The Census of Agriculture, produced by the USDA National Agricultural Statistics Service (USDA), provides a complete count of America's farms, ranches and the people who grow our food. The census is conducted every five years, most recently in 2017, and provides an in-depth look at the agricultural industry.This layer summarizes corn production from the 2017 Census of Agriculture at the county level.This layer was produced from data downloaded using the USDA's QuickStats Application. The data was transformed using the Pivot Table tool in ArcGIS Pro and joined to the county boundary file provided by the USDA. The layer was published as feature layer in ArcGIS Online. Dataset SummaryPhenomenon Mapped: 2017 Corn ProductionCoordinate System: Web Mercator Auxiliary SphereExtent: 48 Contiguous United States and HawaiiVisible Scale: All ScalesSource: USDA National Agricultural Statistics Service QuickStats ApplicationPublication Date: 2017AttributesThis layer provides values for the following attributes. Note that some values are not disclosed (coded as -1 in the layer) to protect the privacy of producers in areas with limited production.Operations with SalesSales in US DollarsGrain - Area Harvested in AcresGrain - Operations with Area HarvestedGrain - Production in BushelsGrain - Irrigated Area Harvested in AcresGrain - Operations with Irrigated Area HarvestedSilage - Area Harvested in AcresSilage - Operations with Area HarvestedSilage - Production in TonsSilage - Irrigated Area Harvested in AcresSilage - Operations with Area HarvestedTraditional or Indian - Area Harvested in AcresTraditional or Indian - Operations with Area HarvestedTraditional or Indian - Production in PoundsTraditional or Indian - Irrigated Area Harvested in AcresTraditional or Indian - Operations with Area HarvestedAdditionally attributes of State Name, State Code, County Name and County Code are included to facilitate cartography and use with other layers.What can you do with this layer?This layer can be used throughout the ArcGIS system. Feature layers can be used just like any other vector layer. You can use feature layers as an input to geoprocessing tools in ArcGIS Pro or in Analysis in ArcGIS Online. Combine the layer with others in a map and set custom symbology or create a pop-up tailored for your users.For the details of working with feature layers the help documentation for ArcGIS Pro or the help documentation for ArcGIS Online are great places to start. The ArcGIS Blog is a great source of ideas for things you can do with feature layers.This layer is part of ArcGIS Living Atlas of the World that provides an easy way to find and explore many other beautiful and authoritative layers, maps, and applications on hundreds of topics.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset consists of growth and yield data for each year when maize (Zea mays, L., also known as corn in the United States) was grown for grain at the USDA-ARS Conservation and Production Laboratory (CPRL), Soil and Water Management Research Unit (SWMRU) research weather station, Bushland, Texas (Lat. 35.186714°, Long. -102.094189°, elevation 1170 m above MSL). Maize was grown for grain on four large, precision weighing lysimeters, each in the center of a 4.44 ha square field. The four square fields are themselves arranged in a larger square with the fields in four adjacent quadrants of the larger square. Fields and lysimeters within each field are thus designated northeast (NE), southeast (SE), northwest (NW), and southwest (SW). Irrigation was by linear move sprinkler system in 1989, 1990, and 1994. In 2013, 2016, and 2018, two lysimeters and their respective fields (NE and SE) were irrigated using subsurface drip irrigation (SDI), and two lysimeters and their respective fields (NW and SW) were irrigated by a linear move sprinkler system. Irrigations were managed to replenish soil water used by the crop on a weekly or more frequent basis as determined by soil profile water content readings made with a neutron probe to 2.4-m depth in the field. The growth and yield data include plant population density, height, plant row width, leaf area index, growth stage, total above-ground biomass, leaf and stem biomass, ear mass (when present), kernel number, and final yield. Data are from replicate samples in the field and non-destructive (except for final harvest) measurements on the weighing lysimeters. In most cases yield data are available from both manual sampling on replicate plots in each field and from machine harvest. These datasets originate from research aimed at determining crop water use (ET), crop coefficients for use in ET-based irrigation scheduling based on a reference ET, crop growth, yield, harvest index, and crop water productivity as affected by irrigation method, timing, amount (full or some degree of deficit), agronomic practices, cultivar, and weather. Prior publications have focused on maize ET, crop coefficients, and crop water productivity. Crop coefficients have been used by ET networks. The data have utility for testing simulation models of crop ET, growth, and yield and have been used by the Agricultural Model Intercomparison and Improvement Project (AgMIP), by OPENET, and by many others for testing, and calibrating models of ET that use satellite and/or weather data.Resources in this dataset:Resource Title: 1989 Bushland, TX, east maize growth and yield data. File Name: 1989_East_Maize_Growth_and_Yield(ADC).xlsx. Resource Description: This dataset consists of growth and yield data for one of the seasons when maize was grown for grain at the USDA-ARS Conservation and Production Laboratory (CPRL), Soil and Water Management Research Unit (SWMRU) research weather station, Bushland, Texas (Lat. 35.186714°, Long. -102.094189°, elevation 1170 m above MSL). Maize was grown for grain on four large, precision weighing lysimeters, each in the center of a 4.44 ha square field. The four square fields are themselves arranged in a larger square with the fields