14 datasets found
  1. n

    Coronavirus (Covid-19) Data in the United States

    • nytimes.com
    • openicpsr.org
    • +4more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html
    Explore at:
    Dataset provided by
    New York Times
    Description

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

  2. d

    Johns Hopkins COVID-19 Case Tracker

    • data.world
    • kaggle.com
    csv, zip
    Updated Dec 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Johns Hopkins COVID-19 Case Tracker [Dataset]. https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Dec 3, 2025
    Authors
    The Associated Press
    Time period covered
    Jan 22, 2020 - Mar 9, 2023
    Area covered
    Description

    Updates

    • Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.

    • April 9, 2020

      • The population estimate data for New York County, NY has been updated to include all five New York City counties (Kings County, Queens County, Bronx County, Richmond County and New York County). This has been done to match the Johns Hopkins COVID-19 data, which aggregates counts for the five New York City counties to New York County.
    • April 20, 2020

      • Johns Hopkins death totals in the US now include confirmed and probable deaths in accordance with CDC guidelines as of April 14. One significant result of this change was an increase of more than 3,700 deaths in the New York City count. This change will likely result in increases for death counts elsewhere as well. The AP does not alter the Johns Hopkins source data, so probable deaths are included in this dataset as well.
    • April 29, 2020

      • The AP is now providing timeseries data for counts of COVID-19 cases and deaths. The raw counts are provided here unaltered, along with a population column with Census ACS-5 estimates and calculated daily case and death rates per 100,000 people. Please read the updated caveats section for more information.
    • September 1st, 2020

      • Johns Hopkins is now providing counts for the five New York City counties individually.
    • February 12, 2021

      • The Ohio Department of Health recently announced that as many as 4,000 COVID-19 deaths may have been underreported through the state’s reporting system, and that the "daily reported death counts will be high for a two to three-day period."
      • Because deaths data will be anomalous for consecutive days, we have chosen to freeze Ohio's rolling average for daily deaths at the last valid measure until Johns Hopkins is able to back-distribute the data. The raw daily death counts, as reported by Johns Hopkins and including the backlogged death data, will still be present in the new_deaths column.
    • February 16, 2021

      - Johns Hopkins has reconciled Ohio's historical deaths data with the state.

      Overview

    The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.

    The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.

    This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.

    The AP is updating this dataset hourly at 45 minutes past the hour.

    To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

    Queries

    Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic

    Interactive

    The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.

    @(https://datawrapper.dwcdn.net/nRyaf/15/)

    Interactive Embed Code

    <iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
    

    Caveats

    • This data represents the number of cases and deaths reported by each state and has been collected by Johns Hopkins from a number of sources cited on their website.
    • In some cases, deaths or cases of people who've crossed state lines -- either to receive treatment or because they became sick and couldn't return home while traveling -- are reported in a state they aren't currently in, because of state reporting rules.
    • In some states, there are a number of cases not assigned to a specific county -- for those cases, the county name is "unassigned to a single county"
    • This data should be credited to Johns Hopkins University's COVID-19 tracking project. The AP is simply making it available here for ease of use for reporters and members.
    • Caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
    • Population estimates at the county level are drawn from 2014-18 5-year estimates from the American Community Survey.
    • The Urban/Rural classification scheme is from the Center for Disease Control and Preventions's National Center for Health Statistics. It puts each county into one of six categories -- from Large Central Metro to Non-Core -- according to population and other characteristics. More details about the classifications can be found here.

    Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here

    Attribution

    This data should be credited to Johns Hopkins University COVID-19 tracking project

  3. Geostatistical Analysis of SARS-CoV-2 Positive Cases in the United States

    • zenodo.org
    • data.niaid.nih.gov
    Updated Sep 17, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Peter K. Rogan; Peter K. Rogan (2020). Geostatistical Analysis of SARS-CoV-2 Positive Cases in the United States [Dataset]. http://doi.org/10.5281/zenodo.4032708
    Explore at:
    Dataset updated
    Sep 17, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Peter K. Rogan; Peter K. Rogan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Geostatistics analyzes and predicts the values associated with spatial or spatial-temporal phenomena. It incorporates the spatial (and in some cases temporal) coordinates of the data within the analyses. It is a practical means of describing spatial patterns and interpolating values for locations where samples were not taken (and measures the uncertainty of those values, which is critical to informed decision making). This archive contains results of geostatistical analysis of COVID-19 case counts for all available US counties. Test results were obtained with ArcGIS Pro (ESRI). Sources are state health departments, which are scraped and aggregated by the Johns Hopkins Coronavirus Resource Center and then pre-processed by MappingSupport.com.

