37 datasets found
  1. T

    China Average Yearly Wages

    • tradingeconomics.com
    • de.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jun 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). China Average Yearly Wages [Dataset]. https://tradingeconomics.com/china/wages
    Explore at:
    json, xml, csv, excelAvailable download formats
    Dataset updated
    Jun 15, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1952 - Dec 31, 2024
    Area covered
    China
    Description

    Wages in China increased to 120698 CNY/Year in 2023 from 114029 CNY/Year in 2022. This dataset provides - China Average Yearly Wages - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  2. T

    Japan Average Monthly Wages

    • tradingeconomics.com
    • de.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, Japan Average Monthly Wages [Dataset]. https://tradingeconomics.com/japan/wages
    Explore at:
    json, excel, csv, xmlAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1970 - May 31, 2025
    Area covered
    Japan
    Description

    Wages in Japan decreased to 335164 JPY/Month in May from 338252 JPY/Month in April of 2025. This dataset provides - Japan Average Monthly Wages - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  3. T

    Netherlands Gross Monthly Income

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Feb 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Netherlands Gross Monthly Income [Dataset]. https://tradingeconomics.com/netherlands/wages
    Explore at:
    json, excel, xml, csvAvailable download formats
    Dataset updated
    Feb 20, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1970 - Dec 31, 2025
    Area covered
    Netherlands
    Description

    Wages in Netherlands increased to 3875 EUR/Month in 2025 from 3708.33 EUR/Month in 2024. This dataset provides - Netherlands Average Hourly Wages Index - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  4. F

    Real Median Personal Income in the United States

    • fred.stlouisfed.org
    json
    Updated Sep 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Real Median Personal Income in the United States [Dataset]. https://fred.stlouisfed.org/series/MEPAINUSA672N
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Sep 10, 2024
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    United States
    Description

    Graph and download economic data for Real Median Personal Income in the United States (MEPAINUSA672N) from 1974 to 2023 about personal income, personal, median, income, real, and USA.

  5. N

    Colona, IL annual income distribution by work experience and gender dataset:...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Colona, IL annual income distribution by work experience and gender dataset: Number of individuals ages 15+ with income, 2023 // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/ba9ea872-f4ce-11ef-8577-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Colona, Illinois
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time, Number of males working full time for a given income bracket, Number of males working part time for a given income bracket, Number of females working full time for a given income bracket, Number of females working part time for a given income bracket
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To portray the number of individuals for both the genders (Male and Female), within each income bracket we conducted an initial analysis and categorization of the American Community Survey data. Households are categorized, and median incomes are reported based on the self-identified gender of the head of the household. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within Colona. The dataset can be utilized to gain insights into gender-based income distribution within the Colona population, aiding in data analysis and decision-making..

    Key observations

    • Employment patterns: Within Colona, among individuals aged 15 years and older with income, there were 1,970 men and 2,184 women in the workforce. Among them, 1,130 men were engaged in full-time, year-round employment, while 1,124 women were in full-time, year-round roles.
    • Annual income under $24,999: Of the male population working full-time, none fell within the income range of under $24,999, while 17.26% of the female population working full-time was represented in the same income bracket.
    • Annual income above $100,000: 20.09% of men in full-time roles earned incomes exceeding $100,000, while 3.74% of women in full-time positions earned within this income bracket.
    • Refer to the research insights for more key observations on more income brackets ( Annual income under $24,999, Annual income between $25,000 and $49,999, Annual income between $50,000 and $74,999, Annual income between $75,000 and $99,999 and Annual income above $100,000) and employment types (full-time year-round and part-time)
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income brackets:

    • $1 to $2,499 or loss
    • $2,500 to $4,999
    • $5,000 to $7,499
    • $7,500 to $9,999
    • $10,000 to $12,499
    • $12,500 to $14,999
    • $15,000 to $17,499
    • $17,500 to $19,999
    • $20,000 to $22,499
    • $22,500 to $24,999
    • $25,000 to $29,999
    • $30,000 to $34,999
    • $35,000 to $39,999
    • $40,000 to $44,999
    • $45,000 to $49,999
    • $50,000 to $54,999
    • $55,000 to $64,999
    • $65,000 to $74,999
    • $75,000 to $99,999
    • $100,000 or more

