DHS) and corresponding geographic coordinates. We used multivariable regression to evaluate the determinants of HIV burden and assessed the presence and nature of HIV spatial autocorrelation in six Southern African countries.The overall prevalence of HIV for each country varied between 11.3% in Zambia and 22.4% in South Africa. The HIV prevalence rate was higher among female respondents in all six countries. There were reductions in prevalence estimates in most countries yearly from 2011 to 2020. The hotspot cluster findings show that the major cities in each country are the key sites of high HIV burden. Compared with female respondents, the odds of being HIV positive were lesser among the male respondents. The probability of HIV infection was higher among those who had sexually transmitted infections (STI) in the last 12 months, divorced and widowed individuals, and women aged 25 years and older.Our research findings show that analysis of survey data could provide reasonable estimates of the wide-ranging spatial structure of the HIV epidemic in Southern African countries. Key determinants such as individuals who are divorced, middle-aged women, and people who recently treated STIs, should be the focus of HIV prevention and control interventions. The spatial distribution of high-burden areas for HIV in the selected countries was more pronounced in the major cities. Interventions should also be focused on locations identified as hotspot clusters.

  9. HIV: annual data

    • gov.uk
    Updated Oct 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UK Health Security Agency (2024). HIV: annual data [Dataset]. https://www.gov.uk/government/statistics/hiv-annual-data-tables
    Explore at:
    Dataset updated
    Oct 1, 2024
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    UK Health Security Agency
    Description

    The following slide sets are available to download for presentational use:

    New HIV diagnoses, AIDS and deaths are collected from HIV outpatient clinics, laboratories and other healthcare settings. Data relating to people living with HIV is collected from HIV outpatient clinics. Data relates to England, Wales, Northern Ireland and Scotland, unless stated.

    HIV testing, pre-exposure prophylaxis, and post-exposure prophylaxis data relates to activity at sexual health services in England only.

    View the pre-release access lists for these statistics.

    Previous reports, data tables and slide sets are also available for:

    Our statistical practice is regulated by the Office for Statistics Regulation (OSR). The OSR sets the standards of trustworthiness, quality and value in the https://code.statisticsauthority.gov.uk/" class="govuk-link">Code of Practice for Statistics that all producers of Official Statistics should adhere to.

    Additional information on HIV surveillance can be found in the HIV Action Plan for England monitoring and evaluation framework reports. Other HIV in the UK reports published by Public Health England (PHE) are available online.

  10. A

    ‘DOHMH HIV Service Directory’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Jan 26, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘DOHMH HIV Service Directory’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-dohmh-hiv-service-directory-0ef0/987caa44/?iid=009-820&v=presentation
    Explore at:
    Dataset updated
    Jan 26, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘DOHMH HIV Service Directory’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/d40a54d7-0c73-46ab-9805-9aaca7dcfe0b on 26 January 2022.

    --- Dataset description provided by original source is as follows ---

    This directory is for at-risk for HIV and eligible persons living with HIV in New York City seeking HIV medical and supportive services. The agencies and their listed programs receive CDC and Ryan White Part-A funding to provide: Targeted-Testing among Priority Populations, Food and Nutrition Services, Health Education and Risk Reduction Services, Harm Reduction Services, Legal Services, Mental Health Services, Case Management and Care Coordination Services, and Supportive Counseling Services. To be eligible to recieve these services, prospective clients must: 1)be HIV-positive; 2) have a total household income below 435% of the Federal Poverty Level (FPL) (this is the same as the income eligible guidelines for the New York State AIDS Drug Assistance Program (ADAP) and higher than the income eligiblity guidelines for Medicaid in New York State); and 3) reside in New York City or the counties of Westchester, Rockland, and Putnam. For providers, to make a referral, please contact the program directly using the information provided in the diretory (please be sure to call before directing clients to the program). When making a referral, you may also find it useful to talk to your client about executing a release of information form authorizing you to share confidential health and HIV-related information with another service provider in order to coordinate care (for more information, go to https://www.health.ny.gov/diseases/aids/providers/forms/informedconsent.htm).