    This update of the Zenodo dataset (version 6) consists of three compressed archives containing geostatistical analyses of SARS-CoV-2 testing data. This dataset utilizes many of the geostatistical techniques used in previous versions of this Zenodo archive, but has been significantly expanded to include analyses of up-to-date U.S. COVID-19 case data (from March 24th to September 8th, 2020):

    Archive #1: “1.Geostat. Space-Time analysis of SARS-CoV-2 in the US (Mar24-Sept6).zip” – results of a geostatistical analysis of COVID-19 cases incorporating spatially-weighted hotspots that are conserved over one-week timespans. Results are reported starting from when U.S. COVID-19 case data first became available (March 24th, 2020) for 25 consecutive 1-week intervals (March 24th through to September 6th, 2020). Hotspots, where found, are reported in each individual state, rather than the entire continental United States.

    Archive #2: "2.Geostat. Spatial analysis of SARS-CoV-2 in the US (Mar24-Sept8).zip" – the results from geostatistical spatial analyses only of corrected COVID-19 case data for the continental United States, spanning the period from March 24th through September 8th, 2020. The geostatistical techniques utilized in this archive includes ‘Hot Spot’ analysis and ‘Cluster and Outlier’ analysis.

    Archive #3: "3.Kriging and Densification of SARS-CoV-2 in LA and MA.zip" – this dataset provides preliminary kriging and densification analysis of COVID-19 case data for certain dates within the U.S. states of Louisiana and Massachusetts.

    These archives consist of map files (as both static images and as animations) and data files (including text files which contain the underlying data of said map files [where applicable]) which were generated when performing the following Geostatistical analyses: Hot Spot analysis (Getis-Ord Gi*) [‘Archive #1’: consecutive weeklong Space-Time Hot Spot analysis; ‘Archive #2’: daily Hot Spot Analysis], Cluster and Outlier analysis (Anselin Local Moran's I) [‘Archive #2’], Spatial Autocorrelation (Global Moran's I) [‘Archive #2’], and point-to-point comparisons with Kriging and Densification analysis [‘Archive #3’].

    The Word document provided ("Description-of-Archive.Updated-Geostatistical-Analysis-of-SARS-CoV-2 (version 6).docx") details the contents of each file and folder within these three archives and gives general interpretations of these results.

  4. Epidemiologic COVID-19 data for São Paulo State capital and hotspots cities...

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    xls
    Updated Jun 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Carlos Magno Castelo Branco Fortaleza; Raul Borges Guimarães; Rafael de Castro Catão; Cláudia Pio Ferreira; Gabriel Berg de Almeida; Thomas Nogueira Vilches; Edmur Pugliesi (2023). Epidemiologic COVID-19 data for São Paulo State capital and hotspots cities for disease introduction and spread on April 18th (see Fig 5). [Dataset]. http://doi.org/10.1371/journal.pone.0245051.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 12, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Carlos Magno Castelo Branco Fortaleza; Raul Borges Guimarães; Rafael de Castro Catão; Cláudia Pio Ferreira; Gabriel Berg de Almeida; Thomas Nogueira Vilches; Edmur Pugliesi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    State of São Paulo
    Description

    Epidemiologic COVID-19 data for São Paulo State capital and hotspots cities for disease introduction and spread on April 18th (see Fig 5).

  5. U

    Data from the article “An opportunistic survey reveals an unexpected...