    Variables / Data Columns

    • Income Bracket: This column showcases 20 income brackets ranging from $1 to $100,000+..
    • Full-Time Males: The count of males employed full-time year-round and earning within a specified income bracket
    • Part-Time Males: The count of males employed part-time and earning within a specified income bracket
    • Full-Time Females: The count of females employed full-time year-round and earning within a specified income bracket
    • Part-Time Females: The count of females employed part-time and earning within a specified income bracket

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Colona median household income by race. You can refer the same here

  6. T

    Panama Average Monthly Wages

    • tradingeconomics.com
    • tr.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Panama Average Monthly Wages [Dataset]. https://tradingeconomics.com/panama/wages
    Explore at:
    csv, json, xml, excelAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1970 - Dec 31, 2023
    Area covered
    Panama
    Description

    Wages in Panama increased to 1288 PAB/Month in 2023 from 1275 PAB/Month in 2022. This dataset provides - Panama Wages- actual values, historical data, forecast, chart, statistics, economic calendar and news.

  7. T

    Vital Signs: Income (Median by Workplace) – by county (2022)

    • data.bayareametro.gov
    application/rdfxml +5
    Updated Feb 1, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Vital Signs: Income (Median by Workplace) – by county (2022) [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Income-Median-by-Workplace-by-county-2/7xhi-hjk7
    Explore at:
    csv, application/rssxml, tsv, json, xml, application/rdfxmlAvailable download formats
    Dataset updated
    Feb 1, 2023
    Description

    VITAL SIGNS INDICATOR
    Income (EC4)

    FULL MEASURE NAME
    Household income by place of residence

    LAST UPDATED
    January 2023

    DESCRIPTION
    Income reflects the median earnings of individuals and households from employment, as well as the income distribution by quintile. Income data highlight how employees are being compensated for their work on an inflation-adjusted basis.

    DATA SOURCE
    U.S. Census Bureau: Decennial Census - https://nhgis.org
    Count 4Pb (1970)
    Form STF3 (1980-1990)
    Form SF3a (2000)

    U.S. Census Bureau: American Community Survey - https://data.census.gov/
    Form B19001 (2005-2021; household income by place of residence)
    Form B19013 (2005-2021; median household income by place of residence)
    Form B08521 (2005-2021; median worker earnings by place of employment)

    Bureau of Labor Statistics: Consumer Price Index - https://www.bls.gov/data/
    1970-2021

    CONTACT INFORMATION
    vitalsigns.info@bayareametro.gov

    METHODOLOGY NOTES (across all datasets for this indicator)
    Income derived from the decennial Census data reflects the income earned in the prior calendar year, whereas income derived from the American Community Survey (ACS) data reflects the prior 12 month period; note that this inconsistency has a minor effect on historical comparisons (see Income and Earnings Data section of the ACS General Handbook - https://www.census.gov/content/dam/Census/library/publications/2020/acs/acs_general_handbook_2020_ch09.pdf). ACS 1-year data is used for larger geographies – Bay counties and most metropolitan area counties – while smaller geographies rely upon 5-year rolling average data due to their smaller sample sizes. Note that 2020 data uses the 5-year estimates because the ACS did not collect 1-year data for 2020.

    Quintile income for 1970-2000 is imputed from decennial Census data using methodology from the California Department of Finance. Bay Area income is the population weighted average of county-level income.

    Income has been inflated using the Consumer Price Index (CPI) for 2021 specific to each metro area; however, some metro areas lack metro-specific CPI data back to 1970 and therefore adjusted data uses national CPI for 1970. Note that current MSA boundaries were used for historical comparison by identifying counties included in today’s metro areas.

