https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Data from this dataset can be downloaded/accessed through this dataset page and Kaggle's API.
Severe weather is defined as a destructive storm or weather. It is usually applied to local, intense, often damaging storms such as thunderstorms, hail storms, and tornadoes, but it can also describe more widespread events such as tropical systems, blizzards, nor'easters, and derechos.
The Severe Weather Data Inventory (SWDI) is an integrated database of severe weather records for the United States. The records in SWDI come from a variety of sources in the NCDC archive. SWDI provides the ability to search through all of these data to find records covering a particular time period and geographic region, and to download the results of your search in a variety of formats. The formats currently supported are Shapefile (for GIS), KMZ (for Google Earth), CSV (comma-separated), and XML.
The current data layers in SWDI are:
- Filtered Storm Cells (Max Reflectivity >= 45 dBZ) from NEXRAD (Level-III Storm Structure Product)
- All Storm Cells from NEXRAD (Level-III Storm Structure Product)
- Filtered Hail Signatures (Max Size > 0 and Probability = 100%) from NEXRAD (Level-III Hail Product)
- All Hail Signatures from NEXRAD (Level-III Hail Product)
- Mesocyclone Signatures from NEXRAD (Level-III Meso Product)
- Digital Mesocyclone Detection Algorithm from NEXRAD (Level-III MDA Product)
- Tornado Signatures from NEXRAD (Level-III TVS Product)
- Preliminary Local Storm Reports from the NOAA National Weather Service
- Lightning Strikes from Vaisala NLDN
Disclaimer:
SWDI provides a uniform way to access data from a variety of sources, but it does not provide any additional quality control beyond the processing which took place when the data were archived. The data sources in SWDI will not provide complete severe weather coverage of a geographic region or time period, due to a number of factors (eg, reports for a location or time period not provided to NOAA). The absence of SWDI data for a particular location and time should not be interpreted as an indication that no severe weather occurred at that time and location. Furthermore, much of the data in SWDI is automatically derived from radar data and represents probable conditions for an event, rather than a confirmed occurrence.
Dataset Source: NOAA. This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source — http://www.data.gov/privacy-policy#data_policy — and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
Cover photo by NASA on Unsplash
Unsplash Images are distributed under a unique Unsplash License.
The National Lightning Detection Network, NLDN, consists of over 100 remote, ground-based sensing stations located across the United States that instantaneously detect the electromagnetic signals given off when lightning strikes the earth's surface. These remote sensors send the raw data via a satellite-based communications network to the Network Control Center operated by Vaisala Inc. in Tucson, Arizona. Within seconds of a lightning strike, the NCC's central analyzers process information on the location, time, polarity, and communicated to users across the country.
More information:
http://thunderstorm.vaisala.com
Tornado TracksThis feature layer, utilizing data from the National Oceanic and Atmospheric Administration (NOAA), displays tornadoes in the United States, Puerto Rico and U.S. Virgin Islands between 1950 and 2024. A tornado track shows the route of a tornado. Per NOAA, "A tornado is a narrow, violently rotating column of air that extends from a thunderstorm to the ground. Because wind is invisible, it is hard to see a tornado unless it forms a condensation funnel made up of water droplets, dust and debris. Tornadoes can be among the most violent phenomena of all atmospheric storms we experience. The most destructive tornadoes occur from supercells, which are rotating thunderstorms with a well-defined radar circulation called a mesocyclone. (Supercells can also produce damaging hail, severe non-tornadic winds, frequent lightning, and flash floods.)"EF-5 Tornado Track (May 3, 1999) near Oklahoma City, OklahomaData currency: December 30, 2024Data source: Storm Prediction CenterData modifications: Added field "Date_Calc"For more information: Severe Weather 101 - Tornadoes; NSSL Research: TornadoesSupport documentation: SPC Tornado, Hail, and Wind Database Format SpecificationFor feedback, please contact: ArcGIScomNationalMaps@esri.comNational Oceanic and Atmospheric AdministrationPer NOAA, its mission is "To understand and predict changes in climate, weather, ocean, and coasts, to share that knowledge and information with others, and to conserve and manage coastal and marine ecosystems and resources."
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These rasters depict the predicted human- and lightning-caused ignition probability for the state of California. Ignition is regulated by complex interactions among climate, fuel, topography, and humans. Considerable studies have advanced our knowledge on patterns and drivers of total areas burned and fire frequency, but much is less known about wildfire ignition. To better design effective fire prevention and management strategies, it is critical to understand contemporary ignition patterns and predict the probability of wildfire ignitions from different sources. UC Davis researchers modeled and analyzed human- and lightning-caused ignition probability across the whole state and sub-ecoregions of California, USA.
