Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
State fact sheets provide information on population, income, education, employment, federal funds, organic agriculture, farm characteristics, farm financial indicators, top commodities, and exports, for each State in the United States. Links to county-level data are included when available.This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: Query tool For complete information, please visit https://data.gov.
https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de451385https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de451385
Abstract (en): This collection includes county-level data from the United States Censuses of Agriculture for the years 1840 to 2012. The files provide data about the number, types, output, and prices of various agricultural products, as well as information on the amount, expenses, sales, values, and production of machinery. Most of the basic crop output data apply to the previous harvest year. Data collected also included the population and value of livestock, the number of animals slaughtered, and the size, type, and value of farms. Part 46 of this collection contains data from 1980 through 2010. Variables in part 46 include information such as the average value of farmland, number and value of buildings per acre, food services, resident population, composition of households, and unemployment rates. ICPSR data undergo a confidentiality review and are altered when necessary to limit the risk of disclosure. ICPSR also routinely creates ready-to-go data files along with setups in the major statistical software formats as well as standard codebooks to accompany the data. In addition to these procedures, ICPSR performed the following processing steps for this data collection: Checked for undocumented or out-of-range codes.. Response Rates: Not applicable. Datasets:DS0: Study-Level FilesDS1: Farm Land Value Data Set (County and State) 1850-1959DS2: 1840 County and StateDS3: 1850 County and StateDS4: 1860 County and StateDS5: 1870 County and StateDS6: 1880 County and StateDS7: 1890 County and StateDS8: 1900 County and StateDS9: 1910 County and StateDS10: 1920 County and State, Dataset 1DS11: 1920 County and State, Dataset 2DS12: 1925 County and StateDS13: 1930 County and State, Dataset 1DS14: 1930 County and State, Dataset 2DS15: 1935 County and StateDS16: 1940 County and State, Dataset 1DS17: 1940 County and State, Dataset 2DS18: 1940 County and State, Dataset 3DS19: 1940 County and State, Dataset 4 (Water)DS20: 1945 County and StateDS21: 1950 County and State, Dataset 1DS22: 1950 Crops, County and State, Dataset 2DS23: 1950 County, Dataset 3DS24: 1950 County and State, Dataset 4DS25: 1954 County and State, Dataset 1DS26: 1954 Crops, County and State, Dataset 2DS27: 1959 County and State, Dataset 1DS28: 1959 Crops, County and State, Dataset 2DS29: 1959 County, Dataset 3DS30: 1964 Dataset 1DS31: 1964 Crops, County and State, Dataset 2DS32: 1964 County, Dataset 3DS33: 1969 All Farms, County and State, Dataset 1DS34: 1969 Farms 2500, County and State, Dataset 2DS35: 1969 Crops, County and State, Dataset 3DS36: 1974 All Farms, County and State, Dataset 1DS37: 1974 Farms 2500, County and State, Dataset 2DS38: 1974 Crops, County and State, Dataset 3DS39: 1978 County and StateDS40: 1982 County and StateDS41: 1987 County and StateDS42: 1992 County and StateDS43: 1997 County and StateDS44: 2002 County and StateDS45: 2007 County and StateDS46: State and County Data, United States, 1980-2010DS47: 2012 County and State Farms within United States counties and states. Smallest Geographic Unit: FIPS code The sample was the universe of agricultural operating units. For 1969-2007, data were taken from computer files from the Census Bureau and the United States Department of Agriculture. 2018-08-20 The P.I. resupplied data and documentation for 1935 County and State (dataset 15) and 1997 County and State (dataset 43). Additionally, documentation updates and variable label revisions have been incorporated in datasets 22, 26, 28, 31, 35, and 38 at the request of the P.I.2016-06-29 The data and documentation for 2012 County and State (data set 47) have been added to this collection. The collection and documentation titles have been updated to reflect the new year.2015-08-05 The data, setup files, and documentation for 1964 Dataset 1 have been updated to reflect changes from the producer. Funding insitution(s): National Science Foundation (NSF-SES-0921732; 0648045). United States Department of Health and Human Services. National Institutes of Health (R01 HD057929).