  8. T

    Vital Signs: Income (Median by Place of Residence) – Bay Area

    • data.bayareametro.gov
    • open-data-demo.mtc.ca.gov
    application/rdfxml +5
    Updated Aug 2, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2019). Vital Signs: Income (Median by Place of Residence) – Bay Area [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Income-Median-by-Place-of-Residence-Ba/hp78-6nm2
    Explore at:
    application/rssxml, csv, xml, application/rdfxml, tsv, jsonAvailable download formats
    Dataset updated
    Aug 2, 2019
    Area covered
    San Francisco Bay Area
    Description

    VITAL SIGNS INDICATOR Income (EC4)

    FULL MEASURE NAME Household income by place of residence

    LAST UPDATED May 2019

    DESCRIPTION Income reflects the median earnings of individuals and households from employment, as well as the income distribution by quintile. Income data highlight how employees are being compensated for their work on an inflation-adjusted basis.

    DATA SOURCE U.S. Census Bureau: Decennial Census Count 4Pb (1970) Form STF3 (1980-1990) Form SF3a (2000) https://nhgis.org

    U.S. Census Bureau: American Community Survey Form B19013 (2006-2017; place of residence) http://api.census.gov

    Bureau of Labor Statistics: Consumer Price Index All Urban Consumers Data Table (1970-2017; specific to each metro area) http://data.bls.gov

    CONTACT INFORMATION vitalsigns.info@bayareametro.gov

    METHODOLOGY NOTES (across all datasets for this indicator) Income data reported in a given year reflects the income earned in the prior year (decennial Census) or in the prior 12 months (American Community Survey); note that this inconsistency has a minor effect on historical comparisons (for more information, go to: http://www.census.gov/acs/www/Downloads/methodology/ASA_nelson.pdf). American Community Survey 1-year data is used for larger geographies – metropolitan areas and counties – while smaller geographies rely upon 5-year rolling average data due to their smaller sample sizes. Quintile income for 1970-2000 is imputed from Decennial Census data using methodology from the California Department of Finance (for more information, go to: http://www.dof.ca.gov/Forecasting/Demographics/Census_Data_Center_Network/documents/How_to_Recalculate_a_Median.pdf). Bay Area income is the population weighted average of county-level income.

    Income has been inflated using the Consumer Price Index specific to each metro area; however, some metro areas lack metro-specific CPI data back to 1970 and therefore adjusted data is unavailable for some historical data points. Note that current MSA boundaries were used for historical comparison by identifying counties included in today’s metro areas.

  9. d

    Woods & Poole Complete US Database

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Mar 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Woods & Poole (2024). Woods & Poole Complete US Database [Dataset]. http://doi.org/10.7910/DVN/ZCPMU6
    Explore at:
    Dataset updated
    Mar 6, 2024
    Dataset provided by
    Harvard Dataverse
    Authors
    Woods & Poole
    Time period covered
    Jan 1, 1970 - Jan 1, 2050
    Description

    The 2018 edition of Woods and Poole Complete U.S. Database provides annual historical data from 1970 (some variables begin in 1990) and annual projections to 2050 of population by race, sex, and age, employment by industry, earnings of employees by industry, personal income by source, households by income bracket and retail sales by kind of business. The Complete U.S. Database contains annual data for all economic and demographic variables for all geographic areas in the Woods & Poole database (the U.S. total, and all regions, states, counties, and CBSAs). The Complete U.S. Database has following components: Demographic & Economic Desktop Data Files: There are 122 files covering demographic and economic data. The first 31 files (WP001.csv – WP031.csv) cover demographic data. The remaining files (WP032.csv – WP122.csv) cover economic data. Demographic DDFs: Provide population data for the U.S., regions, states, Combined Statistical Areas (CSAs), Metropolitan Statistical Areas (MSAs), Micropolitan Statistical Areas (MICROs), Metropolitan Divisions (MDIVs), and counties. Each variable is in a separate .csv file. Variables: Total Population Population Age (breakdown: 0-4, 5-9, 10-15 etc. all the way to 85 & over) Median Age of Population White Population Population Native American Population Asian & Pacific Islander Population Hispanic Population, any Race Total Population Age (breakdown: 0-17, 15-17, 18-24, 65 & over) Male Population Female Population Economic DDFs: The other files (WP032.csv – WP122.csv) provide employment and income data on: Total Employment (by industry) Total Earnings of Employees (by industry) Total Personal Income (by source) Household income (by brackets) Total Retail & Food Services Sales ( by industry) Net Earnings Gross Regional Product Retail Sales per Household Economic & Demographic Flat File: A single file for total number of people by single year of age (from 0 to 85 and over), race, and gender. It covers all U.S., regions, states, CSAs, MSAs and counties. Years of coverage: 1990 - 2050 Single Year of Age by Race and Gender: Separate files for number of people by single year of age (from 0 years to 85 years and over), race (White, Black, Native American, Asian American & Pacific Islander and Hispanic) and gender. Years of coverage: 1990 through 2050. DATA AVAILABLE FOR 1970-2019; FORECASTS THROUGH 2050