in four adjacent quadrants of the larger square. Fields and lysimeters within each field are thus designated northeast (NE), southeast (SE), northwest (NW), and southwest (SW). Irrigation was by linear move sprinkler system in 1989, 1990, and 1994. In 2013, 2016, and 2018, two lysimeters and their respective fields (NE and SE) were irrigated using subsurface drip irrigation (SDI), and two lysimeters and their respective fields (NW and SW) were irrigated by a linear move sprinkler system. Irrigations were managed to replenish soil water used by the crop on a weekly or more frequent basis as determined by soil profile water content readings made with a neutron probe to 2.4-m depth in the field. The growth and yield data include plant population density, height, plant row width, leaf area index, growth stage, total above-ground biomass, leaf and stem biomass, ear mass (when present), kernel number, and final yield. Data are from replicate samples in the field and non-destructive (except for final harvest) measurements on the weighing lysimeters. In most cases yield data are available from both manual sampling on replicate plots in each field and from machine harvest. There are separate spreadsheets for the east (NE and SE) lysimeters and fields, and for the west (NW and SW) lysimeters and fields. The spreadsheets contain tabs for data and corresponding tabs for data dictionaries. Typically there are separate data tabs and corresponding dictionaries for plant growth during the season, crop growth stage, plant population, manual harvest from replicate plots in each field and from lysimeter surfaces, and machine (combine) harvest, An Introduction tab explains the tab names and contents, lists the authors, explains conventions, and lists some relevant references.Resource Title: 1990 Bushland, TX, east maize growth and yield data. File Name: 1990_East_Maize_Growth_and_Yield(ADC).xlsx. Resource Description: As above for 1990 East.Resource Title: 1994 Bushland, TX, east maize growth and yield data. File Name: 1994_East_Maize_Growth_and_Yield(ADC).xlsx. Resource Description: As above for 1994 East.Resource Title: 1994 Bushland, TX, west maize growth and yield data. File Name: 1994_West_Maize_Growth_and_Yield(ADC).xlsx. Resource Description: As above for 1994 West.Resource Title: 2013 Bushland, TX, west maize growth and yield data. File Name: 2013_West_Maize_Growth_and_Yield(ADC).xlsx. Resource Description: As above for 2013 West.Resource Title: 2016 Bushland, TX, east maize growth and yield data. File Name: 2016_East_Maize_Growth_and_Yield(ADC).xlsx. Resource Description: As above for 2016 East.Resource Title: 2016 Bushland, TX, west maize growth and yield data. File Name: 2016_West_Maize_Growth_and_Yield(ADC).xlsx. Resource Description: As above for 2016 West.Resource Title: 2018 Bushland, TX, west maize growth and yield data. File Name: 2018_West_Maize_Growth_and_Yield(ADC).xlsx. Resource Description: As above for 2018 West.Resource Title: 2013 Bushland, TX, east maize growth and yield data. File Name: 2013_East_Maize_Growth_and_Yield(ADC).xlsx. Resource Description: As above for 2013 East.Resource Title: 2018 Bushland, TX, east maize growth and yield data. File Name: 2018_East_Maize_Growth_and_Yield(ADC).xlsx. Resource Description: As above for 2018 East.
USA Cropland is a time enabled imagery layer of the USDA CropScape Cropland Data Layers dataset from the National Agricultural Statistics Service (NASS). The time series shows the crop grown during every growing season in the conterminous US since 2008. Use the time slider to select only one year to view, or press play to see every growing season displayed sequentially in an animated map.Why USA Cropland masks out NLCD land cover in its default templateUSDA CropScape Cropland Data Layers, by default as downloaded from USDA, fill in the non-cultivated areas of the conterminous USA with land cover classes from the MRLC National Land Cover Dataset (NLCD). The default behavior for Esri's USA Cropland layer is a little bit different. By default the Esri USA Cropland layer uses the analytic renderer, which masks out this NLCD data. Why did we choose to mask out the NLCD land cover classes by default?While crops are updated every year from USDA NASS, the NLCD data changes every several years, and it can be quite a bit older than the crop data beside it. If analysis is conducted to quantify landscape change, the NLCD-derived pixels will skew the results of the analysis because NLCD land cover in a yearly time series may appear to remain the same class for several years in a row. This can be problematic because conclusions drawn from this dataset may underrepresent the amount of change happening to the landscape.Since the 2018 Cropland Data Layer was posted (early 2019), MRLC issued an update to the NLCD Land Cover dataset. The 2019 and 2020 cropland frames have this more current NLCD data, but the years before that contain NLCD land cover data from 2011 or older.To display the most current land cover available from both sources, add both the USA NLCD Land Cover service and USA Cropland time series to your map. Use the analytical template with the USA Cropland service, and draw it on top of the USA NLCD Land Cover service. When a time slider is used with these datasets together, the map user will see the most current land cover from both services in any given year.Variable mapped: Crop grown in each pixel since 2008.Data Projection: AlbersMosaic Projection: AlbersExtent: Conterminous USACell Size: 30mSource Type: ThematicVisible Scale: All scales are visibleSource: USDA NASSPublication Date: 1/27/2021This layer and the data making up the layer are in the Albers map projection. Albers is an equal area projection, and this allows users of this layer to accurately calculate acreage without additional data preparation steps. This also means it takes a tiny bit longer to project on the fly into web Mercator, if that is the destination projection of the layer.Processing templates