Findings reinforce the importance of varying humans vs biophysical controls in different fire regimes, highlighting the need for locally optimized land management to reduce ignition probability. Based on the most complete ignition database available, researchers developed maximum entropy models to predict the spatial distribution of long-term human- and lightning-caused ignition probability at 1 km and investigated how a set of biophysical and anthropogenic variables controlled their spatial variation in California and across its sub-ecoregions. Results showed that the integrated models with both biophysical and anthropogenic drivers predicted well the spatial patterns of both human- and lightning-caused ignitions in statewide and sub-ecoregions of California. Model diagnostics of the relative contribution and marginalized response curves showed that precipitation, slope, human settlement, and road network were the most important variables for shaping human-caused ignition probability, while snow water equivalent, lightning density, and fuel amount were the most important variables controlling the spatial patterns of lightning-caused ignition probability. The relative importance of biophysical and anthropogenic predictors differed across various sub-ecoregions of California.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Baltimore radar rainfall dataset was developed from a multi-sensor analysis combining radar rainfall estimates from the Sterling, VA WSR88D radar (KLWX) with measurements from a collection of ground based rain gages. The archived data have a 15-minute time resolution and a grid resolution of 0.01 degree latitude/longitude (approximately 1 km x 1 km); 15-minute rainfall accumulations for each grid are in mm. The dataset spans 22 years, 2000-2021, and covers an area of approximately 4,900 km^2 (70 by 70 grids, each with approximate area of 1 km^2) surrounding the Baltimore, MD metropolitan area (Figure 1). The rainfall data cover the six months from April to September of each year. This is the period with most intense sub-daily rainfall and the period for which radar measurements are most accurate. Figure 1 illustrates the climatological analyses of mean annual frequency of days with at least 1 hour rainfall exceeding 25 mm. The striking spatial variability of convective rainfall is illustrated in Figure 2 by the April-September climatology of annual lightning strikes.
As with many long-term environmental data sets, sensor technology has changed during the time period of the archive. The Sterling, VA WSR88D radar underwent a hardware upgrade from single polarization to dual polarization in 2012. Prior to the upgrade, rainfall was estimated using a conventional radar-reflectivity algorithm (HydroNEXRAD) which converts reflectivity measurements in polar coordinates from the lowest sweep to rainfall estimates on a 0.01 degree latitude-longitude grid at the surface (see Seo et al. 2010 and Smith et al. 2012 for details on the algorithm). The polarimetric upgrade introduced new measurements into the radar-rainfall algorithm. In addition to reflectivity, the operational rainfall product, Digital Precipitation Rate (DPR), directly uses differential reflectivity and specific differential phase shift measurements to estimate rainfall (https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00708; see also Giangrande and Ryzhkov 2008). Details of the algorithm structure and parameterization for the DPR radar-rainfall estimates have been modified during the 10-year period of the data set.
A storm-based (daily) multiplicative mean field bias has been applied to both datasets. The mean field bias is computed as the ratio of daily rain gage rainfall at a point to daily radar rainfall for the bin that contains the gage. The rain gage dataset is compiled from rain gages in the Baltimore metropolitan region and surrounding areas and includes gages acquired from both Baltimore City and Baltimore County, and the Global Historical Climatology Network daily (GHCNd). Mean field bias improves rainfall estimates and diminishes the impacts of changing measurement procedures.
The dataset has been archived in 2 formats: netCDF gridded rainfall, 1 file for each 15-minute time period, and csv or excel format point rainfall (1 point at the center of each grid) in a timeseries format with 1 file per calendar month covering the entire 70x70 domain. The csv files are in folders organized by calendar year. The first five columns in each file represent year, month, day, hour, and minute and can be combined to generate a unique date-time value for each time step. Each additional column is a complete time series for the month and represents data from one of the 1-km2 grid cells in the original data set.
The latitude and longitude coordinates for each pixel in the grid are provided. The latitude and longitude represent the centroid of the cell, which is square when represented in latitude and longitude coordinates and rectangular when represented in other distance-based coordinate systems such as State Plane or Universal Transverse Mercator. There are 4900 pixels in the domain. In order to visualize the data using GIS or other software, the user needs to associate each column in the annual rainfall file with the latitude and longitude values for that grid cell number.
These data may be subject to modest revision or reformatting in future versions. The current version is version 2.0 and is being offered to users who wish to explore the data. We will revise this document as needed.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Geostationary Operational Environmental Satellite (GOES) Radar Estimation via Machine Learning to Inform NWP (GREMLIN) is a machine learning model that produces composite radar reflectivity using data from the Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM). GREMLIN is useful for observing severe weather and providing information during convective initialization especially over regions without ground-based radars. Previous research found good skill compared to ground-based radar products, however, the analysis was done over a dataset with similar climatic and precipitation characteristics as the training dataset: warm season Eastern CONUS in 2019. This study expands the analysis to the entire contiguous United States, during all seasons, and covering the period 2020-2022. Several validation metrics including root-mean-square difference (RMSD), probability of detection (POD), and false alarm ratio (FAR) are plotted over CONUS by season, day-of-year, and time-of-day, and the regional and temporal variations are examined. GREMLIN skill is highest in summer and spring, with lower skill in winter due to cold surfaces frequently mistaken as precipitating clouds. In summer, diurnal patterns of RMSD in different longitude regions follow diurnal patterns of precipitation occurrence. GREMLIN’s accuracy is the best over the Central to Eastern United States where it has been trained. Over New England, GREMLIN POD is lower due to different brightness temperature distributions and low frequency of lightning compared to the training data. Over Florida, GREMLIN FAR is higher due to high frequency of lightning. Overall, GREMLIN has reliable skill over CONUS in spring, summer, and fall, while winter needs more improvements. Methods The methodology is described in detail by Hilburn et al. (2021). The ABI, GLM, and MRMS data sets were resampled to a common 3 km grid. A cloud height of 10 km was used for removing parallax displacements. Satellite and radar samples were matched in time with a maximum time difference of 2.5 minutes. GLM lightning groups were accumulated over 15-minute time periods.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset contains over 18,000 images of homes damaged by wildfire between 2020 and 2022 in California, USA, captured by the California Department of Forestry and Fire Protection (Cal Fire) during the damage assessment process. The dataset spans across more than 18 wildfire events, including the 2020 August Complex Fire, the first recorded "gigafire" event in California where the area burned exceeded 1 million acres. Each image, corresponding to a built structure, is classified by government damage assessors into 6 different categories: No Damage, Affected (1-9%), Minor (10-25%), Major (26-50%), Destroyed (>50%), and Inaccessible (image taken but not assessment made). While over 57,000 structures were evaluated during the damage assessment process, only about 18,000 contains images; additional data about the structures, such as the street address or structure materials, for both those with and without corresponding images can be accessed in the "Additional Attribute Data" file.