  10. T

    United States Average Hourly Wages

    • tradingeconomics.com
    • pt.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jun 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Average Hourly Wages [Dataset]. https://tradingeconomics.com/united-states/wages
    Explore at:
    json, csv, xml, excelAvailable download formats
    Dataset updated
    Jun 15, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1964 - Jun 30, 2025
    Area covered
    United States
    Description

    Wages in the United States increased to 31.24 USD/Hour in June from 31.15 USD/Hour in May of 2025. This dataset provides - United States Average Hourly Wages - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  11. House price to residence-based earnings ratio

    • ons.gov.uk
    • cloud.csiss.gmu.edu
    • +2more
    xlsx
    Updated Mar 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2025). House price to residence-based earnings ratio [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/housing/datasets/ratioofhousepricetoresidencebasedearningslowerquartileandmedian
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Mar 24, 2025
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Affordability ratios calculated by dividing house prices by gross annual residence-based earnings. Based on the median and lower quartiles of both house prices and earnings in England and Wales.

  12. N

    Carlisle, Massachusetts annual income distribution by work experience and...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Carlisle, Massachusetts annual income distribution by work experience and gender dataset: Number of individuals ages 15+ with income, 2023 // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/ba9ba4a8-f4ce-11ef-8577-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Carlisle, Massachusetts
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time, Number of males working full time for a given income bracket, Number of males working part time for a given income bracket, Number of females working full time for a given income bracket, Number of females working part time for a given income bracket
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To portray the number of individuals for both the genders (Male and Female), within each income bracket we conducted an initial analysis and categorization of the American Community Survey data. Households are categorized, and median incomes are reported based on the self-identified gender of the head of the household. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within Carlisle town. The dataset can be utilized to gain insights into gender-based income distribution within the Carlisle town population, aiding in data analysis and decision-making..

    Key observations

    • Employment patterns: Within Carlisle town, among individuals aged 15 years and older with income, there were 1,970 men and 1,555 women in the workforce. Among them, 1,136 men were engaged in full-time, year-round employment, while 621 women were in full-time, year-round roles.
    • Annual income under $24,999: Of the male population working full-time, 0.70% fell within the income range of under $24,999, while 6.28% of the female population working full-time was represented in the same income bracket.
    • Annual income above $100,000: 89% of men in full-time roles earned incomes exceeding $100,000, while 75.36% of women in full-time positions earned within this income bracket.
    • Refer to the research insights for more key observations on more income brackets ( Annual income under $24,999, Annual income between $25,000 and $49,999, Annual income between $50,000 and $74,999, Annual income between $75,000 and $99,999 and Annual income above $100,000) and employment types (full-time year-round and part-time)
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income brackets:

    • $1 to $2,499 or loss
    • $2,500 to $4,999
    • $5,000 to $7,499
    • $7,500 to $9,999
    • $10,000 to $12,499
    • $12,500 to $14,999
    • $15,000 to $17,499
    • $17,500 to $19,999
    • $20,000 to $22,499
    • $22,500 to $24,999
    • $25,000 to $29,999
    • $30,000 to $34,999
    • $35,000 to $39,999
    • $40,000 to $44,999
    • $45,000 to $49,999
    • $50,000 to $54,999
    • $55,000 to $64,999
    • $65,000 to $74,999
    • $75,000 to $99,999
    • $100,000 or more