available with this layerTo help filter out and display just the crops and land use categories you are interested in showing, choose one of the thirteen processing templates that will help you tailor the symbols in the time series to suit your map application. The following are the processing templates that are available with this layer:Analytic RendererUSDA Analytic RendererThe analytic renderer is the default template. NLCD codes are masked when using analytic renderer processing templates. There is a default esri analytic renderer, but also an analytic renderer that uses the original USDA color scheme that was developed for the CropScape layers. This is useful if you have already built maps with the USDA color scheme or otherwise prefer the USDA color scheme.Cartographic RendererUSDA Cartographic RendererThese templates fill in with NLCD land cover types where crops are not cultivated, thereby filling the map with color from coast to coast. There is also a template using the USDA color scheme, which is identical to the datasets as downloaded from USDA NASS.In addition to different ways to display the whole dataset, some processing templates are included which help display the top 10 agricultural products in the United States. If these templates seem to overinclude crops in their category (for example, tomatoes are included in both the fruit and vegetables templates), this is because it's easier for a map user to remove a symbol from a template than it is to add one.Corn - Corn, sweet corn, popcorn or ornamental corn, plus double crops with corn and another crop.Cotton - Cotton and double crops, includes double crops with cotton and another crop.Fruit - Symbolized fruit crops include not only things like melons, apricots, and strawberries, but also olives, avocados, and tomatoes. Nuts - Peanuts, tree nuts, sunflower, etc.Oil Crops - Oil crops include rapeseed and canola, soybeans, avocado, peanut, corn, safflower, sunflower, also cotton and grapes.Rice - Rice crops.Sugar - Crops grown to make sugars. Sugar beets and cane are displayed of course, but so are corn and grapes.Soybeans - Soybean crops. Includes double crops where soybeans are grown at some time during the growing season.Vegetables - Vegetable crops, and yes this includes tomatoes. Wheat - Winter and spring wheat, durum wheat, triticale, spelt, and wheat double crops.In many places, two crops were grown in one growing season. Keep in mind that a double crop of corn and soybeans will display in both the corn and soybeans processing templates.Index to raster values in USA Cropland:0,Background (not a cultivated crop or no data)1,Corn2,Cotton3,Rice4,Sorghum5,Soybeans6,Sunflower10,Peanuts11,Tobacco12,Sweet Corn13,Pop or Orn Corn14,Mint21,Barley22,Durum Wheat23,Spring Wheat24,Winter Wheat25,Other Small Grains26,Dbl Crop WinWht/Soybeans27,Rye28,Oats29,Millet30,Speltz31,Canola32,Flaxseed33,Safflower34,Rape Seed35,Mustard36,Alfalfa37,Other Hay/Non Alfalfa38,Camelina39,Buckwheat41,Sugarbeets42,Dry Beans43,Potatoes44,Other Crops45,Sugarcane46,Sweet Potatoes47,Misc Vegs & Fruits48,Watermelons49,Onions50,Cucumbers51,Chick Peas52,Lentils53,Peas54,Tomatoes55,Caneberries56,Hops57,Herbs58,Clover/Wildflowers59,Sod/Grass Seed60,Switchgrass61,Fallow/Idle Cropland62,Pasture/Grass63,Forest64,Shrubland65,Barren66,Cherries67,Peaches68,Apples69,Grapes70,Christmas Trees71,Other Tree Crops72,Citrus74,Pecans75,Almonds76,Walnuts77,Pears81,Clouds/No Data82,Developed83,Water87,Wetlands88,Nonag/Undefined92,Aquaculture111,Open Water112,Perennial Ice/Snow121,Developed/Open Space122,Developed/Low Intensity123,Developed/Med Intensity124,Developed/High Intensity131,Barren141,Deciduous Forest142,Evergreen Forest143,Mixed Forest152,Shrubland176,Grassland/Pasture190,Woody Wetlands195,Herbaceous Wetlands204,Pistachios205,Triticale206,Carrots207,Asparagus208,Garlic209,Cantaloupes210,Prunes211,Olives212,Oranges213,Honeydew Melons214,Broccoli215,Avocados216,Peppers217,Pomegranates218,Nectarines219,Greens220,Plums221,Strawberries222,Squash223,Apricots224,Vetch225,Dbl Crop WinWht/Corn226,Dbl Crop Oats/Corn227,Lettuce228,Dbl Crop Triticale/Corn229,Pumpkins230,Dbl Crop Lettuce/Durum Wht231,Dbl Crop Lettuce/Cantaloupe232,Dbl Crop Lettuce/Cotton233,Dbl Crop Lettuce/Barley234,Dbl Crop Durum Wht/Sorghum235,Dbl Crop Barley/Sorghum236,Dbl Crop WinWht/Sorghum237,Dbl Crop Barley/Corn238,Dbl Crop WinWht/Cotton239,Dbl Crop Soybeans/Cotton240,Dbl Crop Soybeans/Oats241,Dbl Crop Corn/Soybeans242,Blueberries243,Cabbage244,Cauliflower245,Celery246,Radishes247,Turnips248,Eggplants249,Gourds250,Cranberries254,Dbl Crop Barley/Soybeans
The Census of Agriculture, produced by the United States Department of Agriculture (USDA), provides a complete count of Texas' farms, ranches and the people who grow our food. The census is conducted every five years, most recently in 2022, and provides an in-depth look at the agricultural industry.The complete census includes over 260 separate commodities. This dataset is a subset of 23 commodities selected for publishingThis layer was produced from data obtained from the USDA National Agriculture Statistics Service (NASS) Large Datasets download page. The data were transformed and prepared for publishing using the Pivot Table geoprocessing tool in ArcGIS Pro and joined to county boundaries. The county boundaries are 2022 vintage and come from Living Atlas ACS 2022 feature layers.AttributesNote that some values are suppressed as "Withheld to avoid disclosing data for individual operations", "Not applicable", or "Less than half the rounding unit". These have been coded in the data as -999, -888, and -777 respectively.AlmondsAnimal TotalsBarleyCattleChickensCornCottonCrop TotalsGovt ProgramsGrainGrapesHayHogsLaborMachinery TotalsRiceSorghumSoybeanTractorsTrucksTurkeysWheatWinter Wheat