    --- Original source retains full ownership of the source dataset ---

  11. f

    Cost-Effectiveness Analysis of Brief and Expanded Evidence-Based Risk...

    • figshare.com
    tiff
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dahye L. Song; Frederick L. Altice; Michael M. Copenhaver; Elisa F. Long (2023). Cost-Effectiveness Analysis of Brief and Expanded Evidence-Based Risk Reduction Interventions for HIV-Infected People Who Inject Drugs in the United States [Dataset]. http://doi.org/10.1371/journal.pone.0116694
    Explore at:
    tiffAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Dahye L. Song; Frederick L. Altice; Michael M. Copenhaver; Elisa F. Long
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    AimsTwo behavioral HIV prevention interventions for people who inject drugs (PWID) infected with HIV include the Holistic Health Recovery Program for HIV+ (HHRP+), a comprehensive evidence-based CDC-supported program, and an abbreviated Holistic Health for HIV (3H+) Program, an adapted HHRP+ version in treatment settings. We compared the projected health benefits and cost-effectiveness of both programs, in addition to opioid substitution therapy (OST), to the status quo in the U.S.MethodsA dynamic HIV transmission model calibrated to epidemic data of current US populations was created. Projected outcomes include future HIV incidence, HIV prevalence, and quality-adjusted life years (QALYs) gained under alternative strategies. Total medical costs were estimated to compare the cost-effectiveness of each strategy.ResultsOver 10 years, expanding HHRP+ access to 80% of PWID could avert up to 29,000 HIV infections, or 6% of the projected total, at a cost of $7,777/QALY gained. Alternatively, 3H+ could avert 19,000 infections, but is slightly more cost-effective ($7,707/QALY), and remains so under widely varying effectiveness and cost assumptions. Nearly two-thirds of infections averted with either program are among non-PWIDs, due to reduced sexual transmission from PWID to their partners. Expanding these programs with broader OST coverage could avert up to 74,000 HIV infections over 10 years and reduce HIV prevalence from 16.5% to 14.1%, but is substantially more expensive than HHRP+ or 3H+ alone.ConclusionsBoth behavioral interventions were effective and cost-effective at reducing HIV incidence among both PWID and the general adult population; however, 3H+, the economical HHRP+ version, was slightly more cost-effective than HHRP+.

  12. South African HIV/AIDS, Behavioural Risks, Sero-status, and Mass Media...

    • search.datacite.org
    Updated 2011
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Olive Shisana (2011). South African HIV/AIDS, Behavioural Risks, Sero-status, and Mass Media Impact Survey (SABSSM) 2002: Adult and youth data - All provinces [Dataset]. http://doi.org/10.14749/1400830395
    Explore at:
    Dataset updated
    2011
    Dataset provided by
    DataCitehttps://www.datacite.org/
    HSRC - Human Science Research Council SA
    Authors
    Olive Shisana
    Dataset funded by
    Swiss Agency for Development and Cooperation
    Nelson Mandela Children's Fund
    Nelson Mandela Foundation
    Human Sciences Research Council
    Description

