87 datasets found
  1. T

    United States 30-Year Mortgage Rate

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Oct 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States 30-Year Mortgage Rate [Dataset]. https://tradingeconomics.com/united-states/30-year-mortgage-rate
    Explore at:
    csv, json, xml, excelAvailable download formats
    Dataset updated
    Oct 2, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Apr 1, 1971 - Oct 2, 2025
    Area covered
    United States
    Description

    30 Year Mortgage Rate in the United States increased to 6.34 percent in October 2 from 6.30 percent in the previous week. This dataset includes a chart with historical data for the United States 30 Year Mortgage Rate.

  2. T

    United States MBA 30-Yr Mortgage Rate

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Oct 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States MBA 30-Yr Mortgage Rate [Dataset]. https://tradingeconomics.com/united-states/mortgage-rate
    Explore at:
    xml, excel, json, csvAvailable download formats
    Dataset updated
    Oct 1, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 5, 1990 - Sep 26, 2025
    Area covered
    United States
    Description

    Fixed 30-year mortgage rates in the United States averaged 6.46 percent in the week ending September 26 of 2025. This dataset provides the latest reported value for - United States MBA 30-Yr Mortgage Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  3. Canada Mortgage and Housing Corporation, conventional mortgage lending rate,...

    • www150.statcan.gc.ca
    Updated Sep 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Canada Mortgage and Housing Corporation, conventional mortgage lending rate, 5-year term [Dataset]. http://doi.org/10.25318/3410014501-eng
    Explore at:
    Dataset updated
    Sep 17, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Government of Canadahttp://www.gg.ca/
    Area covered
    Canada
    Description

    This table contains data described by the following dimensions (Not all combinations are available): Geography (1 items: Canada ...).

  4. T

    China Loan Prime Rate

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Sep 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). China Loan Prime Rate [Dataset]. https://tradingeconomics.com/china/interest-rate
    Explore at:
    xml, csv, excel, jsonAvailable download formats
    Dataset updated
    Sep 6, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Oct 25, 2013 - Sep 22, 2025
    Area covered
    China
    Description

    The benchmark interest rate in China was last recorded at 3 percent. This dataset provides the latest reported value for - China Interest Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  5. Average mortgage interest rates in the UK 2000-2025, by month and type

    • statista.com
    Updated Sep 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Average mortgage interest rates in the UK 2000-2025, by month and type [Dataset]. https://www.statista.com/statistics/386301/uk-average-mortgage-interest-rates/
    Explore at:
    Dataset updated
    Sep 8, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2000 - Aug 2025
    Area covered
    United Kingdom
    Description

    Mortgage rates surged at an unprecedented pace in 2022, with the average 10-year fixed rate doubling between March and December of that year. In response to mounting inflation, the Bank of England implemented a series of rate hikes, pushing borrowing costs steadily higher. By August 2025, the average 10-year fixed mortgage rate had climbed to 4.49 percent. As financing becomes more expensive, housing demand has cooled, weighing on market sentiment and slowing house price growth. How have the mortgage hikes affected the market? After surging in 2021, the number of residential properties sold fell significantly in 2023, dipping to just above *** million transactions. This contraction in activity also dampened mortgage lending. Between the first quarter of 2023 and the first quarter of 2024, the value of new mortgage loans declined year-on-year for five consecutive quarters. Even as rates eased modestly in 2024 and housing activity picked up slightly, volumes remained well below the highs recorded in 2021. How are higher mortgages impacting homebuyers? For homeowners, the impact is being felt most acutely as fixed-rate deals expire. Mortgage terms in the UK typically range from two to ten years, and many borrowers who locked in historically low rates are now facing significantly higher repayments when refinancing. By the end of 2026, an estimated five million homeowners will see their mortgage deals expire. Roughly two million of these loans are projected to experience a monthly payment increase of up to *** British pounds by 2026, putting additional pressure on household budgets and constraining affordability across the market.