The Census of Agriculture, produced by the United States Department of Agriculture (USDA), provides a complete count of America's farms, ranches and the people who grow our food. The census is conducted every five years, most recently in 2022, and provides an in-depth look at the agricultural industry. This layer was produced from data obtained from the USDA National Agriculture Statistics Service (NASS) Large Datasets download page. The data were transformed and prepared for publishing using the Pivot Table geoprocessing tool in ArcGIS Pro and joined to county boundaries. The county boundaries are 2022 vintage and come from Living Atlas ACS 2022 feature layers.Dataset SummaryPhenomenon Mapped: Corn productionGeographic Extent: 48 contiguous United States, Alaska, Hawaii, and Puerto RicoProjection: Web Mercator Auxiliary SphereSource: USDA National Agricultural Statistics ServiceUpdate Frequency: 5 yearsData Vintage: 2022Publication Date: April 2024AttributesNote that some values are suppressed as "Withheld to avoid disclosing data for individual operations", "Not applicable", or "Less than half the rounding unit". These have been coded in the data as -999, -888, and -777 respectively. You should account for these values when symbolizing or doing any calculations.Commodities included in this layer:Corn - Operations with SalesCorn - Sales, Measured in US Dollars ($)Corn, Grain - Acres HarvestedCorn, Grain - Operations with Area Harvested - Area Harvested: (1.0 to 24.9 Acres)Corn, Grain - Operations with Area Harvested - Area Harvested: (25.0 to 99.9 Acres)Corn, Grain - Operations with Area Harvested - Area Harvested: (100 to 249 Acres)Corn, Grain - Operations with Area Harvested - Area Harvested: (250 to 499 Acres)Corn, Grain - Operations with Area Harvested - Area Harvested: (500 to 999 Acres)Corn, Grain - Operations with Area Harvested - Area Harvested: (1,000 or More Acres)Corn, Grain - Operations with Area HarvestedCorn, Grain - Production, Measured in BushelsCorn, Grain, Irrigated - Acres HarvestedCorn, Grain, Irrigated - Operations with Area HarvestedCorn, Silage - Acres HarvestedCorn, Silage - Operations with Area Harvested - Area Harvested: (1.0 to 24.9 Acres)Corn, Silage - Operations with Area Harvested - Area Harvested: (25.0 to 99.9 Acres)Corn, Silage - Operations with Area Harvested - Area Harvested: (100 to 249 Acres)Corn, Silage - Operations with Area Harvested - Area Harvested: (250 to 499 Acres)Corn, Silage - Operations with Area Harvested - Area Harvested: (500 to 999 Acres)Corn, Silage - Operations with Area Harvested - Area Harvested: (1,000 or More Acres)Corn, Silage - Operations with Area HarvestedCorn, Silage - Production, Measured in TonsCorn, Silage, Irrigated - Acres HarvestedCorn, Silage, Irrigated - Operations with Area HarvestedCorn, Traditional or Indian - Acres HarvestedCorn, Traditional or Indian - Operations with Area HarvestedCorn, Traditional or Indian - Production, Measured in lbsCorn, Traditional or Indian, Irrigated - Acres HarvestedCorn, Traditional or Indian, Irrigated - Operations with Area Harvested Geography NoteIn Alaska, one or more county-equivalent entities (borough, census area, city, municipality) are included in an agriculture census area.What can you do with this layer?This layer is designed for data visualization. Identify features by clicking on the map to reveal the pre-configured pop-up. You may change the field(s) being symbolized. When symbolizing other fields, you will need to update the popup accordingly. Simple summary statistics are supported by this data.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
Important Note: This item is in mature support as of April 2025 and will be retired in December 2026. New data is available for your use directly from the Authoritative Provider. Esri recommends accessing the data from the source provider as soon as possible as our service will not longer be available after December 2026. Groundnut (Arachis hypogaea), also known as peanut, is grown around the world in a broad region between 40 degrees north and south latitude. Originally from South America, major producers of groundnut include China, India and the United States. Producing 30% of Africa"s total, Nigeria leads the continent"s production followed by Senegal, Sudan, Ghana, and Chad. Groundnut is a valuable source of protein and oil. It has the additional benefit of enriching depleted soils by converting nitrogen from the air into a form that is required by most plants. Dataset Summary This layer provides access to a5 arc-minute(approximately 10 km at the equator)cell-sized raster of the 1999-2001 annual average area ofgroundnut harvested in Africa. The data are in units of hectares/grid cell. TheSPAM 2000 v3.0.6 data used to create this layerwere produced by theInternational Food Policy Research Institutein 2012.This dataset was created by spatially disaggregating national and sub-national harvest datausing theSpatial Production Allocation Model. Link to source metadata For more information about this dataset and the importance of casava as a staple food see theHarvest Choice webpage. For data on other agricultural species in Africa see these layers:Groundnut (Peanut) Maize (Corn) Millet Potato Rice Sorghum Sweet Potato and Yam Wheat Data for important agricultural crops in South America are availablehere. What can you do with this layer? This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop. This layer hasquery,identify, andexportimage services available. This layer is restricted to a maximum area of 24,000 x 24,000 pixelswhich allows access to the full dataset. The source data for this layer are availablehere. This layer is part of a larger collection oflandscape layersthat you can use to perform a wide variety of mapping and analysis tasks. TheLiving Atlas of the Worldprovides an easy way to explore the landscape layers and many otherbeautiful and authoritative maps on hundreds of topics. Geonetis a good resource for learning more aboutlandscape layers and the Living Atlas of the World. To get started follow these links: Landscape Layers - a reintroductionLiving Atlas Discussion Group
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
What?