    Description: The adult and youth data of the SABSSM 2002 study cover information from adults and youths 15 years and older on topics ranging from biographical information, media and communication, male circumcision, marital status and marriage practice, partner and partner characteristics, sexual behaviour and practices, voluntary counseling and testing (VCT), sexual orientation, interpersonal communication, practices around widowhood, knowledge and perceptions of HIV and AIDS, stigma, hospitalisation and health status. The data set consists of 643 variables and 9788 cases. Abstract: Background: This is the first in a series of national HIV household surveys conducted in South Africa. The survey was commissioned by the Nelson Mandela Children's Fund and the Nelson Mandela Foundation. The key aims were to determine the HIV prevalence in the general population, identify risk factors that increase vulnerability of South Africans to HIV infections, to identify the contexts within which sexual behaviour occurs and the obstacles to risk reduction and to determine the level of exposure of all sectors of society to current prevention. The Nelson Mandela Children's Fund requested the HSRC to assess the impact of current HIV and AIDS education and awareness programmes designed to slow down the epidemic, including infection rates, stigma, care and support for affected individuals and families. Methodology: Sampling methods: multi-stage cluster stratified sample stratified by province, settlement geography (geotype) and predominant race group in each area. A systematic sample of 15 households was drawn from each of 1 000 census enumeration areas (EAs). In each household, one person was randomly selected in each of four mutually exclusive age groups (2-11 years; 12-14 years; 15-24 years; 25+ years). Field workers administered questionnaires to selected respondents and also collected oral fluid specimens for HIV testing. Results: This study sampled a cross-section of 9 963 South Africans aged two years and older. HIV is a generalised epidemic in South Africa that extends to all age groups, geographic areas and race groups. It showed 11.4 % were HIV positive, 15.6 per cent of them aged between 15 and 49. Women (12.8% HIV positive) were more at risk of infection than men (9.5% HIV positive). Urban informal settlements have the highest incidence of HIV infection (21.3%). Free State showed the highest prevalence (14.9%) with Eastern Cape having the lowest (6.6%). Higher rates of infection (5.6%) are also found in children aged 2-14 and Africans (10.2%). Awareness of HIV status was low. Only 18.9% reported that they were previously tested. Fewer women (3.9%) reported more than one sexual partner as compared to men (13.5%). Condom use at last sex was low among both women (24.7%) and men (30.3%). Knowledge of HIV and AIDS is generally high, with sexual behaviour changes taking root in encouragingly low numbers of sexual partners and high levels of abstinence among the youth. There is still great uncertainty of the relationship between HIV and AIDS and popular myths. South Africans from all walks of life are at risk. In particular, wealthy Africans have the same levels of risk as poorer Africans - whereas in other race groups, poorer people are more vulnerable to infection. Conclusions: The study recommended the expansion of voluntary counselling and testing. Prevention programmes ought to focus on reduction on multiple partners and increased condom use. It further recommended, inter alia, that HIV/AIDS prevention programmes be intensified for people living in informal settlements, campaigns be implemented using mass media to address myths and misconceptions and that information needs in rural communities and poorer households due to lack of access to mass media channels, should be attended to.

  13. d

    India - National Family Health Survey 2005-2006 - Dataset - waterdata

    • waterdata3.staging.derilinx.com
    Updated Mar 16, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). India - National Family Health Survey 2005-2006 - Dataset - waterdata [Dataset]. https://waterdata3.staging.derilinx.com/dataset/india-national-family-health-survey-2005-2006
    Explore at:
    Dataset updated
    Mar 16, 2020
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    India
    Description