  6. T

    Sweden Interest Rate

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Aug 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Sweden Interest Rate [Dataset]. https://tradingeconomics.com/sweden/interest-rate
    Explore at:
    csv, excel, xml, jsonAvailable download formats
    Dataset updated
    Aug 20, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    May 26, 1994 - Sep 23, 2025
    Area covered
    Sweden
    Description

    The benchmark interest rate in Sweden was last recorded at 1.75 percent. This dataset provides the latest reported value for - Sweden Interest Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  7. T

    United States Fed Funds Interest Rate

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Sep 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Fed Funds Interest Rate [Dataset]. https://tradingeconomics.com/united-states/interest-rate
    Explore at:
    xml, excel, json, csvAvailable download formats
    Dataset updated
    Sep 17, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Aug 4, 1971 - Sep 17, 2025
    Area covered
    United States
    Description

    The benchmark interest rate in the United States was last recorded at 4.25 percent. This dataset provides the latest reported value for - United States Fed Funds Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  8. Funds advanced, outstanding balances, and interest rates for new and...

    • www150.statcan.gc.ca
    Updated Sep 16, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Funds advanced, outstanding balances, and interest rates for new and existing lending, Bank of Canada [Dataset]. http://doi.org/10.25318/1010000601-eng
    Explore at:
    Dataset updated
    Sep 16, 2025
    Dataset provided by
    Government of Canadahttp://www.gg.ca/
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    This table contains 102 series, with data starting from 2013, and some select series starting from 2016. This table contains data described by the following dimensions (Not all combinations are available): Geography (1 item: Canada), Components (51 items: Total, funds advanced, residential mortgages, insured; Variable rate, insured; Fixed rate, insured, less than 1 year; Fixed rate, insured, from 1 to less than 3 years; ...), and Unit of measure (2 items: Dollars; Interest rate). For additional clarification on the component dimension, please visit the OSFI website for the Report on New and Existing Lending.

  9. Single Family Guarantee Fees Report

    • s.cnmilf.com
    Updated Feb 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Federal Housing Finance Agency (2025). Single Family Guarantee Fees Report [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/single-family-guarantee-fees-report
    Explore at:
    Dataset updated
    Feb 10, 2025
    Dataset provided by
    Federal Housing Finance Agencyhttps://www.fhfa.gov/
    Description

    The Federal Housing Finance Agency (FHFA) today issued its annual report on single-family guarantee fees charged by Fannie Mae and Freddie Mac (the Enterprises). Guarantee fees are intended to cover the credit risk and other costs that the Enterprises incur when they acquire single-family loans from lenders. These costs include projected credit losses from borrower defaults over the life of the loans, administrative costs, and a return on capital. The report compares year-over-year 2020 to 2019 and provides statistics back to 2018. Significant findings of the report include: For all loan products combined, the average single-family guarantee fee in 2020 decreased 2 basis points to 54 basis points. The upfront portion of the guarantee fee, which is based on the credit risk attributes (e.g., loan purpose, loan-to-value (LTV) ratio, and credit score), decreased 2 basis points to 11 basis points on average. The ongoing portion of the guarantee fee, which is based on the product type (fixed-rate or adjustable-rate, and loan term), remained unchanged at 43 basis points on average. The average guarantee fee in 2020 on 30-year and 15-year fixed rate loans remained unchanged at 58 basis points and 36 basis points, respectively. The fee on adjustable-rate mortgage (ARM) loans increased 1 basis point to 57 basis points. The Housing and Economic Recovery Act of 2008 requires FHFA to conduct ongoing studies of the guarantee fees charged by the Enterprises and to submit a report to Congress each year.

  10. m

    Open Lending Corp - Interest-Expense

    • macro-rankings.com
    csv, excel
    Updated Jun 13, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    macro-rankings (2025). Open Lending Corp - Interest-Expense [Dataset]. https://www.macro-rankings.com/Markets/Stocks?Entity=LPRO.US&Item=Interest-Expense
    Explore at:
    csv, excelAvailable download formats
    Dataset updated
    Jun 13, 2025
    Dataset authored and provided by
    macro-rankings
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    united states
    Description

    Interest-Expense Time Series for Open Lending Corp. Open Lending Corporation provides lending enablement and risk analytics solutions to credit unions, regional banks, finance companies, and captive finance companies of automakers in the United States. The company offers lenders protection platform (LPP), which is a cloud-based automotive lending enablement platform that provides loan analytics solutions and automated issuance of credit default insurance with third-party insurance providers. Its LPP products include loan analytics, risk-based loan pricing, risk modeling, and automated decision technology for automotive lenders. The company was founded in 2000 and is headquartered in Austin, Texas.