A dataset containing 315 total variables from 33 secondary sources. There are 262 unique variables, and 53 variables that have the same measurement but are reported for a different year; e.g. average farm size in 2017 (CapitalID: N27a) and 2022 (N27b). Variables were grouped by the community capital framework's seven capitals—Natural (96 total variables), Cultural (38), Human (39), Social (40), Political (18), Financial (67), & Built (15)—and temporally and thematically ordered. The geographic boundary is NOAA NCEI's corn and soybean belt (figure below), which stretches across 18 states and includes N=860 counties/observations. Cover crop data for the 80 Crop Reporting Districts in the boundary are also included for 2015-2021.
Why?
Comprehensively assessing how community capital clustered variables, for both farmers and nonfarmers, impact conservation practices (and perennial groundcover) over time helps to examine county-level farm conservation agriculture practices in the context of community development. We contribute to the robust U.S. cover crop literature a better understanding of how overarching cultural, social, and human factors influence conservation agriculture practices to encourage better farm management practices. Analyses of this Dataverse will be presented as recomendations for farmers, nonfarmers, ag-adjacent stakeholders, and community leaders.
How?
Variables used in this dataset range 20 years, from 2004-2023, though primary analyses focus on data collected between 2017-2024, primarily 2017 and 2022 (NASS Ag Census years). First, JAM-K requested, accessed, and downloaded data, most of which was already publically available. Next, JAM-K cleaned the data and aggregated into one dataset, and made it publically available on Google Drive and Zenodo.
What is 'new' or corrected in version 2.2?
Edited/amended: Carroll, KY is now spelled correctly (two 'l's, not one); variable names, full and abbreviated, were updated to include the data year; Pike County's (IL) FIPS has been corrected from its wrong 17153 (same as Pulaski County) to 17149 (correct fips), and all Pike County (IL) data has been correctly amended; Farming dependent (ERS) updated for all variables; Data for built capital variables irrCorn17, irrSoy17, irrHcrp17, tractor17, and combine17 were incorrect for v.1, but were corrected for v.2; Several variable labels aggregated by Wisconsin University's Population Health Institute's County Health Rankings and Roadmaps were corrected to have the data's original source and years included, rather than citing CHR&R as the source (except for CHR&R's originally-produced values such as quartiles or rank scores); variables were reorganized by hypothesized community capital clusters (Natural -> Built), and temporally within each cluster.
Added: 55 variables, mostly from the 2022 Ag Census, and v 2.2 added a .pdf file with descriptives of data sources and years, and a .sav file.
Omitted: Four variables deemed irrelevant to the study; V1 codebook's "years internally available" column. Variable herbac22 for 55079, Milwaukee, WI, incorrectly had the value 2,049.612. That value was correctly changed to missing, with no data in the cell.