    • data.usgs.gov
    • s.cnmilf.com
    • +1more
    Updated Aug 17, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hon Ip; Kathryn Griffin; Jeffrey Messer; Megan Winzeler; Susan Shriner; Mary Killian; Mia Torchetti; Thomas DeLiberto; Brian Amman; Caitlin Cossaboom; R. Harvey; Natalie Wendling; Hannah Rettler; Dean Taylor; Jonathan Towner; Casey Behravesh; David Blehert (2022). Data from the article “An opportunistic survey reveals an unexpected coronavirus diversity hotspot in North America” [Dataset]. http://doi.org/10.5066/P9X5VR9S
    Explore at:
    Dataset updated
    Aug 17, 2022
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Hon Ip; Kathryn Griffin; Jeffrey Messer; Megan Winzeler; Susan Shriner; Mary Killian; Mia Torchetti; Thomas DeLiberto; Brian Amman; Caitlin Cossaboom; R. Harvey; Natalie Wendling; Hannah Rettler; Dean Taylor; Jonathan Towner; Casey Behravesh; David Blehert
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    Aug 20, 2020 - Oct 13, 2020
    Area covered
    North America
    Description

    In summer 2020, SARS-CoV-2 was detected on mink farms in Utah. An interagency One Health response was initiated to assess the extent of the outbreak and included sampling animals from or near affected mink farms and testing them for SARS-CoV-2 and non-SARS coronaviruses. Among the 365 animals sampled, including domestic cats, mink, rodents, raccoons, and skunks, 261 (72%) of the animals harbored at least one coronavirus at the time. Among the samples which could be further characterized, 126 alphacoronaviruses and 88 betacoronaviruses (including 74 detections of SARS-CoV-2) were identified. Moreover, at least 10% (n=27) of the corona-virus-positive animals were found to be co-infected with more than one coronavirus. Our findings indicate an unexpectedly high prevalence of coronavirus among the domestic and wild animals tested on mink farms and raise the possibility that commercial animal husbandry operations could be potential hot spots for future trans-species viral spillover and ...

  6. a

    COVID-19 DASHBOARD FOR NIGERIA CASES AN INITIATIVE OF DR. NKEKI F. N....

    • africageoportal.com
    • angola.africageoportal.com
    • +3more
    Updated May 6, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Africa GeoPortal (2020). COVID-19 DASHBOARD FOR NIGERIA CASES AN INITIATIVE OF DR. NKEKI F. N. (Supporting NCDC to fight against the spread of COVID-19) [Dataset]. https://www.africageoportal.com/datasets/africageoportal::covid-19-dashboard-for-nigeria-cases-an-initiative-of-dr-nkeki-f-n-supporting-ncdc-to-fight-against-the-spread-of-covid-19
    Explore at:
    Dataset updated
    May 6, 2020
    Dataset authored and provided by
    Africa GeoPortal
    Area covered
    Description

    This feature contain several data layers: 1 depicts the up-to-date COVID-19 cases for Nigeria by states and the 2 shows population density of Nigeria by Local Government Areas; and these were superimposed on each other for easy comparison; 3 is a map of the statistically significant population hot spot and cold spot in Nigeria. All these datasets constitute this well presented COVID-19 dashboard for monitoring Nigeria cases. Data sources include NCDC, WHO, and Africa Geoportal. The COVID-19 data is updated at least once per day, following NCDC update timeline. This layer is created and maintained by DR. NKEKI F. N. and his team (Eugene .A. Atakpiri and Akinde .N. Kolawole) to Support NCDC to fight against the spread of COVID-19 in Nigeria. This layer is opened to the public and free to share. Contact Info: Phone: +23408063131159Email: nkekifndidi@gmail.com

  7. Blog | Using the power of data to hotspot the greatest social needs during...

    • datasets.ai
    Updated May 14, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Health & Human Services (2021). Blog | Using the power of data to hotspot the greatest social needs during the COVID-19 Pandemic [Dataset]. https://datasets.ai/datasets/blog-using-the-power-of-data-to-hotspot-the-greatest-social-needs-during-the-covid-19-pand
    Explore at:
    Dataset updated
    May 14, 2021
    Dataset provided by
    United States Department of Health and Human Serviceshttp://www.hhs.gov/
    Authors
    U.S. Department of Health & Human Services
    Description