  11. T

    Japan Interest Rate

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Sep 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Japan Interest Rate [Dataset]. https://tradingeconomics.com/japan/interest-rate
    Explore at:
    excel, xml, json, csvAvailable download formats
    Dataset updated
    Sep 30, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Oct 2, 1972 - Sep 19, 2025
    Area covered
    Japan
    Description

    The benchmark interest rate in Japan was last recorded at 0.50 percent. This dataset provides - Japan Interest Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  12. T

    Norway Interest Rate

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Sep 1, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2015). Norway Interest Rate [Dataset]. https://tradingeconomics.com/norway/interest-rate
    Explore at:
    xml, excel, csv, jsonAvailable download formats
    Dataset updated
    Sep 1, 2015
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1991 - Sep 18, 2025
    Area covered
    Norway
    Description

    The benchmark interest rate in Norway was last recorded at 4 percent. This dataset provides the latest reported value for - Norway Interest Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  13. DATASET THE COVID19 ECONOMIC PROSPECTS 2020 & 2021 of IFM

    • zenodo.org
    Updated Apr 21, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ANTONIO MIHI RAMIREZ; ANTONIO MIHI RAMIREZ (2020). DATASET THE COVID19 ECONOMIC PROSPECTS 2020 & 2021 of IFM [Dataset]. http://doi.org/10.5281/zenodo.3755378
    Explore at:
    Dataset updated
    Apr 21, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    ANTONIO MIHI RAMIREZ; ANTONIO MIHI RAMIREZ
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Dataset in excel of main macroeconomic indicators growth from 2017 to 2021 for near 200 countries and according to IMF data. It allows us to quickly assess the impact of the COVID19 in the global economic

    It includes: real GDP growth, GDP per capita, inflation, unemployment rate, general government net lending /borrowing.

  14. T

    Canada Interest Rate

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Sep 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Canada Interest Rate [Dataset]. https://tradingeconomics.com/canada/interest-rate
    Explore at:
    csv, xml, json, excelAvailable download formats
    Dataset updated
    Sep 17, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Feb 7, 1990 - Sep 17, 2025
    Area covered
    Canada
    Description

    The benchmark interest rate in Canada was last recorded at 2.50 percent. This dataset provides - Canada Interest Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  15. m

    Lument Finance Trust Inc - Price-To-Book-Ratio

    • macro-rankings.com
    csv, excel
    Updated Sep 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    macro-rankings (2025). Lument Finance Trust Inc - Price-To-Book-Ratio [Dataset]. https://www.macro-rankings.com/markets/stocks/lft-nyse/key-financial-ratios/valuation/price-to-book-ratio
    Explore at:
    csv, excelAvailable download formats
    Dataset updated
    Sep 9, 2025
    Dataset authored and provided by
    macro-rankings
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    united states
    Description

    Price-To-Book-Ratio Time Series for Lument Finance Trust Inc. Lument Finance Trust, Inc., a real estate investment trust, focuses on investing in, financing, and managing a portfolio of commercial real estate (CRE) debt investments in the United States. It invests in transitional floating rate CRE mortgage loans on middle market multi-family assets; and other CRE -related investments, including mezzanine loans, preferred equity, commercial mortgage-backed securities, fixed rate loans, construction loans, and other CRE debt instruments. The company is qualified as a real estate investment trust under the Internal Revenue Code of 1986. As a REIT, it would not be subject to federal income taxes if it distributes at least 90% of its taxable income to its stockholders. The company was formerly known as Hunt Companies Finance Trust, Inc. and changed its name to Lument Finance Trust, Inc. in December 2020. Lument Finance Trust, Inc. was incorporated in 2012 and is headquartered in New York, New York.