This EnviroAtlas dataset summarizes by county the number of farm operations with cattle and the number of heads they manage. The data come from the Census of Agriculture, which is administered every five years by the US Department of Agriculture (USDA), and include the years 2002, 2007, 2012, and 2017. The Census classifies cattle managed on operations as beef cows, dairy cows, or other cattle (which encompasses heifers, steers, bulls, and calves). Data regarding all three categories are displayed in this layer. Operations are categorized into small, medium, or large, based on how many heads they manage. For each county and Census year, the dataset reports the number of farm operations that manage cattle, the number of heads on their property at the end of the Census year, and a breakdown of the operations into small, medium, and large. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
This EnviroAtlas dataset summarizes by county the number of farm operations with swine and the number of heads they manage. The data come from the Census of Agriculture, which is administered every five years by the US Department of Agriculture (USDA), and include the years 2002, 2007, 2012, and 2017. Operations are categorized into small, medium, or large, based on how many heads they manage. For each county and Census year, the dataset reports the number of farm operations that manage swine, the number of heads on their property at the end of the Census year, and a breakdown of the operations into small, medium, and large. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
This EnviroAtlas dataset summarizes by county the number of farm operations with sheep and the number of heads they manage. The data come from the Census of Agriculture, which is administered every five years by the US Department of Agriculture (USDA), and include the years 2002, 2007, 2012, and 2017. Operations are categorized into small, medium, or large, based on how many heads they manage. For each county and Census year, the dataset reports the number of farm operations that manage sheep, the number of heads on their property at the end of the Census year, and a breakdown of the operations into small, medium, and large. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
Bruner Farm Study for Resilient Economic Agricultural Practices in Ames, Iowa Soil P analyzed by Bray P extractant. Soil K analyzed by Ammonium Acetate extractant. For MeasSoilCover estimates: Photos were taken with a Canon, 12.3 megapixel EOS Rebel T3 mounted on a Van-Guard QS-46 large format quick shoe. The monopod that the amera/shoe assembly was attached to is a Wooster Sherlock model R056 telescoping pole. A mounting racket and spirit level (part #’s MSRMB and MSRSLA respectively, available from Cropscan inc. http://www.cropscan.com/mpscs.html) were attached to the pole in a manner so that when the camera is mounted, and the bubble in the spirit level is centered, then the focal plane of the camera is perpendicular to the ground resulting in a nadir image of the ground beneath the camera. The fully extended pole camera assembly was carried diagonally across each plot in field 70/71 an East to West or West to East transect with photos being taken every 9 paces. The unit was angled in such a way that the shadow from the pole and camera was not included in the photo. In the larger plots at the Uthe farm and the Poets facility, 30 to 40 paces were taken between each photo. The self timer on the camera was set for a 10 second delay and the camera was focused before initiating the timer. In most instances, 10 seconds was ample time to maneuver the camera into position for the photo. The cameras motion stabilizer function was turned on and the18mm zoom setting was always used to capture the maximum amount of area in each photo. Cold days, and wind speeds in excess of 30mph present a challenge. Photos were downloaded from the camera with the EOS utility software supplied with the camera and analyzed with sample point version 1.51 with a grid size of 10x10 chosen. A newer version of sample point is available at http://www.samplepoint.org/.
This EnviroAtlas dataset summarizes by county the number of farm operations with laying hens and the number of heads they manage. The data come from the Census of Agriculture, which is administered every five years by the US Department of Agriculture (USDA), and include the years 2002, 2007, 2012, and 2017. Operations are categorized into small, medium, or large, based on how many heads they manage. For each county and Census year, the dataset reports the number of farm operations that manage laying hens, the number of heads on their property at the end of the Census year, and a breakdown of the operations into small, medium, and large. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
Syngenta is committed to increasing crop productivity and to using limited resources such as land, water and inputs more efficiently. Since 2014, Syngenta has been measuring trends in agricultural input efficiency on a global network of real farms. The Good Growth Plan dataset shows aggregated productivity and resource efficiency indicators by harvest year. The data has been collected from more than 4,000 farms and covers more than 20 different crops in 46 countries. The data (except USA data and for Barley in UK, Germany, Poland, Czech Republic, France and Spain) was collected, consolidated and reported by Kynetec (previously Market Probe), an independent market research agency. It can be used as benchmarks for crop yield and input efficiency.