    By Kristen Honey, Chief Data Scientist and COVID-19 Diagnostics Informatics Lead, COVID-19 Testing and Diagnostics Working Group (TDWG); Joshua Prasad, Director of Health Equity Innovation, Office of the Chief Data Officer (OCDO), Jack Bastian, Data Engineer, HHS Protect, Office of the Chief Data Officer (OCDO)

  8. a

    Drive-up Wifi Sites

    • data-wutc.opendata.arcgis.com
    • geo.wa.gov
    • +2more
    Updated Sep 14, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Washington State Geospatial Portal (2020). Drive-up Wifi Sites [Dataset]. https://data-wutc.opendata.arcgis.com/datasets/wa-geoservices::drive-up-wifi-sites-1
    Explore at:
    Dataset updated
    Sep 14, 2020
    Dataset authored and provided by
    Washington State Geospatial Portal
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    In response to the impacts of COVID-19, Drive-In WiFi Hotspots provide free temporary, emergency internet access for Washingtonians who do not have broadband service to their homes.

    Access is available to all residents with specific emphasis on remote learning for students. Additionally, this service can be used for job searches, telehealth, telework, unemployment filing, and census participation.

    The locations listed on this map represent new Drive-In WiFi Hotspot sites located at Washington State University Extension locations, as well as new and existing Washington State Library Drive-In WiFi Hotspots.

    Launching primarily as parking lot hotspots in response to the COVID-19 pandemic, the free community Wi-Fi is accessible regardless of how users arrive at the locations. Some sites also offer indoor public access during business hours. Everyone using the sites – outside or inside – must practice social distancing and hygiene precautions, including staying in your vehicle or at least six feet from other users and wearing a mask if necessary.

    Each hotspot will have its own security protocol. Some will be open and others will have Children’s Internet Protection Act (CIPA) safe security installed.

    Broadband equity is not just a rural challenge. The drive-In Wi-Fi hotspot project addresses underserved and economically disadvantaged communities in urban and suburban areas as well.

    More information can be found: https://www.commerce.wa.gov/building-infrastructure/washington-state-drive-in-wifi-hotspots-location-finder/

  9. f

    Table_2_Global Research Trends in Pediatric COVID-19: A Bibliometric...

    • datasetcatalog.nlm.nih.gov
    • figshare.com
    • +1more
    Updated Feb 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cheng, Hang; Ma, Yucong; Wang, Xi; Hu, Siyu (2022). Table_2_Global Research Trends in Pediatric COVID-19: A Bibliometric Analysis.docx [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000308519
    Explore at:
    Dataset updated
    Feb 16, 2022
    Authors
    Cheng, Hang; Ma, Yucong; Wang, Xi; Hu, Siyu
    Description

    BackgroundCoronavirus disease 2019 (COVID-19) emerged in 2019 and has since caused a global pandemic. Since its emergence, COVID-19 has hugely impacted healthcare, including pediatrics. This study aimed to explore the current status and hotspots of pediatric COVID-19 research using bibliometric analysis.MethodsThe Institute for Scientific Information Web of Science core collection database was searched for articles on pediatric COVID-19 to identify original articles that met the criteria. The retrieval period ranged from the creation of the database to September 20, 2021. A total of 3,561 original articles written in English were selected to obtain data, such as author names, titles, source publications, number of citations, author affiliations, and countries where the studies were conducted. Microsoft Excel (Microsoft, Redmond, WA) was used to create charts related to countries, authors, and institutions. VOSviewer (Center for Science and Technology Studies, Leiden, The Netherlands) was used to create visual network diagrams of keyword, author, and country co-occurrence.ResultsWe screened 3,561 publications with a total citation frequency of 30,528. The United States had the most published articles (1188 articles) and contributed the most with author co-occurrences. The author with the most published articles was Villani from the University of Padua, Italy. He also contributed the most co-authored articles. The most productive institution was Huazhong University of Science and Technology in China. The institution with the most frequently cited published articles was Shanghai Jiao Tong University in China. The United States cooperated most with other countries. Research hotspots were divided into two clusters: social research and clinical research. Besides COVID-19 and children, the most frequent keywords were pandemic (251 times), mental health (187 times), health (172 times), impact (148 times), and multisystem inflammatory syndrome in children (MIS-C) (144 times).ConclusionPediatric COVID-19 has attracted considerable attention worldwide, leading to a considerable number of articles published over the past 2 years. The United States, China, and Italy have leading roles in pediatric COVID-19 research. The new research hotspot is gradually shifting from COVID-19 and its related clinical studies to studies of its psychological and social impacts on children.