  16. e

    ONS Omnibus Survey, December 2006 - Dataset - B2FIND

    • b2find.eudat.eu
    Updated Dec 15, 2006
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2006). ONS Omnibus Survey, December 2006 - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/d0ed1977-432e-5974-b702-663285e4fae6
    Explore at:
    Dataset updated
    Dec 15, 2006
    Description

    Abstract copyright UK Data Service and data collection copyright owner.The Opinions and Lifestyle Survey (formerly known as the ONS Opinions Survey or Omnibus) is an omnibus survey that began in 1990, collecting data on a range of subjects commissioned by both the ONS internally and external clients (limited to other government departments, charities, non-profit organisations and academia).Data are collected from one individual aged 16 or over, selected from each sampled private household. Personal data include data on the individual, their family, address, household, income and education, plus responses and opinions on a variety of subjects within commissioned modules. The questionnaire collects timely data for research and policy analysis evaluation on the social impacts of recent topics of national importance, such as the coronavirus (COVID-19) pandemic and the cost of living, on individuals and households in Great Britain. From April 2018 to November 2019, the design of the OPN changed from face-to-face to a mixed-mode design (online first with telephone interviewing where necessary). Mixed-mode collection allows respondents to complete the survey more flexibly and provides a more cost-effective service for customers. In March 2020, the OPN was adapted to become a weekly survey used to collect data on the social impacts of the coronavirus (COVID-19) pandemic on the lives of people of Great Britain. These data are held in the Secure Access study, SN 8635, ONS Opinions and Lifestyle Survey, Covid-19 Module, 2020-2022: Secure Access. From August 2021, as coronavirus (COVID-19) restrictions were lifting across Great Britain, the OPN moved to fortnightly data collection, sampling around 5,000 households in each survey wave to ensure the survey remains sustainable. The OPN has since expanded to include questions on other topics of national importance, such as health and the cost of living. For more information about the survey and its methodology, see the ONS OPN Quality and Methodology Information webpage.Secure Access Opinions and Lifestyle Survey dataOther Secure Access OPN data cover modules run at various points from 1997-2019, on Census religion (SN 8078), cervical cancer screening (SN 8080), contact after separation (SN 8089), contraception (SN 8095), disability (SNs 8680 and 8096), general lifestyle (SN 8092), illness and activity (SN 8094), and non-resident parental contact (SN 8093). See Opinions and Lifestyle Survey: Secure Access for details. Main Topics:Each month's questionnaire consists of two elements: core questions, covering demographic information, are asked each month together with non-core questions that vary from month to month. The non-core questions for this month were: Financial capability (Module 336): this module was asked on behalf of the Financial Services Authority. The purpose of the module was to gain a general view of how respondents who have a mortgage or rent their property would cope with a change to their circumstances, such as an increase to their mortgage or rent payment or a rise in interest rates. It also asks all respondents about type and amount of debt and how the individual or family who have a mortgage or rent their property would cope with 'shock' changes to income. Disability monitoring (Module 363): the Special Licence version of this module is held under SN 6470. Use of HRT (Module 368): the National Health Service is interested in women's use of cancer screening services, in particular breast cancer screening and cervical cancer screening. The module also asks about the use of hormone replacement therapy (HRT). Older workers (Module MAW): this module was asked on behalf of the Centre for Research into the Older Workforce (CROW) and examines work based training opportunities for older workers. Multi-stage stratified random sample Face-to-face interview

  17. 2024 American Community Survey: B25097 | Mortgage Status by Median Value...

    • data.census.gov
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS, 2024 American Community Survey: B25097 | Mortgage Status by Median Value (Dollars) (ACS 1-Year Estimates Detailed Tables) [Dataset]. https://data.census.gov/table?tid=ACSDT1Y2024.B25097
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2024
    Description

    Key Table Information.Table Title.Mortgage Status by Median Value (Dollars).Table ID.ACSDT1Y2024.B25097.Survey/Program.American Community Survey.Year.2024.Dataset.ACS 1-Year Estimates Detailed Tables.Source.U.S. Census Bureau, 2024 American Community Survey, 1-Year Estimates.Dataset Universe.The dataset universe of the American Community Survey (ACS) is the U.S. resident population and housing. For more information about ACS residence rules, see the ACS Design and Methodology Report. Note that each table describes the specific universe of interest for that set of estimates..Methodology.Unit(s) of Observation.American Community Survey (ACS) data are collected from individuals living in housing units and group quarters, and about housing units whether occupied or vacant. For more information about ACS sampling and data collection, see the ACS Design and Methodology Report..Geography Coverage.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year.Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Sampling.The ACS consists of two separate samples: housing unit addresses and group quarters facilities. Independent housing unit address samples are selected for each county or county-equivalent in the U.S. and Puerto Rico, with sampling rates depending on a measure of size for the area. For more information on sampling in the ACS, see the Accuracy of the Data document..Confidentiality.The Census Bureau has modified or suppressed some estimates in ACS data products to protect respondents' confidentiality. Title 13 United States Code, Section 9, prohibits the Census Bureau from publishing results in which an individual's data can be identified. For more information on confidentiality protection in the ACS, see the Accuracy of the Data document..Technical Documentation/Methodology.Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables.Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Weights.ACS estimates are obtained from a raking ratio estimation procedure that results in the assignment of two sets of weights: a weight to each sample person record and a weight to each sample housing unit record. Estimates of person characteristics are based on the person weight. Estimates of family, household, and housing unit characteristics are based on the housing unit weight. For any given geographic area, a characteristic total is estimated by summing the weights assigned to the persons, households, families or housing units possessing the characteristic in the geographic area. For more information on weighting and estimation in the ACS, see the Accuracy of the Data document.Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and ...