    The National Family Health Surveys (NFHS) programme, initiated in the early 1990s, has emerged as a nationally important source of data on population, health, and nutrition for India and its states. The 2005-06 National Family Health Survey (NFHS-3), the third in the series of these national surveys, was preceded by NFHS-1 in 1992-93 and NFHS-2 in 1998-99. Like NFHS-1 and NFHS-2, NFHS-3 was designed to provide estimates of important indicators on family welfare, maternal and child health, and nutrition. In addition, NFHS-3 provides information on several new and emerging issues, including family life education, safe injections, perinatal mortality, adolescent reproductive health, high-risk sexual behaviour, tuberculosis, and malaria. Further, unlike the earlier surveys in which only ever-married women age 15-49 were eligible for individual interviews, NFHS-3 interviewed all women age 15-49 and all men age 15-54. Information on nutritional status, including the prevalence of anaemia, is provided in NFHS3 for women age 15-49, men age 15-54, and young children. A special feature of NFHS-3 is the inclusion of testing of the adult population for HIV. NFHS-3 is the first nationwide community-based survey in India to provide an estimate of HIV prevalence in the general population. Specifically, NFHS-3 provides estimates of HIV prevalence among women age 15-49 and men age 15-54 for all of India, and separately for Uttar Pradesh and for Andhra Pradesh, Karnataka, Maharashtra, Manipur, and Tamil Nadu, five out of the six states classified by the National AIDS Control Organization (NACO) as high HIV prevalence states. No estimate of HIV prevalence is being provided for Nagaland, the sixth high HIV prevalence state, due to strong local opposition to the collection of blood samples. NFHS-3 covered all 29 states in India, which comprise more than 99 percent of India's population. NFHS-3 is designed to provide estimates of key indicators for India as a whole and, with the exception of HIV prevalence, for all 29 states by urban-rural residence. Additionally, NFHS-3 provides estimates for the slum and non-slum populations of eight cities, namely Chennai, Delhi, Hyderabad, Indore, Kolkata, Meerut, Mumbai, and Nagpur. NFHS-3 was conducted under the stewardship of the Ministry of Health and Family Welfare (MOHFW), Government of India, and is the result of the collaborative efforts of a large number of organizations. The International Institute for Population Sciences (IIPS), Mumbai, was designated by MOHFW as the nodal agency for the project. Funding for NFHS-3 was provided by the United States Agency for International Development (USAID), DFID, the Bill and Melinda Gates Foundation, UNICEF, UNFPA, and MOHFW. Macro International, USA, provided technical assistance at all stages of the NFHS-3 project. NACO and the National AIDS Research Institute (NARI) provided technical assistance for the HIV component of NFHS-3. Eighteen Research Organizations, including six Population Research Centres, shouldered the responsibility of conducting the survey in the different states of India and producing electronic data files. The survey used a uniform sample design, questionnaires (translated into 18 Indian languages), field procedures, and procedures for biomarker measurements throughout the country to facilitate comparability across the states and to ensure the highest possible data quality. The contents of the questionnaires were decided through an extensive collaborative process in early 2005. Based on provisional data, two national-level fact sheets and 29 state fact sheets that provide estimates of more than 50 key indicators of population, health, family welfare, and nutrition have already been released. The basic objective of releasing fact sheets within a very short period after the completion of data collection was to provide immediate feedback to planners and programme managers on key process indicators.

  14. Number of HIV cases Philippines 2012-2024

    • statista.com
    Updated May 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Number of HIV cases Philippines 2012-2024 [Dataset]. https://www.statista.com/statistics/701857/philippines-estimated-number-of-people-living-with-hiv/
    Explore at:
    Dataset updated
    May 8, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Philippines
    Description

    The Philippines reported about ****** HIV cases, an increase from the previous year. The number of reported HIV cases has gradually increased since 2012, aside from a significant dip in 2020. The state of HIV As the monthly average number of people newly diagnosed with HIV increases, the risk it poses threatens the lives of Filipinos. HIV is a sexually transmitted infection that attacks the body’s immune system, with more males being diagnosed than females. In 2022, the majority of people newly diagnosed with HIV were those between the age of 25 and 34 years, followed by those aged 15 and 24. There is still no cure for HIV and without treatment, it could lead to other severe illnesses such as tuberculosis and cancers such as lymphoma and Kaposi’s sarcoma. However, HIV is now a manageable chronic illness that can be treated with proper medication. What are the leading causes of death in the Philippines? Between January and September 2024, preliminary figures have shown that ischaemic heart disease was the leading cause of death in the Philippines. The prevalence of heart diseases in the nation has been closely attributed to the Filipino diet, which was described as having a high fat, high cholesterol, and high sodium content. In addition, acute respiratory infections and hypertension also registered the highest morbidity rate among leading diseases in the country in 2021.

  15. Aids to Navigation Southeast United States

    • hub.arcgis.com
    Updated Mar 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florida Fish and Wildlife Conservation Commission (2025). Aids to Navigation Southeast United States [Dataset]. https://hub.arcgis.com/datasets/3a09a36f422e4153b9333c5c2697f5e7
    Explore at:
    Dataset updated
    Mar 12, 2025
    Dataset authored and provided by
    Florida Fish and Wildlife Conservation Commissionhttp://myfwc.com/
    Area covered
    Description