CRediT: conceptualization, CBF, JAM-K; methodology, JAM-K; data aggregation and curation, JAM-K; formal analysis, JAM-K; visualization, JAM-K; supervision, CBF; funding acquisition, CBF; project administration, CBF; resources, CBF, JAM-K
Acknowledgements: This research was funded by the Agriculture and Food Research Initiative Competitive Grant No. 2021-68012-35923 from the United States Department of Agriculture National Institute for Food and Agriculture. Any opinions, findings, conclusions, or recommendations expressed in this presentation are those of the authors and do not necessarily reflect the view of the U.S. Department of Agriculture. Much thanks to Corteva for granting data access of OpTIS 2.0 (2005-2019), and Austin Landini for STATA code and visualization assistance.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Anthropogenic discharge of excess phosphorus (P) to water bodies and increasingly stringent discharge limits have fostered interest in quantifying opportunities for P recovery and reuse. To date, geospatial estimates of P recovery potential in the United States (US) have used human and livestock population data, which do not capture the engineering constraints of P removal from centralized water resource recovery facilities (WRRFs) and corn ethanol biorefineries where P is concentrated in coproduct animal feeds. Here, renewable P (rP) estimates from plant-wide process models were used to create a geospatial inventory of recovery potential for centralized WRRFs and biorefineries, revealing that individual corn ethanol biorefineries can generate on average 3 orders of magnitude more rP than WRRFs per site, and all corn ethanol biorefineries can generate nearly double the total rP of WRRFs across the US. The Midwestern states that make up the Corn Belt have the largest potential for P recovery and reuse from both corn biorefineries and WRRFs with a high degree of co-location with agricultural P consumption, indicating the untapped potential for a circular P economy in this globally significant grain-producing region.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The Cropland Data Layer (CDL), hosted on CropScape, provides a raster, geo-referenced, crop-specific land cover map for the continental United States. The CDL also includes a crop mask layer and planting frequency layers, as well as boundary, water and road layers. The Boundary Layer options provided are County, Agricultural Statistics Districts (ASD), State, and Region. The data is created annually using moderate resolution satellite imagery and extensive agricultural ground truth. Users can select a geographic area of interest or import one, then access acreage statistics for a specific year or view the change from one year to another. The data can be exported or added to the CDL. The information is useful for issues related to agricultural sustainability, biodiversity, and land cover monitoring, especially due to extreme weather events. Resources in this dataset:Resource Title: CropScape and Cropland Data Layer - National Download. File Name: Web Page, url: https://www.nass.usda.gov/Research_and_Science/Cropland/Release/index.php Downloads available as zipped files at https://www.nass.usda.gov/Research_and_Science/Cropland/Release/index.php --
National CDL's -- by year, 2008-2020. Cropland Data Layer provides a raster, geo-referenced, crop-specific land cover map for the continental United States. The CDL also includes a crop mask layer and planting frequency layers, as well as boundary, water and road layers. The Boundary Layer options provided are County, Agricultural Statistics Districts (ASD), State, and Region. National Cultivated Layer -- based on the most recent five years (2013-2020). National Frequency Layer -- the 2017 Crop Frequency Layer identifies crop specific planting frequency and are based on land cover information derived from the 2008 through 2020CDL's. There are currently four individual crop frequency data layers that represent four major crops: corn, cotton, soybeans, and wheat. National Confidence Layer -- the Confidence Layer spatially represents the predicted confidence that is associated with that output pixel, based upon the rule(s) that were used to classify it. Western/Eastern/Central U.S.
Visit https://nassgeodata.gmu.edu/CropScape/ for the interactive map including tutorials and basic instructions. These options include a "Demo Video", "Help", "Developer Guide", and "FAQ".
This data set contains a single data file (.csv format) that provides gridded values of net primary productivity (NPP) for cropland in eight counties in the central United States for the year 1992 and estimates of interannual cropland NPP in Iowa for years from 1982 through 1996. The data file also includes climate, soil texture, and land cover data for each 0.5 degree grid cell.
The magnitude and interannual variation in NPP was estimated using crop area and yield data from the U.S. Department of Agriculture, National Agricultural Statistics Service (NASS). The major harvested commodities were corn, soybean, sorghum, sunflower, oats, barley, wheat, and hay. Total NPP estimates include both above- and below-ground components.
County-level NPP in 1992 ranged from 195 to 760 gC/m2/year. The area of highest NPP, ranging from 650 to 760 gC/m2/year, was found in a band extending across Iowa, through northern Illinois, Indiana, and southwestern Ohio. Areas of moderate NPP, from 550 to 650 gC/m2/year, occurred mostly in Michigan and Wisconsin, while large areas of low NPP, from 200 to 550 gC/m2/year, occurred in North Dakota, southern Illinois, and Minnesota. The area of highest production was also the area with the largest proportion of land sown with corn and soybean. NPP for counties in Iowa varied among years (1982-1996) by a factor of 2, with the lowest NPP in 1983 (which had an unusually wet spring), in 1988 (which was a drought year), and in 1993 (which experienced floods).