  10. f

    Attributes of prospective space-time clusters (hotspots) for COVID-19 from...

    • figshare.com
    xls
    Updated Jun 10, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fuyu Xu; Kate Beard (2023). Attributes of prospective space-time clusters (hotspots) for COVID-19 from 1/23-3/31/2020 at the county level. [Dataset]. http://doi.org/10.1371/journal.pone.0252990.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 10, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Fuyu Xu; Kate Beard
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Attributes of prospective space-time clusters (hotspots) for COVID-19 from 1/23-3/31/2020 at the county level.

  11. a

    NY COVID-19 Zones

    • nyc-open-data-statelocalps.hub.arcgis.com
    • nyccovid-19response-nycgov.hub.arcgis.com
    • +1more
    Updated Oct 7, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    pkunduNYC (2020). NY COVID-19 Zones [Dataset]. https://nyc-open-data-statelocalps.hub.arcgis.com/datasets/d569d1157f4c49e482cfcc5a00ff6dae
    Explore at:
    Dataset updated
    Oct 7, 2020
    Dataset authored and provided by
    pkunduNYC
    Area covered
    Description

    The following layer shows hotspot areas as delineated by NY State government. The layer shows red, orange, and yellow zones and provides activity guidance via attributes.

  12. I

    Data from: Household Transmission of Severe Acute Respiratory Syndrome...

    • data.niaid.nih.gov
    • datasetcatalog.nlm.nih.gov
    • +1more
    url
    Updated Jan 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Household Transmission of Severe Acute Respiratory Syndrome Coronavirus 2 in the United States: Living Density, Viral Load, and Disproportionate Impact on Communities of Color [Dataset]. http://doi.org/10.21430/M31ZDULPAH
    Explore at:
    urlAvailable download formats
    Dataset updated
    Jan 30, 2025
    License

    https://www.immport.org/agreementhttps://www.immport.org/agreement

    Area covered
    United States
    Description

    Background: Households are hot spots for severe acute respiratory syndrome coronavirus 2 transmission. Methods: This prospective study enrolled 100 coronavirus disease 2019 (COVID-19) cases and 208 of their household members in North Carolina though October 2020, including 44% who identified as Hispanic or non-White. Households were enrolled a median of 6 days from symptom onset in the index case. Incident secondary cases within the household were detected using quantitative polymerase chain reaction of weekly nasal swabs (days 7, 14, 21) or by seroconversion at day 28. Results: Excluding 73 household contacts who were PCR-positive at baseline, the secondary attack rate (SAR) among household contacts was 32% (33 of 103; 95% confidence interval [CI], 22%-44%). The majority of cases occurred by day 7, with later cases confirmed as household-acquired by viral sequencing. Infected persons in the same household had similar nasopharyngeal viral loads (intraclass correlation coefficient = 0.45; 95% CI, .23-.62). Households with secondary transmission had index cases with a median viral load that was 1.4 log10 higher than those without transmission (P = .03), as well as higher living density (more than 3 persons occupying fewer than 6 rooms; odds ratio, 3.3; 95% CI, 1.02-10.9). Minority households were more likely to experience high living density and had a higher risk of incident infection than did White households (SAR, 51% vs 19%; P = .01). Conclusions: Household crowding in the context of high-inoculum infections may amplify the spread of COVID-19, potentially contributing to disproportionate impact on communities of color.