    This GIS data set represents the aids to navigation (ATONs) for the Seventh and Eighth Coast Guard Districts. The term "aids to navigation" refers to devices outside of a vessel that are used to assist mariners in determining their position, safe course or warn them of obstructions. Aids to navigation include light buoys and beacons. This data set includes federal aids, which are installed and maintained by the Coast Guard, as well as some privately maintained aids. This data set does not include unofficial (illegal) aids, such as PVC pipes, placed without permission. This data set is not certified for navigation and is not intended for navigation purposes. Each USCG district headquarters is responsible for updating its database on an as-needed basis. When existing aids are destroyed or relocated and new aids are installed, the database is updated. Each aid is assigned an official light listing number. The Light List is a document listing the status of the ATONs; it is regularly published and distributed. Interim changes to the Light List are published in local notices to mariners. In addition, the USCG broadcasts notices to mariners on the marine band radio as soon as changes in the status of individual aids are reported. Navigators should use the official notices to mariners to maintain current charts. Annual (or more frequent) updates of the Aids to Navigation database can be obtained from each USCG district headquarters.

  16. Housing Opportunities for Persons with AIDS (HOPWA) Grantee Areas

    • hudgis-hud.opendata.arcgis.com
    • data.lojic.org
    • +3more
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Housing and Urban Development (2025). Housing Opportunities for Persons with AIDS (HOPWA) Grantee Areas [Dataset]. https://hudgis-hud.opendata.arcgis.com/datasets/97ecb229d6f641d686c085d351eb082b
    Explore at:
    Dataset updated
    Feb 24, 2025
    Dataset provided by
    United States Department of Housing and Urban Developmenthttp://www.hud.gov/
    Authors
    Department of Housing and Urban Development
    Area covered
    Description

    The Housing Opportunities for Persons with AIDS (HOPWA) program funds are distributed to states and cities by formula allocations and made available as part of the area's Consolidated Plan. Persons living with HIV/AIDS and their families may require housing that provides emergency, transitional, or long-term affordable solutions. In addition, some projects are selected in national competitions to serve as service delivery models or operate in non-formula areas. Grantees partner with nonprofit organizations and housing agencies to provide housing and support to beneficiaries.

    To learn more about the HOPWA program visit: https://portal.hud.gov/hudportal/HUD?src=/program_offices/comm_planning/aidshousing, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. Data Dictionary: DD_HOPWA Grantee Areas

    Date of Coverage: FY 2024 Data Updated: Annually

  17. d

    Replication data for: Learning to Live?: Organizational Learning and State...

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nathan A. Paxton (2023). Replication data for: Learning to Live?: Organizational Learning and State HIV Policy Development [Dataset]. http://doi.org/10.7910/DVN/9WZATD
    Explore at:
    Dataset updated
    Nov 21, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Nathan A. Paxton
    Time period covered
    Jan 1, 1997 - Jan 1, 2006
    Description

    Enter your study abstract here This dissertation explores the role that organizational learning processes play in state HIV/AIDS policy development. The puzzle addressed is the large degree of variation in policy output across states that are similar in terms of political or economic structure. Although one can tell individual stories about each country, the overall variation defies the cross-applicability of typical explanations. Where states better draw lessons from experience we s hould expect two re- sults. First, structural characteristics of the state or of the set of HIV policy responders affects the character and degree of learning: the configuration of decision-making authority and information analytics interact with the learning process, affecting the lessons drawn and policies pursued. Second, over time we observe some degree of policy convergence among states due to comparison and adaptation from others. The dissertation employs a mixed-methods approach. As a plausibility probe, I employ econometric analysis to test for such patterns. I constructed an original dataset of 72 countries over 6 years and approximately 25 variables. To address data missingness, I employed multiple imputation techniques. I find statistically and substantively significant relationships and patterns, as above, indicating fur- ther exploration of the underlying processes. I then test the theory via process-tracing case study comparisons of Mexi- can and Botswanan HIV/AIDS policy development over the last two decades. Drawing on written accounts, periodical articles, government documents, and oral interviews, I examine how the availability, management, and application of information affected the policies pursued. In Mexico, two factors have helped to drive success: first, the set of organizations working on HIV/AIDS policy are or- ganized as a loose network with the specialized government HIV agency serving as the hub of decisions and information exchange; second, a stable (but open) set of people have participated over the whole period. Botswana’s success has been more mixed; although its very high adult prevalence levels contribute, organiza- tional learning factors also play a role. HIV policy response actors are arranged anarchically and there have been multiple centers of authority. This has detracted from the ability to prospect and identify relevant information and then draw ac- tionable conclusions. Complete date fields below for: time period covered; and date of collection