The 18 wildfire events captured in the dataset are:
[AUG] August Complex (2020)
[BEA] Bear Fire (2020)
[BEU] BEU Lightning Complex Fire (2020)
[CAL] Caldor Fire (2021)
[CAS] Castle Fire (2020)
[CRE] Creek Fire (2020)
[DIN] DINS Statewide (Collection of Smaller Fires, 2021)
[DIX[ Dixie Fire (2021)
[FAI] Fairview Fire (2022)
[FOR] Fork Fire (2022)
[GLA] Glass Fire (2020)
[MIL] Mill Mountain Fire (2022)
[MON] Monument Fire (2021)
[MOS] Mosquito Fire (2022)
[POST] Post Fire (2020)
[SCU] SCU Complex Fire (2020)
[VAL] Valley Fire (2020)
[ZOG] Zogg Fire (2020)
The author retrieved the data, originally published as GIS features layers, from from the publicly accessible CAL FIRE Hub, then subsequently processed it into image and tabular formats. The author collaborated with Cal Fire in working with the data, and has received explicit permission for republication.
Version InformationThe data is updated annually with fire perimeters from the previous calendar year.Firep23_1 was released in May 2024. Two hundred eighty four fires from the 2023 fire season were added to the database (21 from BLM, 102 from CAL FIRE, 72 from Contract Counties, 19 from LRA, 9 from NPS, 57 from USFS and 4 from USFW). The 2020 Cottonwood fire, 2021 Lone Rock and Union fires, as well as the 2022 Lost Lake fire were added. USFW submitted a higher accuracy perimeter to replace the 2022 River perimeter. A duplicate 2020 Erbes fire was removed. Additionally, 48 perimeters were digitized from an historical map included in a publication from Weeks, d. et al. The Utilization of El Dorado County Land. May 1934, Bulletin 572. University of California, Berkeley. There were 2,132 perimeters that received updated attribution, the bulk of which had IRWIN IDs added. The following fires were identified as meeting our collection criteria, but are not included in this version and will hopefully be added in the next update: Big Hill #2 (2023-CAHIA-001020). YEAR_ field changed to a short integer type. San Diego CAL FIRE UNIT_ID changed to SDU (the former code MVU is maintained in the UNIT_ID domains). COMPLEX_INCNUM renamed to COMPLEX_ID and is in process of transitioning from local incident number to the complex IRWIN ID. Perimeters managed in a complex in 2023 are added with the complex IRWIN ID. Those previously added will transition to complex IRWIN IDs in a future update.If you would like a full briefing on these adjustments, please contact the data steward, Kim Wallin (kimberly.wallin@fire.ca.gov), CAL FIRE FRAP._CAL FIRE (including contract counties), USDA Forest Service Region 5, USDI Bureau of Land Management & National Park Service, and other agencies jointly maintain a fire perimeter GIS layer for public and private lands throughout the state. The data covers fires back to 1878. Current criteria for data collection are as follows:CAL FIRE (including contract counties) submit perimeters ≥10 acres in timber, ≥50 acres in brush, or ≥300 acres in grass, and/or ≥3 damaged/ destroyed residential or commercial structures, and/or caused ≥1 fatality.All cooperating agencies submit perimeters ≥10 acres._Discrepancies between wildfire perimeter data and CAL FIRE Redbook Large Damaging FiresLarge Damaging fires in California were first defined by the CAL FIRE Redbook, and has changed over time, and differs from the definition initially used to define wildfires required to be submitted for the initial compilation of this digital fire perimeter data. In contrast, the definition of fires whose perimeter should be collected has changed once in the approximately 30 years the data has been in existence. Below are descriptions of changes in data collection criteria used when compiling these two datasets. To facilitate comparison, this metadata includes a summary, by year, of fires in the Redbook, that do not appear in this fire perimeter dataset. It is followed by an enumeration of each “Redbook” fire missing from the spatial data. Wildfire Perimeter criteria:~1991: 10 acres timber, 30 acres brush, 300 acres grass, damages or destroys three residence or one commercial structure or does $300,000 worth of damage 2002: 10 acres timber, 50 acres brush, 300 acres grass, damages or destroys three or more structures, or does $300,000 worth of damage~2010: 10 acres timber, 30 