    Variables / Data Columns

    • Income Bracket: This column showcases 20 income brackets ranging from $1 to $100,000+..
    • Full-Time Males: The count of males employed full-time year-round and earning within a specified income bracket
    • Part-Time Males: The count of males employed part-time and earning within a specified income bracket
    • Full-Time Females: The count of females employed full-time year-round and earning within a specified income bracket
    • Part-Time Females: The count of females employed part-time and earning within a specified income bracket

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Carlisle town median household income by race. You can refer the same here

  13. N

    Brown County, IN annual income distribution by work experience and gender...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Brown County, IN annual income distribution by work experience and gender dataset: Number of individuals ages 15+ with income, 2023 // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/brown-county-in-income-by-gender/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Brown County
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time, Number of males working full time for a given income bracket, Number of males working part time for a given income bracket, Number of females working full time for a given income bracket, Number of females working part time for a given income bracket
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To portray the number of individuals for both the genders (Male and Female), within each income bracket we conducted an initial analysis and categorization of the American Community Survey data. Households are categorized, and median incomes are reported based on the self-identified gender of the head of the household. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within Brown County. The dataset can be utilized to gain insights into gender-based income distribution within the Brown County population, aiding in data analysis and decision-making..

    Key observations

    • Employment patterns: Within Brown County, among individuals aged 15 years and older with income, there were 6,377 men and 5,812 women in the workforce. Among them, 3,090 men were engaged in full-time, year-round employment, while 1,970 women were in full-time, year-round roles.
    • Annual income under $24,999: Of the male population working full-time, 7.99% fell within the income range of under $24,999, while 8.27% of the female population working full-time was represented in the same income bracket.
    • Annual income above $100,000: 29.13% of men in full-time roles earned incomes exceeding $100,000, while 17.31% of women in full-time positions earned within this income bracket.
    • Refer to the research insights for more key observations on more income brackets ( Annual income under $24,999, Annual income between $25,000 and $49,999, Annual income between $50,000 and $74,999, Annual income between $75,000 and $99,999 and Annual income above $100,000) and employment types (full-time year-round and part-time)
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income brackets:

    • $1 to $2,499 or loss
    • $2,500 to $4,999
    • $5,000 to $7,499
    • $7,500 to $9,999
    • $10,000 to $12,499
    • $12,500 to $14,999
    • $15,000 to $17,499
    • $17,500 to $19,999
    • $20,000 to $22,499
    • $22,500 to $24,999
    • $25,000 to $29,999
    • $30,000 to $34,999
    • $35,000 to $39,999
    • $40,000 to $44,999
    • $45,000 to $49,999
    • $50,000 to $54,999
    • $55,000 to $64,999
    • $65,000 to $74,999
    • $75,000 to $99,999
    • $100,000 or more

    Variables / Data Columns

    • Income Bracket: This column showcases 20 income brackets ranging from $1 to $100,000+..
    • Full-Time Males: The count of males employed full-time year-round and earning within a specified income bracket
    • Part-Time Males: The count of males employed part-time and earning within a specified income bracket
    • Full-Time Females: The count of females employed full-time year-round and earning within a specified income bracket
    • Part-Time Females: The count of females employed part-time and earning within a specified income bracket

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Brown County median household income by race. You can refer the same here

  14. South Korean Occupational Wage Survey: 1971, 1976, 1980, 1983, 1986, 1989,...

    • icpsr.umich.edu
    • scholarship.libraries.rutgers.edu
    ascii, delimited, sas +2
    Updated Dec 14, 2009
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rodgers, Yana (2009). South Korean Occupational Wage Survey: 1971, 1976, 1980, 1983, 1986, 1989, 1992, 1994, 1996, 1998 [Dataset]. http://doi.org/10.3886/ICPSR24621.v1
    Explore at:
    delimited, spss, ascii, stata, sasAvailable download formats
    Dataset updated
    Dec 14, 2009
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    Rodgers, Yana
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/24621/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/24621/terms