National coverage
Agricultural holdings
Sample survey data [ssd]
A. Sample design Farms are grouped in clusters, which represent a crop grown in an area with homogenous agro- ecological conditions and include comparable types of farms. The sample includes reference and benchmark farms. The reference farms were selected by Syngenta and the benchmark farms were randomly selected by Kynetec within the same cluster.
B. Sample size Sample sizes for each cluster are determined with the aim to measure statistically significant increases in crop efficiency over time. This is done by Kynetec based on target productivity increases and assumptions regarding the variability of farm metrics in each cluster. The smaller the expected increase, the larger the sample size needed to measure significant differences over time. Variability within clusters is assumed based on public research and expert opinion. In addition, growers are also grouped in clusters as a means of keeping variances under control, as well as distinguishing between growers in terms of crop size, region and technological level. A minimum sample size of 20 interviews per cluster is needed. The minimum number of reference farms is 5 of 20. The optimal number of reference farms is 10 of 20 (balanced sample).
C. Selection procedure The respondents were picked randomly using a “quota based random sampling” procedure. Growers were first randomly selected and then checked if they complied with the quotas for crops, region, farm size etc. To avoid clustering high number of interviews at one sampling point, interviewers were instructed to do a maximum of 5 interviews in one village.
Screening of South Africa BF:
(a) maize growers
Location: Free State
Growers have to use pre-emergent and post-emergent herbicides
Growers have to use at least one fungicide and at least one insecticide
for maize 2 growers : Location: Mpumalanga
(b) potato growers
Location: Limpopo
Growers have to use at least 4 insecticide applications and at least 4 fungicide applications
for potato 2 growers: Location: Free State
Face-to-face [f2f]
Data collection tool for 2019 covered the following information:
(A) PRE- HARVEST INFORMATION PART I: Screening PART II: Contact Information PART III: Farm Characteristics a. Biodiversity conservation b. Soil conservation c. Soil erosion d. Description of growing area e. Training on crop cultivation and safety measures PART IV: Farming Practices - Before Harvest a. Planting and fruit development - Field crops b. Planting and fruit development - Tree crops c. Planting and fruit development - Sugarcane d. Planting and fruit development - Cauliflower e. Seed treatment
(B) HARVEST INFORMATION PART V: Farming Practices - After Harvest a. Fertilizer usage b. Crop protection products c. Harvest timing & quality per crop - Field crops d. Harvest timing & quality per crop - Tree crops e. Harvest timing & quality per crop - Sugarcane f. Harvest timing & quality per crop - Banana g. After harvest PART VI - Other inputs - After Harvest a. Input costs b. Abiotic stress c. Irrigation
See all questionnaires in external materials tab
Data processing: Kynetec uses SPSS (Statistical Package for the Social Sciences) for data entry, cleaning, analysis, and reporting. After collection, the farm data is entered into a local database, reviewed, and quality-checked by the local Kynetec agency. In the case of missing values or inconsistencies, farmers are re-contacted. In some cases, grower data is verified with local experts (e.g. retailers) to ensure data accuracy and validity. After country-level cleaning, the farm-level data is submitted to the global Kynetec headquarters for processing. In the case of missing values or inconsistences, the local Kynetec office was re-contacted to clarify and solve issues.
Quality assurance Various consistency checks and internal controls are implemented throughout the entire data collection and reporting process in order to ensure unbiased, high quality data.
• Screening: Each grower is screened and selected by Kynetec based on cluster-specific criteria to ensure a comparable group of growers within each cluster. This helps keeping variability low.
• Evaluation of the questionnaire: The questionnaire aligns with the global objective of the project and is adapted to the local context (e.g. interviewers and growers should understand what is asked). Each year the questionnaire is evaluated based on several criteria, and updated where needed.