  18. Supply Chain Shipment Pricing Dataset

    • catalog.data.gov
    • gimi9.com
    • +1more
    Updated Jul 18, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.usaid.gov (2024). Supply Chain Shipment Pricing Dataset [Dataset]. https://catalog.data.gov/dataset/supply-chain-shipment-pricing-data-07d29
    Explore at:
    Dataset updated
    Jul 18, 2024
    Dataset provided by
    United States Agency for International Developmenthttp://usaid.gov/
    Description

    This dataset provides supply chain health commodity shipment and pricing data. Specifically, the data set identifies Antiretroviral (ARV) and HIV lab shipments to supported countries. In addition, the data set provides the commodity pricing and associated supply chain expenses necessary to move the commodities to countries for use. The dataset has similar fields to the Global Fund's Price, Quality and Reporting (PQR) data. PEPFAR and the Global Fund represent the two largest procurers of HIV health commodities. This dataset, when analyzed in conjunction with the PQR data, provides a more complete picture of global spending on specific health commodities. The data are particularly valuable for understanding ranges and trends in pricing as well as volumes delivered by country. The US Government believes this data will help stakeholders make better, data-driven decisions. Care should be taken to consider contextual factors when using the database. Conclusions related to costs associated with moving specific line items or products to specific countries and lead times by product/country will not be accurate.

  19. A

    ‘Death Cause by Country’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Feb 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘Death Cause by Country’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-death-cause-by-country-3051/00ae526f/?iid=001-918&v=presentation
    Explore at:
    Dataset updated
    Feb 13, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Death Cause by Country’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/majyhain/death-cause-by-country on 13 February 2022.

    --- Dataset description provided by original source is as follows ---

    Context

    Across low- and middle-income countries, mortality from infectious disease, malnutrition, nutritional deficiencies, neonatal and maternal deaths are common – and in some cases, dominant. In Kenya, for example, diarrheal infections are still the primary cause of death. HIV/AIDS is the major cause of death in South Africa and Botswana. However, in high-income countries, the proportion of deaths due by these causes is quite low.

    Content

    The dataset contains thirty two columns and contains the death causes by All Genders (Male, Female) and by all age group.

    Acknowledgements

    Users are allowed to use, copy, distribute and cite the dataset as follows: “Majyhain, Death Causes by Country, Kaggle Dataset, February 04, 2022.”

    Inspiration

    The ideas for this data is to: • The amount of people dying by various diseases.

    • What is the death cause reasons by country.

    • Number of People dying by various diseases.

    • Which disease is causing more deaths by country.

    • Which disease is causing more deaths by world.

    References:

    The Data is collected from the following sites:

    https://www.who.int/

    --- Original source retains full ownership of the source dataset ---

  20. i

    Africa Health Research Institute INDEPTH Core Dataset 2000 - 2015 Residents...

    • datacatalog.ihsn.org
    • catalog.ihsn.org
    Updated Mar 29, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Deenan Pillay (2019). Africa Health Research Institute INDEPTH Core Dataset 2000 - 2015 Residents only (Release 2017) - South Africa [Dataset]. https://datacatalog.ihsn.org/catalog/5548
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset provided by
    Kobus Herbst
    Frank Tanser
    Deenan Pillay
    Time period covered
    2000 - 2015
    Area covered
    South Africa
    Description

    Abstract

    The health and demography of the South African population has been undergoing substantial changes as a result of the rapidly progressing HIV epidemic. Researchers at the University of KwaZulu-Natal and the South African Medical Research Council established The Africa Health Research Studies in 1997 funded by a core grant from The Wellcome Trust, UK. Given the urgent need for high quality longitudinal data with which to monitor these changes, and with which to evaluate interventions to mitigate impact, a demographic surveillance system (DSS) was established in a rural South African population facing a rapid and severe HIV epidemic. The DSS, referred to as the Africa Health Research Institute Demographic Information System (ACDIS), started in 2000.