    Time period covered
    1971
    Area covered
    South Korea
    Description

    South Korea's Occupational Wage Survey (OWS) is an annual business establishment survey conducted since 1970 by South Korea's Ministry of Labor. The dataset contains detailed information on individual workers' earnings, hours worked, educational attainment, actual labor market experience, occupation, industry, and region. The surveyed establishments must employ at least ten workers and were selected by a stratified random sampling method. Because they exclude workers in small enterprises, the self-employed, family workers, temporary workers, and public sector workers, the surveys represent approximately one-half of South Korea's total nonagricultural labor force. The samples for each year are randomly drawn from the original surveys. The surveys cover all industries up through 1986. After 1986, agriculture, forestry, hunting, and fishing are excluded. This change in sampling procedure does not appear to cause a significant change in the types of nonfarm enterprises covered by the survey.

  15. Generational income: The effects of taxes and benefits

    • cy.ons.gov.uk
    • ons.gov.uk
    csv, csvw, txt, xls
    Updated Sep 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Paula Croal (2022). Generational income: The effects of taxes and benefits [Dataset]. https://cy.ons.gov.uk/datasets/generational-income
    Explore at:
    csv, txt, xls, csvwAvailable download formats
    Dataset updated
    Sep 15, 2022
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    Authors
    Paula Croal
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    The effects of direct and indirect taxation and benefits received in cash or kind on household income, across the generations and by age.

    This data is estimated by combining multiple years of the Living Costs and Food Survey from 1978 to financial year ending March 2017 and the Household Finances Statistics, from financial year ending 2018 to financial year ending 2021 with the exception of 1979 and 1981. All financial amounts are adjusted for inflation using the Consumer Prices Index including owner occupiers’ housing costs (CPIH) excluding Council Tax, to their financial year ending March 2018. For example, the mean disposable income for those aged 35 and born in the 1970’s (£35,752) is estimated by taking the average (in real terms) of the household disposable income for these people across the combined dataset.

  16. N

    Colebrookdale Township, Pennsylvania annual income distribution by work...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Colebrookdale Township, Pennsylvania annual income distribution by work experience and gender dataset: Number of individuals ages 15+ with income, 2023 // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/colebrookdale-township-pa-income-by-gender/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Pennsylvania, Colebrookdale Township
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time, Number of males working full time for a given income bracket, Number of males working part time for a given income bracket, Number of females working full time for a given income bracket, Number of females working part time for a given income bracket
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To portray the number of individuals for both the genders (Male and Female), within each income bracket we conducted an initial analysis and categorization of the American Community Survey data. Households are categorized, and median incomes are reported based on the self-identified gender of the head of the household. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within Colebrookdale township. The dataset can be utilized to gain insights into gender-based income distribution within the Colebrookdale township population, aiding in data analysis and decision-making..

    Key observations

    • Employment patterns: Within Colebrookdale township, among individuals aged 15 years and older with income, there were 1,970 men and 1,983 women in the workforce. Among them, 1,178 men were engaged in full-time, year-round employment, while 748 women were in full-time, year-round roles.
    • Annual income under $24,999: Of the male population working full-time, 5.26% fell within the income range of under $24,999, while 7.49% of the female population working full-time was represented in the same income bracket.
    • Annual income above $100,000: 15.03% of men in full-time roles earned incomes exceeding $100,000, while 5.75% of women in full-time positions earned within this income bracket.
    • Refer to the research insights for more key observations on more income brackets ( Annual income under $24,999, Annual income between $25,000 and $49,999, Annual income between $50,000 and $74,999, Annual income between $75,000 and $99,999 and Annual income above $100,000) and employment types (full-time year-round and part-time)
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income brackets:

    • $1 to $2,499 or loss
    • $2,500 to $4,999
    • $5,000 to $7,499
    • $7,500 to $9,999
    • $10,000 to $12,499
    • $12,500 to $14,999
    • $15,000 to $17,499
    • $17,500 to $19,999
    • $20,000 to $22,499
    • $22,500 to $24,999
    • $25,000 to $29,999
    • $30,000 to $34,999
    • $35,000 to $39,999
    • $40,000 to $44,999
    • $45,000 to $49,999
    • $50,000 to $54,999
    • $55,000 to $64,999
    • $65,000 to $74,999
    • $75,000 to $99,999
    • $100,000 or more