• Briefing of interviewers: Each year, local interviewers - familiar with the local context of farming -are thoroughly briefed to fully comprehend the questionnaire to obtain unbiased, accurate answers from respondents.
• Cross-validation of the answers: o Kynetec captures all growers' responses through a digital data-entry tool. Various logical and consistency checks are automated in this tool (e.g. total crop size in hectares cannot be larger than farm size) o Kynetec cross validates the answers of the growers in three different ways: 1. Within the grower (check if growers respond consistently during the interview) 2. Across years (check if growers respond consistently throughout the years) 3. Within cluster (compare a grower's responses with those of others in the group)
o All the above mentioned inconsistencies are followed up by contacting the growers and asking them to verify their answers. The data is updated after verification. All updates are tracked.
• Check and discuss evolutions and patterns: Global evolutions are calculated, discussed and reviewed on a monthly basis jointly by Kynetec and Syngenta.
• Sensitivity analysis: sensitivity analysis is conducted to evaluate the global results in terms of outliers, retention rates and overall statistical robustness. The results of the sensitivity analysis are discussed jointly by Kynetec and Syngenta.
• It is recommended that users interested in using the administrative level 1 variable in the location dataset use this variable with care and crosscheck it with the postal code variable.
Due to the above mentioned checks, irregularities in fertilizer usage data were discovered which had to be corrected:
For data collection wave 2014, respondents were asked to give a total estimate of the fertilizer NPK-rates that were applied in the fields. From 2015 onwards, the questionnaire was redesigned to be more precise and obtain data by individual fertilizer products. The new method of measuring fertilizer inputs leads to more accurate results, but also makes a year-on-year comparison difficult. After evaluating several solutions to this problems, 2014 fertilizer usage (NPK input) was re-estimated by calculating a weighted average of fertilizer usage in the following years.
This map shows the relationship between Federal payments toward conservation and wetlands and payments toward producers not including conservation/wetlands. The data is produced by the USDA National Agricultural Statistics Service (USDA).Areas in yellow show where there are high amounts of Federal payments toward Conservation in comparison to other types, whereas areas in light blue have a higher amount of Federal payments toward all other agriculture in comparison to Conservation. Areas in black have an overall high amount of both types of payments. The map uses size to emphasize which counties received the overall largest receipts in US dollars.In 2017, the average farm received an average of $13,906, and conservation/wetland programs received and average of $6,980. These are the central colors of the map in order to anchor the map around the national figure. Areas with a pattern above or below the national average are highlighted by the colors along the edges of the legend (mentioned in the previous paragraph). For more information about Federal payments in 2017, visit this summary table from the USDA.For more information about the relationship mapping style used in this map, visit this blog. About the data and source:The Census of Agriculture, produced by the USDA National Agricultural Statistics Service (USDA), provides a complete count of America's farms, ranches and the people who grow our food. The census is conducted every five years, most recently in 2017, and provides a in-depth look at the agricultural industry.This layer summarizes payments made to producers by the Federal government from the 2017 Census of Agriculture at the county level.This layer was produced from data downloaded using the USDA's QuickStats Application. The data was transformed using the Pivot Table tool in ArcGIS Pro and joined to the county boundary file provided by the USDA. The layer was published as feature layer in ArcGIS Online.Dataset SummaryPhenomenon Mapped: Payments made to producers by the Federal governmentCoordinate System: Web Mercator Auxiliary SphereExtent: United States including Hawaii and AlaskaVisible Scale: All ScalesSource: USDA National Agricultural Statistics Service QuickStats ApplicationPublication Date: 2017AttributesThis layer provides values for the following attributes. Note that some values are not disclosed (coded as -1 in the layer) to protect the privacy of producers in areas with limited production.Federal Payments - Operations with ReceiptsFederal Payments - Receipts in US DollarsFederal Payments - Receipts in US Dollars per OperationFederal Payments not Including Conservation and Wetland Programs - Operations with ReceiptsFederal Payments not Including Conservation and Wetland Programs - Receipts in US DollarsFederal Payments not Including Conservation and Wetland Programs - Receipts in US Dollars per OperationFederal Payments for Conservation and Wetland Programs - Operations with ReceiptsFederal Payments for Conservation and Wetland Programs - Receipts in US DollarsFederal Payments for Conservation and Wetland Programs - Receipts in US Dollars per OperationConservation and wetland programs include:Conservation Reserve Program (CRP)Wetlands Reserve Program (WRP)Farmable Wetlands Program (FWP)Conservation Reserve Enhancement Program (CREP)Other programs with payments to producers include:2014 Agricultural Act (Farm Bill)Agriculture Risk Coverage (ARC)Price Loss Coverage (PLC)Commodity Credit Corporation (CCC)Loan Deficiency PaymentsDisaster Assistance ProgramsState and local government agricultural program payments and Federal crop insurance payments are not included.Additionally, attributes of State Name, State Code, County Name and County Code are included to facilitate cartography and use with other layers.