acres brush, 300 acres grass, damages or destroys three or more structures (doesn’t include out building, sheds, chicken coops, etc.)Large and Damaging Redbook Fire data criteria:1979: Fires of a minimum of 300 acres that burn at least: 30 acres timber or 300 acres brush, or 1500 acres woodland or grass1981: 1979 criteria plus fires that took ,3000 hours of California Department of Forestry and Fire Protection personnel time to suppress1992: 1981 criteria plus 1500 acres agricultural products, or destroys three residence or one commercial structure or does $300,000 damage1993: 1992 criteria but “three or more structures destroyed” replaces “destroys three residence or one commercial structure” and the 3,000 hours of California Department of Forestry personnel time to suppress is removed2006: 300 acres or larger and burned at least: 30 acres of timber, or 300 acres of brush, or 1,500 acres of woodland, or 1,500 acres of grass, or 1,500 acres of agricultural products, or 3 or more structures destroyed, or $300,000 or more dollar damage loss.2008: 300 acres and largerYear# of Missing Large and Damaging Redbook Fires197922198013198115198261983319842019855219861219875619882319898199091991219921619931719942219959199615199791998101999720004200152002162003520042200512006112007320084320093201022011020124201322014720151020162201711201862019220203202102022020230Total488Enumeration of fires in the Redbook that are missing from Fire Perimeter data. Three letter unit code follows fire name.1979-Sylvandale (HUU), Kiefer (AEU), Taylor(TUU), Parker#2(TCU), PGE#10, Crocker(SLU), Silver Spur (SLU), Parkhill (SLU), Tar Springs #2 (SLU), Langdon (SCU), Truelson (RRU), Bautista (RRU), Crocker (SLU), Spanish Ranch (SLU), Parkhill (SLU), Oak Springs(BDU), Ruddell (BDF), Santa Ana (BDU), Asst. #61 (MVU), Bernardo (MVU), Otay #20 1980– Lightning series (SKU), Lavida (RRU), Mission Creek (RRU), Horse (RRU), Providence (RRU), Almond (BDU), Dam (BDU), Jones (BDU), Sycamore (BDU), Lightning (MVU), Assist 73, 85, 138 (MVU)1981– Basalt (LNU), Lightning #25(LMU), Likely (MNF), USFS#5 (SNF), Round Valley (TUU), St. Elmo (KRN), Buchanan (TCU), Murietta (RRU), Goetz (RRU), Morongo #29 (RRU), Rancho (RRU), Euclid (BDU), Oat Mt. (LAC & VNC), Outside Origin #1 (MVU), Moreno (MVU)1982- Duzen (SRF), Rave (LMU), Sheep’s trail (KRN), Jury (KRN), Village (RRU), Yuma (BDF)1983- Lightning #4 (FKU), Kern Co. #13, #18 (KRN)1984-Bidwell (BTU), BLM D 284,337, PNF #115, Mill Creek (TGU), China hat (MMU), fey ranch, Kern Co #10, 25,26,27, Woodrow (KRN), Salt springs, Quartz (TCU), Bonanza (BEU), Pasquel (SBC), Orco asst. (ORC), Canel (local), Rattlesnake (BDF)1985- Hidden Valley, Magic (LNU), Bald Mt. (LNU), Iron Peak (MEU), Murrer (LMU), Rock Creek (BTU), USFS #29, 33, Bluenose, Amador, 8 mile (AEU), Backbone, Panoche, Los Gatos series, Panoche (FKU), Stan #7, Falls #2 (MMU), USFS #5 (TUU), Grizzley, Gann (TCU), Bumb, Piney Creek, HUNTER LIGGETT ASST#2, Pine, Lowes, Seco, Gorda-rat, Cherry (BEU), Las pilitas, Hwy 58 #2 (SLO), Lexington, Finley (SCU), Onions, Owens (BDU), Cabazon, Gavalin, Orco, Skinner, Shell, Pala (RRU), South Mt., Wheeler, Black Mt., Ferndale, (VNC), Archibald, Parsons, Pioneer (BDU), Decker, Gleason(LAC), Gopher, Roblar, Assist #38 (MVU)1986– Knopki (SRF), USFS #10 (NEU), Galvin (RRU), Powerline (RRU), Scout, Inscription (BDU), Intake (BDF), Assist #42 (MVU), Lightning series (FKU), Yosemite #1 (YNP), USFS Asst. (BEU), Dutch Kern #30 (KRN)1987- Peach (RRU), Ave 32 (TUU), Conover (RRU), Eagle #1 (LNU), State 767 aka Bull (RRU), Denny (TUU), Dog Bar (NEU), Crank (LMU), White Deer (FKU), Briceburg (LMU), Post (RRU), Antelope (RRU), Cougar-I (SKU), Pilitas (SLU) Freaner (SHU), Fouts Complex (LNU), Slides (TGU), French (BTU), Clark (PNF), Fay/Top (SQF), Under, Flume, Bear Wallow, Gulch, Bear-1, Trinity, Jessie, friendly, Cold, Tule, Strause, China/Chance, Bear, Backbone, Doe, (SHF) Travis Complex, Blake, Longwood (SRF), River-II, Jarrell, Stanislaus Complex 14k (STF), Big, Palmer, Indian (TNF) Branham (BLM), Paul, Snag (NPS), Sycamore, Trail, Stallion Spring, Middle (KRN), SLU-864 1988- Hwy 175 (LNU), Rumsey (LNU), Shell Creek (MEU), PG&E #19 (LNU), Fields (BTU), BLM 4516, 417 (LMU), Campbell (LNF), Burney (SHF), USFS #41 (SHF), Trinity (USFS #32), State #837 (RRU), State (RRU), State (350 acres), RRU), State #1807, Orange Co. Asst (RRU), State #1825 (RRU), State #2025, Spoor (BDU), State (MVU), Tonzi (AEU), Kern co #7,9 (KRN), Stent (TCU), 1989– Rock (Plumas), Feather (LMU), Olivas (BDU), State 1116 (RRU), Concorida (RRU), Prado (RRU), Black Mt. (MVU), Vail (CNF)1990– Shipman (HUU), Lightning 379 (LMU), Mud, Dye (TGU), State 914 (RRU), Shultz (Yorba) (BDU), Bingo Rincon #3 (MVU), Dehesa #2 (MVU), SLU 1626 (SLU)1991- Church (HUU), Kutras (SHF)1992– Lincoln, Fawn (NEU), Clover, fountain (SHU), state, state 891, state, state (RRU), Aberdeen (BDU), Wildcat, Rincon (MVU), Cleveland (AEU), Dry Creek (MMU), Arroyo Seco, Slick Rock (BEU), STF #135 (TCU)1993– Hoisington (HUU), PG&E #27 (with an undetermined cause, lol), Hall (TGU), state, assist, local (RRU), Stoddard, Opal Mt., Mill Creek (BDU), Otay #18, Assist/ Old coach (MVU), Eagle (CNF), Chevron USA, Sycamore (FKU), Guerrero, Duck1994– Schindel Escape (SHU), blank (PNF), lightning #58 (LMU), Bridge (NEU), Barkley (BTU), Lightning #66 (LMU), Local (RRU), Assist #22 & #79 (SLU), Branch (SLO), Piute (BDU), Assist/ Opal#2 (BDU), Local, State, State (RRU), Gilman fire 7/24 (RRU), Highway #74 (RRU), San Felipe, Assist #42, Scissors #2 (MVU), Assist/ Opal#2 (BDU), Complex (BDF), Spanish (SBC)1995-State 1983 acres, Lost Lake, State # 1030, State (1335 acres), State (5000 acres), Jenny, City (BDU), Marron #4, Asist #51 (SLO/VNC)1996- Modoc NF 707 (Ambrose), Borrego (MVU), Assist #16 (SLU), Deep Creek (BDU), Weber (BDU), State (Wesley) 500 acres (RRU), Weaver (MMU), Wasioja (SBC/LPF), Gale (FKU), FKU 15832 (FKU), State (Wesley) 500 acres, Cabazon (RRU), State Assist (aka Bee) (RRU), Borrego, Otay #269 (MVU), Slaughter house (MVU), Oak Flat (TUU)1997- Lightning #70 (LMU), Jackrabbit (RRU), Fernandez (TUU), Assist 84 (Military AFV) (SLU), Metz #4 (BEU), Copperhead (BEU), Millstream, Correia (MMU), Fernandez (TUU)1998- Worden, Swift, PG&E 39 (MMU), Chariot, Featherstone, Wildcat, Emery, Deluz (MVU), Cajalco Santiago (RRU)1999- Musty #2,3 (BTU), Border # 95 (MVU), Andrews,
Version Information:The data is updated yearly with fire perimeters from the previous fire season.Firep21_2 was released in October 2022. The fields COMPLEX_NAME and COMPLEX_INCNUM were added to the dataset; historical complex fires were updated as such to the best of current ability. COMPLEX_NAME is for fires that were initially individual fires (with their own name) and then became part of a complex and thus were given a new name. COMPLEX_INCNUM was created for the same reason as COMPLEX_NAME. Ten fires were added (5 CAL FIRE, 5 USDA Forest Service). The 2008 Paradise Fire perimeter was spatially adjusted to more accurately account for its location. Six perimeters were removed, becoming a complex. The 1996 Columbia Hill and Shields Camp perimeters were removed due to confirmation of their status of prescribed burn. The 2014 Coffee fire was replaced by a more accurate polygon. Thirty-two records' attributes were updated, mostly CAUSE data from 2019 and 2020. The following fires were identified as meeting our collection criteria for 2021 fires but are not included in this version and will hopefully be added in the next update: Hartman, Lone Rock, Union, and Nelson. If you would like a full briefing on these adjustments, please contact CAL FIRE FRAP._CAL FIRE (including contract counties), USDA Forest Service Region 5, USDI Bureau of Land Management & National Park Service, and other agencies jointly maintain a comprehensive fire perimeter GIS layer for public and private lands throughout the state. The data covers fires back to 1878. Current criteria for data collection are as follows:CAL FIRE (including contract counties) submit perimeters ≥10 acres in timber, ≥50 acres in brush, or ≥300 acres in grass, and/or ≥3 damaged/ destroyed residential or commercial structures, and/or caused ≥1 fatality.All cooperating agencies submit perimeters ≥10 acres. _Discrepancies between wildfire perimeter data and Redbook Large Damaging FiresLarge Damaging fires in California were first defined by the 1979 Redbook. The definition of “Large Damaging” fires used by CAL FIRE has changed over time and differs from the definition initially used when compiling this