    Variables / Data Columns

    • Income Bracket: This column showcases 20 income brackets ranging from $1 to $100,000+..
    • Full-Time Males: The count of males employed full-time year-round and earning within a specified income bracket
    • Part-Time Males: The count of males employed part-time and earning within a specified income bracket
    • Full-Time Females: The count of females employed full-time year-round and earning within a specified income bracket
    • Part-Time Females: The count of females employed part-time and earning within a specified income bracket

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Colebrookdale township median household income by race. You can refer the same here

  17. T

    Taiwan Average Monthly Wage In Industry and Services

    • tradingeconomics.com
    • ar.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, Taiwan Average Monthly Wage In Industry and Services [Dataset]. https://tradingeconomics.com/taiwan/wages
    Explore at:
    json, xml, excel, csvAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1980 - May 31, 2025
    Area covered
    Taiwan
    Description

    Wages in Taiwan increased to 61902 TWD/Month in May from 55486 TWD/Month in April of 2025. This dataset provides - Taiwan Wages- actual values, historical data, forecast, chart, statistics, economic calendar and news.

  18. d

    2010 County and City-Level Water-Use Data and Associated Explanatory...

    • catalog.data.gov
    • data.usgs.gov
    • +3more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). 2010 County and City-Level Water-Use Data and Associated Explanatory Variables [Dataset]. https://catalog.data.gov/dataset/2010-county-and-city-level-water-use-data-and-associated-explanatory-variables
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    U.S. Geological Survey
    Description

    This data release contains the input-data files and R scripts associated with the analysis presented in [citation of manuscript]. The spatial extent of the data is the contiguous U.S. The input-data files include one comma separated value (csv) file of county-level data, and one csv file of city-level data. The county-level csv (“county_data.csv”) contains data for 3,109 counties. This data includes two measures of water use, descriptive information about each county, three grouping variables (climate region, urban class, and economic dependency), and contains 18 explanatory variables: proportion of population growth from 2000-2010, fraction of withdrawals from surface water, average daily water yield, mean annual maximum temperature from 1970-2010, 2005-2010 maximum temperature departure from the 40-year maximum, mean annual precipitation from 1970-2010, 2005-2010 mean precipitation departure from the 40-year mean, Gini income disparity index, percent of county population with at least some college education, Cook Partisan Voting Index, housing density, median household income, average number of people per household, median age of structures, percent of renters, percent of single family homes, percent apartments, and a numeric version of urban class. The city-level csv (city_data.csv) contains data for 83 cities. This data includes descriptive information for each city, water-use measures, one grouping variable (climate region), and 6 explanatory variables: type of water bill (increasing block rate, decreasing block rate, or uniform), average price of water bill, number of requirement-oriented water conservation policies, number of rebate-oriented water conservation policies, aridity index, and regional price parity. The R scripts construct fixed-effects and Bayesian Hierarchical regression models. The primary difference between these models relates to how they handle possible clustering in the observations that define unique water-use settings. Fixed-effects models address possible clustering in one of two ways. In a "fully pooled" fixed-effects model, any clustering by group is ignored, and a single, fixed estimate of the coefficient for each covariate is developed using all of the observations. Conversely, in an unpooled fixed-effects model, separate coefficient estimates are developed only using the observations in each group. A hierarchical model provides a compromise between these two extremes. Hierarchical models extend single-level regression to data with a nested structure, whereby the model parameters vary at different levels in the model, including a lower level that describes the actual data and an upper level that influences the values taken by parameters in the lower level. The county-level models were compared using the Watanabe-Akaike information criterion (WAIC) which is derived from the log pointwise predictive density of the models and can be shown to approximate out-of-sample predictive performance. All script files are intended to be used with R statistical software (R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org) and Stan probabilistic modeling software (Stan Development Team. 2017. RStan: the R interface to Stan. R package version 2.16.2. http://mc-stan.org).