  18. 2024 American Community Survey: S2506 | Financial Characteristics for...

    • data.census.gov
    Updated Oct 1, 1970
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS (1970). 2024 American Community Survey: S2506 | Financial Characteristics for Housing Units With a Mortgage (ACS 1-Year Estimates Subject Tables) [Dataset]. https://data.census.gov/table/ACSST1Y2024.S2506?q=Income+(Households,+Families,+Individuals)&g=040XX00US16_050XX00US16021_1500000US160219701001
    Explore at:
    Dataset updated
    Oct 1, 1970
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2024
    Description

    Key Table Information.Table Title.Financial Characteristics for Housing Units With a Mortgage.Table ID.ACSST1Y2024.S2506.Survey/Program.American Community Survey.Year.2024.Dataset.ACS 1-Year Estimates Subject Tables.Source.U.S. Census Bureau, 2024 American Community Survey, 1-Year Estimates.Dataset Universe.The dataset universe of the American Community Survey (ACS) is the U.S. resident population and housing. For more information about ACS residence rules, see the ACS Design and Methodology Report. Note that each table describes the specific universe of interest for that set of estimates..Methodology.Unit(s) of Observation.American Community Survey (ACS) data are collected from individuals living in housing units and group quarters, and about housing units whether occupied or vacant. For more information about ACS sampling and data collection, see the ACS Design and Methodology Report..Geography Coverage.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year.Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Sampling.The ACS consists of two separate samples: housing unit addresses and group quarters facilities. Independent housing unit address samples are selected for each county or county-equivalent in the U.S. and Puerto Rico, with sampling rates depending on a measure of size for the area. For more information on sampling in the ACS, see the Accuracy of the Data document..Confidentiality.The Census Bureau has modified or suppressed some estimates in ACS data products to protect respondents' confidentiality. Title 13 United States Code, Section 9, prohibits the Census Bureau from publishing results in which an individual's data can be identified. For more information on confidentiality protection in the ACS, see the Accuracy of the Data document..Technical Documentation/Methodology.Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables.Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Weights.ACS estimates are obtained from a raking ratio estimation procedure that results in the assignment of two sets of weights: a weight to each sample person record and a weight to each sample housing unit record. Estimates of person characteristics are based on the person weight. Estimates of family, household, and housing unit characteristics are based on the housing unit weight. For any given geographic area, a characteristic total is estimated by summing the weights assigned to the persons, households, families or housing units possessing the characteristic in the geographic area. For more information on weighting and estimation in the ACS, see the Accuracy of the Data document.Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities...

  19. 2024 American Community Survey: B25090 | Mortgage Status by Aggregate Real...

    • data.census.gov
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS, 2024 American Community Survey: B25090 | Mortgage Status by Aggregate Real Estate Taxes Paid (Dollars) (ACS 1-Year Estimates Detailed Tables) [Dataset]. https://data.census.gov/table?tid=ACSDT1Y2024.B25090
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2024
    Description