    ACDIS was established to ‘describe the demographic, social and health impact of the HIV epidemic in a population going through the health transition’ and to monitor the impact of intervention strategies on the epidemic. South Africa’s political and economic history has resulted in highly mobile urban and rural populations, coupled with complex, fluid households. In order to successfully monitor the epidemic, it was necessary to collect longitudinal demographic data (e.g. mortality, fertility, migration) on the population and to mirror this complex social reality within the design of the demographic information system. To this end, three primary subjects are observed longitudinally in ACDIS: physical structures (e.g. homesteads, clinics and schools), households and individuals. The information about these subjects, and all related information, is stored in a single MSSQL Server database, in a truly longitudinal way—i.e. not as a series of cross-sections.

    The surveillance area is located near the market town of Mtubatuba in the Umkanyakude district of KwaZulu-Natal. The area is 438 square kilometers in size and includes a population of approximately 85 000 people who are members of approximately 11 000 households. The population is almost exclusively Zulu-speaking. The area is typical of many rural areas of South Africa in that while predominantly rural, it contains an urban township and informal peri-urban settlements. The area is characterized by large variations in population densities (20–3000 people/km2). In the rural areas, homesteads are scattered rather than grouped. Most households are multi-generational and range with an average size of 7.9 (SD:4.7) members. Despite being a predominantly rural area, the principle source of income for most households is waged employment and state pensions rather than agriculture. In 2006, approximately 77% of households in the surveillance area had access to piped water and toilet facilities.

    To fulfil the eligibility criteria for the ACDIS cohort, individuals must be a member of a household within the surveillance area but not necessarily resident within it. Crucially, this means that ACDIS collects information on resident and non-resident members of households and makes a distinction between membership (self-defined on the basis of links to other household members) and residency (residing at a physical structure within the surveillance area at a particular point in time). Individuals can be members of more than one household at any point in time (e.g. polygamously married men whose wives maintain separate households). As of June 2006, there were 85 855 people under surveillance of whom 33% were not resident within the surveillance area. Obtaining information on non-resident members is vital for a number of reasons. Most importantly, understanding patterns of HIV transmission within rural areas requires knowledge about patterns of circulation and about sexual contacts between residents and their non-resident partners. To be consistent with similar datasets from other INDEPTH Member centres, this data set contains data from resident members only.

    During data collection, households are visited by fieldworkers and information supplied by a single key informant. All births, deaths and migrations of household members are recorded. If household members have moved internally within the surveillance area, such moves are reconciled and the internal migrant retains the original identfier associated with him/her.

    Geographic coverage

    Demographic surveillance area situated in the south-east portion of the uMkhanyakude district of KwaZulu-Natal province near the town of Mtubatuba. It is bounded on the west by the Umfolozi-Hluhluwe nature reserve, on the South by the Umfolozi river, on the East by the N2 highway (except form portions where the Kwamsane township strandles the highway) and in the North by the Inyalazi river for portions of the boundary. The area is 438 square kilometers.

    Analysis unit

    Individual

    Universe

    Resident household members of households resident within the demographic surveillance area. Inmigrants are defined by intention to become resident, but actual residence episodes of less than 180 days are censored. Outmigrants are defined by intention to become resident elsewhere, but actual periods of non-residence less than 180 days are censored. Children born to resident women are considered resident by default, irrespective of actual place of birth. The dataset contains the events of all individuals ever resident during the study period (1 Jan 2000 to 31 Dec 2015).

    Kind of data

    Event history data

    Frequency of data collection

    This dataset contains rounds 1 to 37 of demographic surveillance data covering the period from 1 Jan 2000 to 31 December 2015. Two rounds of data collection took place annually except in 2002 when three surveillance rounds were conducted. From 1 Jan 2015 onwards there are three surveillance rounds per annum.

    Sampling procedure

    This dataset is not based on a sample but contains information from the complete demographic surveillance area.