digital Fire Perimeter data. In contrast, the definition of fires whose perimeter should be collected has changed once in the approximately 30 years the data has been in existence. Below are descriptions of changes in data collection criteria used when compiling these two datasets. To facilitate comparison, this meta data includes a summary, by year of fires in the Redbook that do not appear in this fire perimeter dataset. It is followed by an enumeration of each “Redbook” fire missing from the spatial data. Wildfire Perimeter criteria~1991: 10 acres timber, 30 acres brush, 300 acres grass, damages or destroys three residence or one commercial structure or $300,000 damage ~2010: 1991 criteria but the monetary criteria, the differentiation of structure type and the use of damages were all removedRedbook Fire data criteria1979 - Fires of a minimum of 300 acres that burn at least: 30 acres timber, 300 acres brush, 1500 acres woodland or grass1981 - 1979 criteria plus fires that took 3000 hrs of CDF personnel time to suppress1992 - 1981 criteria plus 1500 acres ag products, or destroys three residence or one commercial structure or $300,000 damage1993 - 1992 criteria but “three or more structures destroyed” replaces “destroys three residence or one commercial structure” and the 3000 hrs of CDF personnel time to suppress is removed2008 - simply 300 acres and larger--------------------------------Year and Number of missing Large Damaging Fires for that yearYear# of Missing “Redbook” Fires19792219801319811519826198331984201985521986121987561988231989819909199121992161993171994221995919961519979199810199972000420015200216200352004220051200611200732008432009320102201102012420132201472015102016220171120186Total483---------------------------------Enumeration of fires in the Redbook that are missing from Fire Perimeter data1979-Sylvandale (HUU), Kiefer (AEU), Taylor(TUU), Parker#2(TCU), PGE#10, Crocker(SLU), Silver Spur (SLU), Parkhill (SLU), Tar Springs #2 (SLU), Langdon (SCU), Truelson (RRU), Bautista (RRU), Crocker (SLU), Spanish Ranch (SLU), Parkhill (SLU), Oak Springs(BDU), Ruddell (BDF), Santa Ana (BDU), Asst. #61 (MVU), Bernardo (MVU), Otay #20 1980– Lightning series (SKU), Lavida (RRU), Mission Creek (RRU), Horse (RRU), Providence (RRU), Almond (BDU), Dam (BDU), Jones (BDU), Sycamore (BDU), Lightning (MVU), Assist 73, 85, 138 (MVU)1981– Basalt (LNU), Lightning #25(LMU), Likely (MNF), USFS#5 (SNF), Round Valley (TUU), St. Elmo (KRN), Buchanan (TCU), Murietta (RRU), Goetz (RRU), Morongo #29 (RRU), Rancho (RRU), Euclid (BDU), Oat Mt. (LAC & VNC), Outside Origin #1 (MVU), Moreno (MVU)1982- Duzen (SRF), Rave (LMU), Sheep’s trail (KRN), Jury (KRN), Village (RRU), Yuma (BDF)1983- Lightning #4 (FKU), Kern Co. #13, #18 (KRN)1984-Bidwell (BTU), BLM D 284,337, PNF #115, Mill Creek (TGU), China hat (MMU), fey ranch, Kern Co #10, 25,26,27, Woodrow (KRN), Salt springs, Quartz (TCU), Bonanza (BEU), Pasquel (SBC), Orco asst. (ORC), Canel (local), Rattlesnake (BDF)1985- Hidden Valley, Magic (LNU), Bald Mt. (LNU), Iron Peak (MEU), Murrer (LMU), Rock Creek (BTU), USFS #29, 33, Bluenose, Amador, 8 mile (AEU), Backbone, Panoche, Los Gatos series, Panoche (FKU), Stan #7, Falls #2 (MMU), USFS #5 (TUU), Grizzley, Gann (TCU), Bumb, Piney Creek, HUNTER LIGGETT ASST#2, Pine, Lowes, Seco, Gorda-rat, Cherry (BEU), Las pilitas, Hwy 58 #2 (SLO), Lexington, Finley (SCU), Onions, Owens (BDU), Cabazon, Gavalin, Orco, Skinner, Shell, Pala (RRU), South Mt., Wheeler, Black Mt., Ferndale, (VNC), Archibald, Parsons, Pioneer (BDU), Decker, Gleason(LAC), Gopher, Roblar, Assist #38 (MVU)1986– Knopki (SRF), USFS #10 (NEU), Galvin (RRU), Powerline (RRU), Scout, Inscription (BDU), Intake (BDF), Assist #42 (MVU), Lightning series (FKU), Yosemite #1 (YNP), USFS Asst. (BEU), Dutch Kern #30 (KRN)1987- Peach (RRU), Ave 32 (TUU), Conover (RRU), Eagle #1 (LNU), State 767 aka Bull (RRU), Denny (TUU), Dog Bar (NEU), Crank (LMU), White Deer (FKU), Briceburg (LMU), Post (RRU), Antelope (RRU), Cougar-I (SKU), Pilitas (SLU) Freaner (SHU), Fouts Complex (LNU), Slides (TGU), French (BTU), Clark (PNF), Fay/Top (SQF), Under, Flume, Bear Wallow, Gulch, Bear-1, Trinity, Jessie, friendly, Cold, Tule, Strause, China/Chance, Bear, Backbone, Doe, (SHF) Travis Complex, Blake, Longwood (SRF), River-II, Jarrell, Stanislaus Complex 14k (STF), Big, Palmer, Indian (TNF) Branham (BLM), Paul, Snag (NPS), Sycamore, Trail, Stallion Spring, Middle (KRN), SLU-864 1988- Hwy 175 (LNU), Rumsey (LNU), Shell Creek (MEU), PG&E #19 (LNU), Fields (BTU), BLM 4516, 417 (LMU), Campbell (LNF), Burney (SHF), USFS #41 (SHF), Trinity (USFS #32), State #837 (RRU), State (RRU), State (350 acres), RRU), State #1807, Orange Co. Asst (RRU), State #1825 (RRU), State #2025, Spoor (BDU), State (MVU), Tonzi (AEU), Kern co #7,9 (KRN), Stent (TCU), 1989– Rock (Plumas), Feather (LMU), Olivas (BDU), State 1116 (RRU), Concorida (RRU), Prado (RRU), Black Mt. (MVU), Vail (CNF)1990– Shipman (HUU), Lightning 379 (LMU), Mud, Dye (TGU), State 914 (RRU), Shultz (Yorba) (BDU), Bingo Rincon #3 (MVU), Dehesa #2 (MVU), SLU 1626 (SLU)1991- Church (HUU), Kutras (SHF) 1992– Lincoln, Fawn (NEU), Clover, fountain (SHU), state, state 891, state, state (RRU), Aberdeen (BDU), Wildcat, Rincon (MVU), Cleveland (AEU), Dry Creek (MMU), Arroyo Seco, Slick Rock (BEU), STF #135 (TCU)1993– Hoisington (HUU), PG&E #27 (with an undetermined cause, lol), Hall (TGU), state, assist, local (RRU), Stoddard, Opal Mt., Mill Creek (BDU), Otay #18, Assist/ Old coach (MVU), Eagle (CNF), Chevron USA, Sycamore (FKU), Guerrero, Duck1994– Schindel Escape (SHU), blank (PNF), lightning #58 (LMU), Bridge (NEU), Barkley (BTU), Lightning #66 (LMU), Local (RRU), Assist #22 & #79 (SLU), Branch (SLO), Piute (BDU), Assist/ Opal#2 (BDU), Local, State, State (RRU), Gilman fire 7/24 (RRU), Highway #74 (RRU), San Felipe, Assist #42, Scissors #2 (MVU), Assist/ Opal#2 (BDU), Complex (BDF), Spanish (SBC)1995-State 1983 acres, Lost Lake, State # 1030, State (1335 acres), State (5000 acres), Jenny, City (BDU), Marron #4, Asist #51 (SLO/VNC)1996- Modoc NF 707 (Ambrose), Borrego (MVU), Assist #16 (SLU), Deep Creek (BDU), Weber (BDU), State (Wesley) 500 acres (RRU), Weaver (MMU), Wasioja (SBC/LPF), Gale (FKU), FKU 15832 (FKU), State (Wesley) 500 acres, Cabazon (RRU), State Assist (aka Bee) (RRU), Borrego, Otay #269 (MVU), Slaughter house (MVU), Oak Flat (TUU)1997- Lightning #70 (LMU), Jackrabbit (RRU), Fernandez (TUU), Assist 84 (Military AFV) (SLU), Metz #4 (BEU), Copperhead (BEU), Millstream, Correia (MMU), Fernandez (TUU)1998- Worden, Swift, PG&E 39 (MMU), Chariot, Featherstone, Wildcat, Emery, Deluz (MVU), Cajalco Santiago (RRU)1999- Musty #2,3 (BTU), Border # 95 (MVU), Andrews, Roadside 9323 (MMU), Lacy (BDU), Range (SCU)2000- Latrobe (AEU), Shell (SLU), Happy Camp (Inyo), Golden Fire (BDU)2001- Pacheco (MMU), Orosco (CNF/MVU), Observation (LNF), Modoc Complex (LMU), Happy Camp Complex (SKU)2002- Nicholas (MMU), Aliso Assist #73 (MVU), Assist, Leona, Williams (BDU), BLM D596, horse complex (LMU), KNF Assist #15 (SKU), Cajalco Evening State 925 (RRU), Airport, Bouquet, Copper, Inyo Complex (BDU)2003- F.K.U. 7076 (LOC) 15k, Local (2) 12k 2k (RRU), MNF 964 Assist (LNU) 3+k2004- F.K.U. 7654, NOD BBT42005- Pine (TUU)2006- Phelps (FKU), BLM-2 (FKU), Olive (MMU), Alpaugh (TUU), Lgt. # 11,26, 53 (LMU), Cort, Coyote, Orchard Ranch (RRU)2007- Little 5 (FKU), Brokeoff (SHU), Avenue 26/ Rd 195 (MMU/local)2008- Jonson VMP (RRU), 85 (LNU), Wagers (MEU), STA 57 ONO CDF IGO 2 C2(SHU), Whitmore Rd/ Old Cow C2(SHU), Coleman,Fish Hatchery (SHU), EO2A (SHU), Igo
The North American Mesoscale Forecast System (NAM) is one of the major regional weather forecast models run by the National Centers for Environmental Prediction (NCEP) for producing weather forecasts. Dozens of weather parameters are available from the NAM grids, from temperature and precipitation to lightning and turbulent kinetic energy. The NAM generates multiple grids (or domains) of weather forecasts over the North American continent at various horizontal resolutions. High-resolution forecasts are generated within the NAM using additional numerical weather models. These high-resolution forecast windows are generated over fixed regions and are occasionally run to follow significant weather events, like hurricanes. This dataset contains a 12 km horizontal resolution Lambert Conformal grid covering the Continental United States (CONUS) domain. It is run four times daily at 00z, 06z, 12z and 18z out to 84 hours with a 1 hour temporal resolution.