    Key Table Information.Table Title.Mortgage Status by Aggregate Real Estate Taxes Paid (Dollars).Table ID.ACSDT1Y2024.B25090.Survey/Program.American Community Survey.Year.2024.Dataset.ACS 1-Year Estimates Detailed Tables.Source.U.S. Census Bureau, 2024 American Community Survey, 1-Year Estimates.Dataset Universe.The dataset universe of the American Community Survey (ACS) is the U.S. resident population and housing. For more information about ACS residence rules, see the ACS Design and Methodology Report. Note that each table describes the specific universe of interest for that set of estimates..Methodology.Unit(s) of Observation.American Community Survey (ACS) data are collected from individuals living in housing units and group quarters, and about housing units whether occupied or vacant. For more information about ACS sampling and data collection, see the ACS Design and Methodology Report..Geography Coverage.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year.Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Sampling.The ACS consists of two separate samples: housing unit addresses and group quarters facilities. Independent housing unit address samples are selected for each county or county-equivalent in the U.S. and Puerto Rico, with sampling rates depending on a measure of size for the area. For more information on sampling in the ACS, see the Accuracy of the Data document..Confidentiality.The Census Bureau has modified or suppressed some estimates in ACS data products to protect respondents' confidentiality. Title 13 United States Code, Section 9, prohibits the Census Bureau from publishing results in which an individual's data can be identified. For more information on confidentiality protection in the ACS, see the Accuracy of the Data document..Technical Documentation/Methodology.Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables.Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Weights.ACS estimates are obtained from a raking ratio estimation procedure that results in the assignment of two sets of weights: a weight to each sample person record and a weight to each sample housing unit record. Estimates of person characteristics are based on the person weight. Estimates of family, household, and housing unit characteristics are based on the housing unit weight. For any given geographic area, a characteristic total is estimated by summing the weights assigned to the persons, households, families or housing units possessing the characteristic in the geographic area. For more information on weighting and estimation in the ACS, see the Accuracy of the Data document.Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, ci...

  20. d

    SONYMA Target Areas by Census Tract

    • catalog.data.gov
    Updated Jan 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ny.gov (2025). SONYMA Target Areas by Census Tract [Dataset]. https://catalog.data.gov/dataset/sonyma-target-areas-by-census-tract
    Explore at:
    Dataset updated
    Jan 3, 2025
    Dataset provided by
    data.ny.gov
    Description

    Listing of SONYMA target areas by US Census Bureau Census Tract or Block Numbering Area (BNA). The State of New York Mortgage Agency (SONYMA) targets specific areas designated as ‘areas of chronic economic distress’ for its homeownership lending programs. Each state designates ‘areas of chronic economic distress’ with the approval of the US Secretary of Housing and Urban Development (HUD). SONYMA identifies its target areas using US Census Bureau census tracts and block numbering areas. Both census tracts and block numbering areas subdivide individual counties. SONYMA also relates each of its single-family mortgages to a specific census tract or block numbering area. New York State identifies ‘areas of chronic economic distress’ using census tract numbers. 26 US Code § 143 (current through Pub. L. 114-38) defines the criteria that the Secretary of Housing and Urban Development uses in approving designations of ‘areas of chronic economic distress’ as: i) the condition of the housing stock, including the age of the housing and the number of abandoned and substandard residential units, (ii) the need of area residents for owner-financing under this section, as indicated by low per capita income, a high percentage of families in poverty, a high number of welfare recipients, and high unemployment rates, (iii) the potential for use of owner-financing under this section to improve housing conditions in the area, and (iv) the existence of a housing assistance plan which provides a displacement program and a public improvements and services program. The US Census Bureau’s decennial census last took place in 2010 and will take place again in 2020. While the state designates ‘areas of chronic economic distress,’ the US Department of Housing and Urban Development must approve the designation. The designation takes place after the decennial census.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
TRADING ECONOMICS (2025). United States 30-Year Mortgage Rate [Dataset]. https://tradingeconomics.com/united-states/30-year-mortgage-rate

United States 30-Year Mortgage Rate

United States 30-Year Mortgage Rate - Historical Dataset (1971-04-01/2025-10-02)

Explore at:
csv, json, xml, excelAvailable download formats
Dataset updated
Oct 2, 2025
Dataset authored and provided by
TRADING ECONOMICS
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Apr 1, 1971 - Oct 2, 2025
Area covered
United States
Description

30 Year Mortgage Rate in the United States increased to 6.34 percent in October 2 from 6.30 percent in the previous week. This dataset includes a chart with historical data for the United States 30 Year Mortgage Rate.

Search
Clear search
Close search
Google apps
Main menu