  19. T

    Vital Signs: Income (Median by Place of Residence) – by metro

    • data.bayareametro.gov
    application/rdfxml +5
    Updated Aug 10, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2019). Vital Signs: Income (Median by Place of Residence) – by metro [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Income-Median-by-Place-of-Residence-by/5ubk-6knb
    Explore at:
    application/rdfxml, csv, tsv, json, xml, application/rssxmlAvailable download formats
    Dataset updated
    Aug 10, 2019
    Description

    VITAL SIGNS INDICATOR Income (EC4)

    FULL MEASURE NAME Household income by place of residence

    LAST UPDATED May 2019

    DESCRIPTION Income reflects the median earnings of individuals and households from employment, as well as the income distribution by quintile. Income data highlight how employees are being compensated for their work on an inflation-adjusted basis.

    DATA SOURCE U.S. Census Bureau: Decennial Census Count 4Pb (1970) Form STF3 (1980-1990) Form SF3a (2000) https://nhgis.org

    U.S. Census Bureau: American Community Survey Form B19013 (2006-2017; place of residence) http://api.census.gov

    Bureau of Labor Statistics: Consumer Price Index All Urban Consumers Data Table (1970-2017; specific to each metro area) http://data.bls.gov

    CONTACT INFORMATION vitalsigns.info@bayareametro.gov

    METHODOLOGY NOTES (across all datasets for this indicator) Income data reported in a given year reflects the income earned in the prior year (decennial Census) or in the prior 12 months (American Community Survey); note that this inconsistency has a minor effect on historical comparisons (for more information, go to: http://www.census.gov/acs/www/Downloads/methodology/ASA_nelson.pdf). American Community Survey 1-year data is used for larger geographies – metropolitan areas and counties – while smaller geographies rely upon 5-year rolling average data due to their smaller sample sizes. Quintile income for 1970-2000 is imputed from Decennial Census data using methodology from the California Department of Finance (for more information, go to: http://www.dof.ca.gov/Forecasting/Demographics/Census_Data_Center_Network/documents/How_to_Recalculate_a_Median.pdf). Bay Area income is the population weighted average of county-level income.

    Income has been inflated using the Consumer Price Index specific to each metro area; however, some metro areas lack metro-specific CPI data back to 1970 and therefore adjusted data is unavailable for some historical data points. Note that current MSA boundaries were used for historical comparison by identifying counties included in today’s metro areas.

  20. s

    Personal income, personal income per person, and personal disposable income,...

    • www150.statcan.gc.ca
    • ouvert.canada.ca
    • +2more
    Updated Feb 19, 2000
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2000). Personal income, personal income per person, and personal disposable income, annual, 1926 - 1990 [Dataset]. http://doi.org/10.25318/3610028701-eng
    Explore at:
    Dataset updated
    Feb 19, 2000
    Dataset provided by
    Government of Canada, Statistics Canada
    Area covered
    Canada
    Description

    This table contains 44 series, with data for years 1926 - 1990 (not all combinations necessarily have data for all years), and was last released on 2000-02-19. This table contains data described by the following dimensions (Not all combinations are available): Geography (15 items: Canada; Prince Edward Island; Nova Scotia; Newfoundland and Labrador ...), Type of income (3 items: Personal income; Personal disposable income; Personal income per person ...).

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
TRADING ECONOMICS (2025). China Average Yearly Wages [Dataset]. https://tradingeconomics.com/china/wages

China Average Yearly Wages

China Average Yearly Wages - Historical Dataset (1952-12-31/2024-12-31)

Explore at:
62 scholarly articles cite this dataset (View in Google Scholar)
json, xml, csv, excelAvailable download formats
Dataset updated
Jun 15, 2025
Dataset authored and provided by
TRADING ECONOMICS
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Dec 31, 1952 - Dec 31, 2024
Area covered
China
Description

Wages in China increased to 120698 CNY/Year in 2023 from 114029 CNY/Year in 2022. This dataset provides - China Average Yearly Wages - actual values, historical data, forecast, chart, statistics, economic calendar and news.

Search
Clear search
Close search
Google apps
Main menu