Revision Notes: The documentation for this data set has been modified, and the data files have been reformatted. The data files have been checked for accuracy and the contents are identical to those originally published in 2001.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Corn fell to 442.02 USd/BU on June 9, 2025, down 0.11% from the previous day. Over the past month, Corn's price has fallen 1.34%, and is down 2.15% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. Corn - values, historical data, forecasts and news - updated on June of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
On-Farm Residue Removal Study for Resilient Economic Agricultural Practices in Morris, Minnesota Interest in harvesting crop residues for energy has waxed and waned since the oil embargo of 1973. Since the at least the late 1990’s interest has been renewed due to concern of peak oil, highly volatile natural gas prices, replacing fossil fuel with renewable sources and a push for energy independence. The studies conducted on harvesting crop residues during the 1970’s and1980’s focused primarily on erosion risk and nutrient removal as a result early estimates of residue availability focused on erosion control (Perlack et al., 2005). More recently, the focus has expanded to also address harvest impacts on soil organic matter and other constraints (Wilhelm et al., 2007; Wilhelm et al., 2010). In West Central Minnesota, crop residues have been proposed a replacement for natural gas (Archer and Johnson, 2012) while nationally residues are also be considered for cellulosic ethanol production (US DOE, 2011). The objective of the on-farm study was to assess the impact of residue harvest on working farms with different management systems and soils. Indicators of erosion risk, soil organic matter, and crop productivity is response to grain plus cob, or grain plus stover compared to grain only harvest. Resources in this dataset:Resource Title: GeoData catalog record. File Name: Web Page, url: https://geodata.nal.usda.gov/geonetwork/srv/eng/catalog.search#/metadata/fe5f312c-e9ad-4485-b5f9-7897f5bcd9f6
High-resolution crop maps over large spatial extents are fundamental to many agricultural applications; however, generating high-quality crop maps consistently across space and time remains a challenge. In this study, we improved a workflow for operational crop mapping and developed the first openly available, annual, 10-m spatial resolution maize and soybean maps over the Contiguous United States (CONUS) from 2019 to 2022. We obtained all available Sentinel-2 surface reflectance data between May and October for every year, applied quality assurance, corrected the bidirectional reflectance distribution function (BRDF) effects, and generated 10-day analysis ready data (ARD) composites. We then derived multi-temporal metrics from the 10-day ARD as training features for the national-scale wall-to-wall mapping. We implemented a stratified, two-stage cluster sampling, and then conducted annual field surveys and collected ground data. Utilizing the training data with Sentinel-2 multi-temporal metrics, we trained random forest models generalized for annual maize and soybean classification separately. Validated using field data from the two-stage cluster sample, our annual maps achieved consistent overall accuracies (OA) greater than 95% with standard errors of less than 1%. User’s accuracies (UAs) and producer’s accuracies (PAs) for maize were higher than 91% and 84% across the years, and UAs and PAs for soybean were greater than 88% and 82%, respectively. To illustrate the substantial improvement of the 10-m map over existing datasets, e.g., the 30-m Cropland Data Layer (CDL), we aggregated the 10-m maps to 30-m spatial resolution and quantified the amount of 30-m mixed pixels that can be reduced at field, regional, and national levels. The counties with the most maize and soybean production in Iowa, Illinois and Nebraska had the lowest reduction in mixed pixels, ranging from 1% to 10%, whereas southern counties had a higher reduction in mixed pixels. Overall, the median percentages of mixed maize and soybean pixels across all counties were 14% and 16%, respectively, illustrating the substantial benefits of 10-m maps over 30-m maps. With more Sentinel-2-like data available from continuous observations and incoming satellite missions, we anticipate that 10-m crop maps will greatly benefit long-term monitoring for agricultural practices from the field to global scales.
USA Crop Frequency is a thematic imagery service which serves the USDA National Agricultural Statistics Service Crop Frequency Data Layers. The service displays how many years corn, cotton, soybeans, or wheat were grown on a pixel since 2008. First, connect to the USA Crop Frequency service, then choose the processing template for the commodity you would like to view/analyze, whether corn, soybeans, wheat, or cotton.The default view of the USA Crop Frequency service shows how many years since 2008 that a pixel grows any of these four commodity crops. (Note: If two ore more commodity crops are both grown on the same pixel during a year, this counts as only one year in which any of the commodity crops was grown.)Variable mapped: Number of years corn, cotton, soybeans, and wheat were grown from 2008 to 2018.Data Projection: AlbersMosaic Projection: AlbersExtent: Conterminous USACell Size: 30mSource Type: ThematicVisible Scale: All scalesSource: USDA NASSPublication Date: 2019This service and the data making up the service are all in Albers Projection. Albers is an equal area projection, and this allows users of this service to accurately calculate acreage without additional data preparation steps. This also means it takes a tiny bit longer to project on the fly into web mercator, if that is the destination projection of the service.Use processing templates to display frequency of corn, soybeans, wheat, or cottonCorn, soybeans, wheat, and cotton are the chief produce crops by value in the United States, excepting alfalfa and hay. To see how many years just corn, soybeans, wheat, or cotton are grown, choose the processing template that is appropriate for that commodity. Two templates exist for each commodity, one built by USDA with the default USDA color scheme, and one built by Esri.In ArcGIS Online, choose a processing template by clicking ... under crop frequency in the Table of Contents, then choose Image Display.Next, choose a renderer in the dialogue to see just corn, soybeans, wheat, or cotton in either an Esri or USDA color scheme.Value in Billions of US Dollars, 2014:Corn $52.4Soybeans $40.3Wheat $11.9Cotton $5.1Corn (Zea mays) is the most widely produced feed grain in the United States. The largest share of the corn produced in the USA (33%) is used to feed livestock, followed by 27% used to make ethanol for fuel. 11% of it is used to create food for humans, including high fructose corn syrup, sweeteners, starch, beverage alcohol, and cereals.Soybeans (Glycine max) are a widely grown crop in the United States. The beans are edible and have many uses. The beans are 38-45% protein and constitute the most important protein source for feed farm animals in the United States. They are also widely used to extract soybean oil, and in processed foods.Wheat (Triticum spp.) is a grass grown for seed and is used to make pasta (durum wheat), bread, baked goods, and other foods. For this service, "wheat" is a combination of durum, spring, and winter wheat, spelt, and triticale. These subclasses of wheat are identified by pixel in the USA Cropland thematic imagery service for years 2008-2019.Cotton (Gossypium spp.) is a flowering plant grown for its balls of soft, fluffy fibers that grow in a boll. Almost all of the boll is used as fiber in textiles, but the seeds may also be used to make oils, and the seed hulls used to feed livestock.