  13. covid19-in-kerala

    • kaggle.com
    zip
    Updated Jul 6, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Baburaj R (2020). covid19-in-kerala [Dataset]. https://www.kaggle.com/baburajr/covid19inkerala
    Explore at:
    zip(175667 bytes)Available download formats
    Dataset updated
    Jul 6, 2020
    Authors
    Baburaj R
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    Kerala
    Description

    Context

    The first case of the COVID-19 pandemic in Kerala (which was also the first in all of India) was confirmed in Thrissur on 30 January 2020.The number of active cases initially peaked at 266 on 6 April before declining. For the first time in over 45 days, there were no new cases on 1 May.However, following the return of Keralites from other countries and states, more cases were reported in mid-May, with the biggest single-day spike (195 cases) on 27 June. As of 30 June, there have been 4442 confirmed cases with 2304 (51.87%) recoveries and 24 deaths in the state.Kerala has one of the lowest mortality rate of 0.53% among all states in India.Kerala's success in containing COVID-19 has been widely praised both nationally and internationally.

    Content

    Patients age details in AgeInterval.csv file District wise Patient details in DistictData.csv file. List of Active Hotspots across kerala Hotspots.csv. Detais of infection type in InfectionType.csv file. List of Peoples in Observations across Kerala Observations.csv. Complete patient details in PatientData.csv file. Increase in Day by day Sum_by_Day.csv. List of Peoples in Quarantine in quarrentine.csv

    Acknowledgements

    Thanks to covid19kerala.info for making the data available to general public.

  14. n

    Data from: Spatial modeling of sociodemographic risk for COVID-19 mortality

    • data.niaid.nih.gov
    • search.dataone.org
    • +1more
    zip
    Updated Sep 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Erich Seamon; Benjamin J. Ridenhour; Craig R. Miller; Jennifer Johnson-Leung (2024). Spatial modeling of sociodemographic risk for COVID-19 mortality [Dataset]. http://doi.org/10.5061/dryad.4j0zpc8j1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Sep 12, 2024
    Dataset provided by
    University of Idaho
    Authors
    Erich Seamon; Benjamin J. Ridenhour; Craig R. Miller; Jennifer Johnson-Leung
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Background: In early 2020, the Coronavirus Disease 2019 (COVID-19) rapidly spread across the United States (US), exhibiting significant geographic variability. While several studies have examined the predictive relationships of differing factors on COVID-19, few have looked at spatiotemporal variation of COVID-19 deaths at refined geographic scales. Methods: The objective of this analysis is to examine the spatiotemporal variation in COVID-19 deaths with respect to socioeconomic, health, demographic, and political factors. We use multivariate regression applied to Health and Human Services (HHS) regions as well as nationwide county-level geographically weighted random forest (GWRF) models. Analyses were performed on data from three separate time frames which correspond to the spread of distinct viral variants in the US: pandemic onset until May 2021, May 2021 through November 2021, and December 2021 until April 2022. Spatial autocorrelation was additionally examined using a local and global Moran’s I test statistic. Results: Multivariate regression results for all regions across three time windows suggest that existing measures of social vulnerability for disaster preparedness (SVI) are predictive of a higher degree of mortality from COVID-19. In comparison, GWRF models provide a more robust evaluation of feature importance and prediction, exposing the value of local features for prediction, such as obesity, which is obscured by coarse-grained analysis. Spatial autocorrelation indicates positive spatial clustering,with a progression from positively clustered low deaths for liberal counties (cold spots) to positively clustered high deaths for conservative counties (hot spots). Conclusion: GWRF results indicate that a more nuanced modeling strategy is useful for determining spatial variation versus regional modeling approaches which may not capture feature clustering along border areas. Spatially explicit modeling approaches, such as GWRF, provide a more robust feature importance assessment of sociodemographic risk factors in predicting COVID-19 mortality. Methods The attached zip file contains the full GitHub repository, which includes data, the supplemental code, and an output HTML. The GitHub repository can be additionally viewed at: http://github.com/erichseamon/COVIDriskpaper. A README is provided as part of the repository, which describes each dataset, including all variable names and their unit of measure. All data used to generate the supplemental materials is located in the /data folder.

  15. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html

Coronavirus (Covid-19) Data in the United States

Explore at:
Dataset provided by
New York Times
Description

The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

Search
Clear search
Close search
Google apps
Main menu