The Annual Agricultural Sample Survey (AASS) for the year 2022/23 aimed to enhance the understanding of agricultural activities across Tanzania by collecting comprehensive data on various aspects of the agricultural sector. This survey is crucial for policy formulation, development planning, and service delivery, providing reliable data to monitor and evaluate national and international development frameworks.
The 2022/23 survey is particularly significant as it informs the monitoring and evaluation of key agricultural development strategies and frameworks. The collected data will contribute to the Tanzania Development Vision 2025, Zanzibar Development Vision 2020, the Five-Year Development Plan 2021/22–2025/26, the National Strategy for Growth and Reduction of Poverty (NSGRP) known as MKUKUTA, and the Zanzibar Strategy for Growth and Reduction of Poverty (ZSGRP) known as MKUZA. The survey data also supports the evaluation of Sustainable Development Goals (SDGs) and Comprehensive Africa Agriculture Development Programme (CAADP). Key indicators for agricultural performance and poverty monitoring are directly measured from the survey data.
The 2022/23 AASS provides a detailed descriptive analysis and related tables on the main thematic areas. These areas include household members and holder identification, field roster, seasonal plot and crop rosters (Vuli, Masika, and Dry Season), permanent crop production, crop harvest use, seed and seedling acquisition, input use and acquisition (fertilizers and pesticides), livestock inventory and changes, livestock production costs, milk and eggs production, other livestock products, aquaculture production, and labor dynamics. The 2022/23 AASS offers an extensive dataset essential for understanding the current state of agriculture in Tanzania. The insights gained will support the development of policies and interventions aimed at enhancing agricultural productivity, sustainability, and the livelihoods of farming communities. This data is indispensable for stakeholders addressing challenges in the agricultural sector and promoting sustainable agricultural development.
STATISTICAL DISCLOSURE CONTROL (SDC) METHODS HAVE BEEN APPLIED TO THE MICRODATA, TO PROTECT THE CONFIDENTIALITY OF THE INDIVIDUAL DATA COLLECTED. USERS MUST BE AWARE THAT THESE ANONYMIZATION OR SDC METHODS MODIFY THE DATA, INCLUDING SUPPRESSION OF SOME DATA POINTS. THIS AFFECTS THE AGREGATED VALUES DERIVED FROM THE ANONYMIZED MICRODATA, AND MAY HAVE OTHER UNWANTED CONSEQUENCES, SUCH AS SAMPLING ERROR AND BIAS. ADDITIONAL DETAILS ABOUT THE SDC METHODS AND DATA ACESS CONDITIONS ARE PROVIDED IN THE DATA PROCESSING AND DATA ACESS CONDITIONS BELOW.
National, Mainland Tanzania and Zanzibar, Regions
Households for Smallholder Farmers and Farm for Large Scale Farms
The survey covered agricultural households and large-scale farms.
Agricultural households are those that meet one or more of the following two conditions: a) Have or operate at least 25 square meters of arable land, b) Own or keep at least one head of cattle or five goats/sheep/pigs or fifty chicken/ducks/turkeys during the agriculture year.