Four dichloroacetamide herbicide safeners (AD-67, benoxacor, dichlormid, and furilazole) and two co-applied herbicides (acetochlor and metolachlor) were measured in water samples from 7 streams across Iowa and Illinois. Iowa water samples were collected from March 2016 to June 2017, and Illinois water samples were collected from September 2016 to June 2017. The compounds studied are applied to corn, and Iowa and Illinois are the two largest corn producing states in the U.S. The seven stream sites are all adjacent to agricultural fields in corn production. Water samples (1-L) were collected in amber glass bottles using a grab or depth weighted approach. With the exception of one site, Iowa River at Wapello (USGS Site ID 05465500), all water samples were collected using a hydrologic based sampling approach. This means that samples were collected near peak flow during storm events and periodically during base flow conditions. Water samples were filtered (0.7 micrometers), extracted via solid phase extraction (Oasis® MAX cartridge), and analyzed for each herbicide and safener by gas chromatography with mass-spectrometry.
Nitrapyrin, a nitrification inhibitor, 6-CPA, a nitrapyrin degradate, and three co-applied herbicides (acetochlor, atrazine, and metolachlor) were measured in surface drains from eights sites in Illinois. Water samples were collected from April to June 2017. The compounds studied are applied to corn, Illinois is one of the largest corn producing states in the U.S. Water samples (1-L) were collected in amber glass bottles using a grab or depth weighted approach. Water samples were filtered (0.7 micrometers), extracted via solid phase extraction (Oasis® MAX cartridge), and analyzed (nitrapyrin and herbicides by gas chromatography with mass-spectrometry; 6-CPA by liquid chromatography tandem mass-spectrometry).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Irrigated agriculture depends on surface water and groundwater, but we do not have a clear picture of how much water is consumed from these sources by different crops across the US over time. Current estimates of crop water requirements are insufficient in providing the spatial granularity and temporal depth required for comprehensive long-term analysis. To fill this data gap, we utilized crop growth models to quantify the monthly crop water consumption - distinguishing between rainwater, surface water, and groundwater - of 30 of the most widely irrigated annual crops in the US from 1981 to 2019 at 2.5 arc minutes. These 30 crops represent approximately 95% of US irrigated cropland. We found that the average annual total crop water consumption for these 30 irrigated crops in the US was 154.2 km3 (70% blue, 30% green). Corn and alfalfa accounted for approximately 16.7 km3 and 24.8 km3 of average annual blue crop water consumption, respectively, which is nearly two-fifths of the blue crop water consumed in the US. Surface water consumption decreased by 41.2%, while groundwater consumption increased by 6.8%, resulting in a 17.3% decline in blue water consumption between 1981 and 2019. We find good agreement between our results and existing modeled evapotranspiration (ET) products, remotely sensed ET estimates (OpenET), and water use data from the U.S. Geological Survey and U.S. Department of Agriculture. Our dataset and model can help assess the impact of irrigation practices and water scarcity on crop production and sustainability.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
The Census of Agriculture, produced by the USDA National Agricultural Statistics Service (USDA), provides a complete count of America's farms, ranches and the people who grow our food. The census is conducted every five years, most recently in 2017, and provides an in-depth look at the agricultural industry.This layer summarizes corn production from the 2017 Census of Agriculture at the county level.This layer was produced from data downloaded using the USDA's QuickStats Application. The data was transformed using the Pivot Table tool in ArcGIS Pro and joined to the county boundary file provided by the USDA. The layer was published as feature layer in ArcGIS Online. Dataset SummaryPhenomenon Mapped: 2017 Corn ProductionCoordinate System: Web Mercator Auxiliary SphereExtent: 48 Contiguous United States and HawaiiVisible Scale: All ScalesSource: USDA National Agricultural Statistics Service QuickStats ApplicationPublication Date: 2017AttributesThis layer provides values for the following attributes. Note that some values are not disclosed (coded as -1 in the layer) to protect the privacy of producers in areas with limited production.Operations with SalesSales in US DollarsGrain - Area Harvested in AcresGrain - Operations with Area HarvestedGrain - Production in BushelsGrain - Irrigated Area Harvested in AcresGrain - Operations with Irrigated Area HarvestedSilage - Area Harvested in AcresSilage - Operations with Area HarvestedSilage - Production in TonsSilage - Irrigated Area Harvested in AcresSilage - Operations with Area HarvestedTraditional or Indian - Area Harvested in AcresTraditional or Indian - Operations with Area HarvestedTraditional or Indian - Production in PoundsTraditional or Indian - Irrigated Area Harvested in AcresTraditional or Indian - Operations with Area HarvestedAdditionally attributes of State Name, State Code, County Name and County Code are included to facilitate cartography and use with other layers.What can you do with this layer?This layer can be used throughout the ArcGIS system. Feature layers can be used just like any other vector layer. You can use feature layers as an input to geoprocessing tools in ArcGIS Pro or in Analysis in ArcGIS Online. Combine the layer with others in a map and set custom symbology or create a pop-up tailored for your users.For the details of working with feature layers the help documentation for ArcGIS Pro or the help documentation for ArcGIS Online are great places to start. The ArcGIS Blog is a great source of ideas for things you can do with feature layers.This layer is part of ArcGIS Living Atlas of the World that provides an easy way to find and explore many other beautiful and authoritative layers, maps, and applications on hundreds of topics.