National Risk Index Version: March 2023 (1.19.0)Lightning is a visible electrical discharge or spark of electricity in the atmosphere between clouds, the air, and/or the ground often produced by a thunderstorm. Annualized frequency values for Lightning are in units of events per year.The National Risk Index is a dataset and online tool that helps to illustrate the communities most at risk for 18 natural hazards across the United States and territories: Avalanche, Coastal Flooding, Cold Wave, Drought, Earthquake, Hail, Heat Wave, Hurricane, Ice Storm, Landslide, Lightning, Riverine Flooding, Strong Wind, Tornado, Tsunami, Volcanic Activity, Wildfire, and Winter Weather. The National Risk Index provides Risk Index values, scores and ratings based on data for Expected Annual Loss due to natural hazards, Social Vulnerability, and Community Resilience. Separate values, scores and ratings are also provided for Expected Annual Loss, Social Vulnerability, and Community Resilience. For the Risk Index and Expected Annual Loss, values, scores and ratings can be viewed as a composite score for all hazards or individually for each of the 18 hazard types.Sources for Expected Annual Loss data include: Alaska Department of Natural Resources, Arizona State University’s (ASU) Center for Emergency Management and Homeland Security (CEMHS), California Department of Conservation, California Office of Emergency Services California Geological Survey, Colorado Avalanche Information Center, CoreLogic’s Flood Services, Federal Emergency Management Agency (FEMA) National Flood Insurance Program, Humanitarian Data Exchange (HDX), Iowa State University's Iowa Environmental Mesonet, Multi-Resolution Land Characteristics (MLRC) Consortium, National Aeronautics and Space Administration’s (NASA) Cooperative Open Online Landslide Repository (COOLR), National Earthquake Hazards Reduction Program (NEHRP), National Oceanic and Atmospheric Administration’s National Centers for Environmental Information (NCEI), National Oceanic and Atmospheric Administration's National Hurricane Center, National Oceanic and Atmospheric Administration's National Weather Service (NWS), National Oceanic and Atmospheric Administration's Office for Coastal Management, National Oceanic and Atmospheric Administration's National Geophysical Data Center, National Oceanic and Atmospheric Administration's Storm Prediction Center, Oregon Department of Geology and Mineral Industries, Pacific Islands Ocean Observing System, Puerto Rico Seismic Network, Smithsonian Institution's Global Volcanism Program, State of Hawaii’s Office of Planning’s Statewide GIS Program, U.S. Army Corps of Engineers’ Cold Regions Research and Engineering Laboratory (CRREL), U.S. Census Bureau, U.S. Department of Agriculture's (USDA) National Agricultural Statistics Service (NASS), U.S. Forest Service's Fire Modeling Institute's Missoula Fire Sciences Lab, U.S. Forest Service's National Avalanche Center (NAC), U.S. Geological Survey (USGS), U.S. Geological Survey's Landslide Hazards Program, United Nations Office for Disaster Risk Reduction (UNDRR), University of Alaska – Fairbanks' Alaska Earthquake Center, University of Nebraska-Lincoln's National Drought Mitigation Center (NDMC), University of Southern California's Tsunami Research Center, and Washington State Department of Natural Resources.Data for Social Vulnerability are provided by the Centers for Disease Control (CDC) Agency for Toxic Substances and Disease Registry (ATSDR) Social Vulnerability Index, and data for Community Resilience are provided by University of South Carolina's Hazards and Vulnerability Research Institute’s (HVRI) 2020 Baseline Resilience Indicators for Communities.The source of the boundaries for counties and Census tracts are based on the U.S. Census Bureau’s 2021 TIGER/Line shapefiles. Building value and population exposures for communities are based on FEMA’s Hazus 6.0. Agriculture values are based on the USDA 2017 Census of Agriculture.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Data from this dataset can be downloaded/accessed through this dataset page and Kaggle's API.
Severe weather is defined as a destructive storm or weather. It is usually applied to local, intense, often damaging storms such as thunderstorms, hail storms, and tornadoes, but it can also describe more widespread events such as tropical systems, blizzards, nor'easters, and derechos.
The Severe Weather Data Inventory (SWDI) is an integrated database of severe weather records for the United States. The records in SWDI come from a variety of sources in the NCDC archive. SWDI provides the ability to search through all of these data to find records covering a particular time period and geographic region, and to download the results of your search in a variety of formats. The formats currently supported are Shapefile (for GIS), KMZ (for Google Earth), CSV (comma-separated), and XML.
The current data layers in SWDI are:
- Filtered Storm Cells (Max Reflectivity >= 45 dBZ) from NEXRAD (Level-III Storm Structure Product)
- All Storm Cells from NEXRAD (Level-III Storm Structure Product)
- Filtered Hail Signatures (Max Size > 0 and Probability = 100%) from NEXRAD (Level-III Hail Product)
- All Hail Signatures from NEXRAD (Level-III Hail Product)
- Mesocyclone Signatures from NEXRAD (Level-III Meso Product)
- Digital Mesocyclone Detection Algorithm from NEXRAD (Level-III MDA Product)
- Tornado Signatures from NEXRAD (Level-III TVS Product)
- Preliminary Local Storm Reports from the NOAA National Weather Service
- Lightning Strikes from Vaisala NLDN
Disclaimer:
SWDI provides a uniform way to access data from a variety of sources, but it does not provide any additional quality control beyond the processing which took place when the data were archived. The data sources in SWDI will not provide complete severe weather coverage of a geographic region or time period, due to a number of factors (eg, reports for a location or time period not provided to NOAA). The absence of SWDI data for a particular location and time should not be interpreted as an indication that no severe weather occurred at that time and location. Furthermore, much of the data in SWDI is automatically derived from radar data and represents probable conditions for an event, rather than a confirmed occurrence.
Dataset Source: NOAA. This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source — http://www.data.gov/privacy-policy#data_policy — and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
Cover photo by NASA on Unsplash
Unsplash Images are distributed under a unique Unsplash License.