Large-scale farms are those farms with at least 20 hectares of cultivated land, or 50 herds of cattle, or 100 goats/sheep/pigs, or 1,000 chickens. In addition to this, they should fulfill all of the following four conditions: i) The greater part of the produce should go to the market, ii) Operation of farm should be continuous, iii) There should be application of machinery / implements on the farm, and iv) There should be at least one permanent employee.
Sample survey data [ssd]
The frame used to extract the sample for the Annual Agricultural Sample Survey (AASS-2022/23) in Tanzania was derived from the 2022 Population and Housing Census (PHC-2022) Frame that lists all the Enumeration Areas (EAs/Hamlets) of the country. The AASS 2022/23 used a stratified two-stage sampling design which allows to produce reliable estimates at regional level for both Mainland Tanzania and Zanzibar.
In the first stage, the EAs (primary sampling units) were stratified into 2-3 strata within each region and then selected by using a systematic sampling procedure with probability proportional to size (PPS), where the measure of size is the number of agricultural households in the EA. Before the selection, within each stratum and domain (region), the Enumeration Areas (EAs) were ordered according to the codes of District and Council which reflect the geographical proximity, and then ordered according to the codes of Constituency, Division, Wards, and Village. An implicit stratification was also performed, ordering by Urban/Rural type at Ward level.
In the second stage, a simple random sampling selection was conducted . In hamlets with more than 200 households, twelve (12) agricultural households were drawn from the PHC 2022 list with a simple random sampling without replacement procedure in each sampled hamlet. In hamlets with 200 households or less, a listing exercise was carried out in each sampled hamlet, and twelve (12) agricultural households were selected with a simple random sampling without replacement procedure. A total of 1,352 PSUs were selected from the 2022 Population and Housing Census frame, of which 1,234 PSUs were from Mainland Tanzania and 118 from Zanzibar. A total number of 16,224 agricultural households were sampled (14,808 households from Mainland Tanzania and 1,416 from Zanzibar).
Computer Assisted Personal Interview [capi]
The 2022/23 Annual Agricultural Survey used two main questionnaires consolidated into a single questionnaire within the CAPIthe CAPI System, Smallholder Farmers and Large-Scale Farms Questionnaire. Smallholder Farmers questionnaire captured information at household level while Large Scale Farms questionnaire captured information at establishment/holding level. These questionnaires were used for data collection that covered core agricultural activities (crops, livestock, and fish farming) in both short and long rainy seasons. The 2022/23 AASS questionnaire covered 23 sections which are:
COVER; The cover page included the title of the survey, survey year (2022/23), general instructions for both the interviewers and respondents. It sets the context for the survey and also it shows the survey covers the United Republic of Tanzania.
SCREENING: Included preliminary questions designed to determine if the respondent or household is eligible to participate in the survey. It checks for core criteria such as involvement in agricultural activities.
START INTERVIEW: The introductory section where basic details about the interview are recorded, such as the date, location, and interviewer’s information. This helped in the identification and tracking of the interview process.
HOUSEHOLD MEMBERS AND HOLDER IDENTIFICATION: Collected information about all household members, including age, gender, relationship to the household head, and the identification of the main agricultural holder. This section helped in understanding the demographic composition of the agriculture household.
FIELD ROSTER: Provided the details of the various agricultural fields operated by the agriculture household. Information includes the size, location, and identification of each field. This section provided a comprehensive overview of the land resources available to the household.
VULI PLOT ROSTER: Focused on plots used during the Vuli season (short rainy season). It includes details on the crops planted, plot sizes, and any specific characteristics of these plots. This helps in assessing seasonal agricultural activities.
VULI CROP ROSTER: Provided detailed information on the types of crops grown during the Vuli season, including quantities produced and intended use (e.g., consumption, sale, storage). This section captures the output of short rainy season farming.
MASIKA PLOT ROSTER: Similar to Section 4 but focuses on the Masika season (long rainy season). It collects data on plot usage, crop types, and sizes. This helps in understanding the agricultural practices during the primary growing season.