    Reponse units (households) by year: Year Households 2000 11856
    2001 12321
    2002 12981
    2003 12165
    2004 11841
    2005 11312
    2006 12065
    2007 12165
    2008 11790
    2009 12145
    2010 12485
    2011 12455
    2012 12087 2013 11988 2014 11778 2015 11938

    In 2006 the number of response units increased due to the addition of a new village into the demographic surveillance area.

    Sampling deviation

    None

    Mode of data collection

    Proxy Respondent [proxy]

    Research instrument

    Bounded structure registration (BSR) or update (BSU) form: - Used to register characteristics of the BS - Updates characteristics of the BS - Information as at previous round is preprinted

    Household registration (HHR) or update (HHU) form: - Used to register characteristics of the HH - Used to update information about the composition of the household - Information preprinted of composition and all registered households as at previous

    Household Membership Registration (HMR) or update (HMU): - Used to link individuals to households - Used to update information about the household memberships and member status observations - Information preprinted of member status observations as at previous

    Individual registration form (IDR): - Used to uniquely identify each individual - Mainly to ensure members with multiple household memberships are appropriately captured

    Migration notification form (MGN): - Used to record change in the BS of residency of individuals or households _ Migrants are tracked and updated in the database

    Pregnancy history form (PGH) & pregnancy outcome notification form (PON): - Records details of pregnancies and their outcomes - Only if woman is a new member - Only if woman has never completed WHL or WGH

    Death notification form (DTN): - Records all deaths that have recently occurred - Iincludes information about time, place, circumstances and possible cause of death

    Cleaning operations

    On data entry data consistency and plausibility were checked by 455 data validation rules at database level. If data validaton failure was due to a data collection error, the questionnaire was referred back to the field for revisit and correction. If the error was due to data inconsistencies that could not be directly traced to a data collection error, the record was referred to the data quality team under the supervision of the senior database scientist. This could request further field level investigation by a team of trackers or could correct the inconsistency directly at database level.

    No imputations were done on the resulting micro data set, except for:

    a. If an out-migration (OMG) event is followed by a homestead entry event (ENT) and the gap between OMG event and ENT event is greater than 180 days, the ENT event was changed to an in-migration event (IMG). b. If an out-migration (OMG) event is followed by a homestead entry event (ENT) and the gap between OMG event and ENT event is less than 180 days, the OMG event was changed to an homestead exit event (EXT) and the ENT event date changed to the day following the original OMG event. c. If a homestead exit event (EXT) is followed by an in-migration event (IMG) and the gap between the EXT event and the IMG event is greater than 180 days, the EXT event was changed to an out-migration event (OMG). d. If a homestead exit event (EXT) is followed by an in-migration event (IMG) and the gap between the EXT event and the IMG event is less than 180 days, the IMG event was changed to an homestead entry event (ENT) with a date equal to the day following the EXT event. e. If the last recorded event for an individual is homestead exit (EXT) and this event is more than 180 days prior to the end of the surveillance period, then the EXT event is changed to an

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
CEICdata.com (2009). United States US: Prevalence of HIV: Total: % of Population Aged 15-49 [Dataset]. https://www.ceicdata.com/en/united-states/health-statistics/us-prevalence-of-hiv-total--of-population-aged-1549

United States US: Prevalence of HIV: Total: % of Population Aged 15-49

Explore at:
Dataset updated
May 15, 2009
Dataset provided by
CEICdata.com
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Dec 1, 2008 - Dec 1, 2014
Area covered
United States
Description

United States US: Prevalence of HIV: Total: % of Population Aged 15-49 data was reported at 0.500 % in 2014. This stayed constant from the previous number of 0.500 % for 2013. United States US: Prevalence of HIV: Total: % of Population Aged 15-49 data is updated yearly, averaging 0.500 % from Dec 2008 (Median) to 2014, with 7 observations. The data reached an all-time high of 0.500 % in 2014 and a record low of 0.500 % in 2014. United States US: Prevalence of HIV: Total: % of Population Aged 15-49 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Health Statistics. Prevalence of HIV refers to the percentage of people ages 15-49 who are infected with HIV.; ; UNAIDS estimates.; Weighted Average;

Search
Clear search
Close search
Google apps
Main menu