MASIKA CROP ROSTER: Provided detailed information on crops grown during the Masika season, including production quantities and uses. This section captures the output from the main agricultural season.
PERMANENT CROP PRODUCTION: Focuses on perennial or permanent crops (e.g., fruit trees, tea, coffee). It includes data on the types of permanent crops, area under cultivation, production volumes, and uses. This section tracks long-term agricultural investments.
CROP HARVEST USE: In this, provided the details how harvested crops are utilized within the household. Categories included consumption, sale, storage, and other uses. This section helps in understanding food security and market engagement.
SEED AND SEEDLINGS ACQUISITION: Collected information on how the agriculture household acquires seeds and seedlings, including sources (e.g., purchased, saved, gifted) and types (local, improved, etc). This section provided insights into input supply chains and planting decisions based on the households, or head.
INPUT USE AND ACQUISITION (FERTILIZERS AND PESTICIDES): It provided the details of the use and acquisition of agricultural inputs such as fertilizers and pesticides. It included information on quantities used, sources, and types of inputs. This section assessed the input dependency and agricultural practices.
LIVESTOCK IN STOCK AND CHANGE IN STOCK: The questionnaire recorded the
This study presents 1860 data on population and farm production in 5,228 farms located in 405 major cotton-producing counties in the South. The data was compiled from the agriculture, slave, and population schedules of the 1860 United States manuscript Census. For each farm, variables describing farm land, machinery, crops, and livestock are included, as well as production figures for specific crops and types of livestock on the farm. The population variables tabulate the free and slave residents of each farm by sex, race, and age in five- or ten-year categories. This data set contains information of farm production and population residing on farms in the major cotton producing counties of the southern United States. Variables include: county code number; soil type in county; no. farms sampled in county; detailed commodity production of each farm, including acreage, value of farm and machinery, numbers of head of livestock, value of livestock, production of field crops, value of orchard products, wine production, value of market garden products, production of dairy products, production of 'textile' crops, value of home manufactures, value of animals slaughtered; numbers of farm residents by age categories, sex, and status, including free, slave, farm laborer, overseer, non-farm worker.
This EnviroAtlas dataset summarizes by county the number of farm operations that sell calves and the number of heads they sell. The data come from the Census of Agriculture, which is administered every five years by the US Department of Agriculture (USDA), and include the years 2002, 2007, 2012, and 2017. Operations are categorized into small, medium, or large, based on how many heads they sell. For each county and Census year, the dataset reports the number of farm operations that sell calves, the number of heads they sold throughout the Census year, and a breakdown of the operations into small, medium, and large. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The European Union spends a large fraction of its budget on the Common Agricultural Policy (CAP). Among these spendings are direct payments, which are mainly aimed to provide a basic income for farmers decoupled from production. The rest of the CAP budget is spent for market related expenditures and rural development.
The processes that govern the distribution of these funds are subject to complex regulations captured in EU and national law. The member states are required to operate an Integrated Administration and Control System (IACS), which includes IT systems to support the complex processes of subsidy distribution.
The process considered in this dataset covers the handling of applications for EU direct payments for German farmers from the European Agricultural Guarantee Fund. The process repeats every year with minor changes due to changes in EU regulations.
The dataset is extracted from the systems of data experts, Germany. Their tool profil c/s supports these processes at the level of federal ministries of agriculture and local departments.
The workflows in profil c/s can be understood in terms of documents, where each document has a state that allows for certain actions. These actions can be executed manually at any point in time through document specific tools or they can be scheduled automatically. The latter may be either explicitly stated in the log or implicitly apparent if a large number of actions is performed by the same user at around the same time (batch processing).
In total, the event log contains 2,514,266 events for 43,809 applications over a period of three years. The shortest case contains 24 events, the longest 2973 and on average there are 57 events per case referring to 14 activities.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Agricultural Procurement: Wheat: Gujarat data was reported at 10.000 Ton th in 2024. This records an increase from the previous number of 0.000 Ton th for 2023. Agricultural Procurement: Wheat: Gujarat data is updated yearly, averaging 10.000 Ton th from Mar 1999 (Median) to 2024, with 17 observations. The data reached an all-time high of 415.000 Ton th in 2009 and a record low of 0.000 Ton th in 2023. Agricultural Procurement: Wheat: Gujarat data remains active status in CEIC and is reported by Directorate of Economics and Statistics, Department of Agriculture and Farmers Welfare. The data is categorized under India Premium Database’s Agriculture Sector – Table IN.RII012: Agricultural Procurement: Wheat: by Major States.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Agricultural Production: Rice: Goa data was reported at 90.400 Ton th in 2020. This records a decrease from the previous number of 98.800 Ton th for 2019. Agricultural Production: Rice: Goa data is updated yearly, averaging 126.500 Ton th from Mar 1981 (Median) to 2020, with 40 observations. The data reached an all-time high of 208.900 Ton th in 2000 and a record low of 72.700 Ton th in 1987. Agricultural Production: Rice: Goa data remains active status in CEIC and is reported by Directorate of Economics and Statistics, Department of Agriculture and Farmers Welfare. The data is categorized under Global Database’s India – Table IN.RIB008: Production of Foodgrains in Major States: Rice.
This spatial data set was created by the U.S. Geological Survey (USGS) to represent the amount of nitrogen generated at confined cattle operations that was applied to nearby farm land in the Pacific Northwest region of the United States (Hydro Region 17; Major River Basin 7 (MRB7)) during 2002.
This spatial data set was created by the U.S. Geological Survey (USGS) to represent the amount of fertilizer nitrogen and phosphorus that was applied to farm and nonfarm land in the Pacific Northwest region of the United States (Hydro Region 17; Major River Basin 7 (MRB7)) during 2002 within each incremental watershed delineated in the NHDPlus v2 dataset.
This EnviroAtlas dataset summarizes by county the number of farm operations that sell broiler chickens and the number of heads they sell. The data come from the Census of Agriculture, which is administered every five years by the US Department of Agriculture (USDA), and include the years 2002, 2007, 2012, and 2017. Operations are categorized into small, medium, or large, based on how many heads they sell. For each county and Census year, the dataset reports the number of farm operations that sell broiler chickens, the number of heads they sold throughout the Census year, and a breakdown of the operations into small, medium, and large. This dataset was produced the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Agricultural Production: Foodgrains: West Bengal data was reported at 18.770 Ton mn in 2023. This records a decrease from the previous number of 20.310 Ton mn for 2022. Agricultural Production: Foodgrains: West Bengal data is updated yearly, averaging 14.916 Ton mn from Mar 1981 (Median) to 2023, with 43 observations. The data reached an all-time high of 20.310 Ton mn in 2022 and a record low of 5.852 Ton mn in 1983. Agricultural Production: Foodgrains: West Bengal data remains active status in CEIC and is reported by Directorate of Economics and Statistics, Department of Agriculture and Farmers Welfare. The data is categorized under Global Database’s India – Table IN.RIB007: Production of Foodgrains in Major States.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Area: Horticulture Crops: Fruits: Jack Fruit: Kerala data was reported at 85.312 ha th in 2024. This records a decrease from the previous number of 89.663 ha th for 2023. Area: Horticulture Crops: Fruits: Jack Fruit: Kerala data is updated yearly, averaging 89.663 ha th from Mar 2014 (Median) to 2024, with 11 observations. The data reached an all-time high of 93.209 ha th in 2020 and a record low of 38.836 ha th in 2015. Area: Horticulture Crops: Fruits: Jack Fruit: Kerala data remains active status in CEIC and is reported by Department of Agriculture & Farmers Welfare. The data is categorized under India Premium Database’s Agriculture Sector – Table IN.RIN018: Area of Horticulture Crops in Major States: Fruits: Jack Fruit.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
State fact sheets provide information on population, income, education, employment, federal funds, organic agriculture, farm characteristics, farm financial indicators, top commodities, and exports, for each State in the United States. Links to county-level data are included when available.This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: Query tool For complete information, please visit https://data.gov.