22 datasets found
  1. F

    Dow Jones Industrial Average

    • fred.stlouisfed.org
    json
    Updated Jul 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Dow Jones Industrial Average [Dataset]. https://fred.stlouisfed.org/series/DJIA
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 11, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval

    Description

    Graph and download economic data for Dow Jones Industrial Average (DJIA) from 2015-07-13 to 2025-07-11 about stock market, average, industry, and USA.

  2. EOD data for all Dow Jones stocks

    • kaggle.com
    zip
    Updated Jun 12, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Timo Bozsolik (2019). EOD data for all Dow Jones stocks [Dataset]. https://www.kaggle.com/datasets/timoboz/stock-data-dow-jones
    Explore at:
    zip(1697460 bytes)Available download formats
    Dataset updated
    Jun 12, 2019
    Authors
    Timo Bozsolik
    Description

    Update

    Unfortunately, the API this dataset used to pull the stock data isn't free anymore. Instead of having this auto-updating, I dropped the last version of the data files in here, so at least the historic data is still usable.

    Content

    This dataset provides free end of day data for all stocks currently in the Dow Jones Industrial Average. For each of the 30 components of the index, there is one CSV file named by the stock's symbol (e.g. AAPL for Apple). Each file provides historically adjusted market-wide data (daily, max. 5 years back). See here for description of the columns: https://iextrading.com/developer/docs/#chart

    Since this dataset uses remote URLs as files, it is automatically updated daily by the Kaggle platform and automatically represents the latest data.

    Acknowledgements

    List of stocks and symbols as per https://en.wikipedia.org/wiki/Dow_Jones_Industrial_Average

    Thanks to https://iextrading.com for providing this data for free!

    Terms of Use

    Data provided for free by IEX. View IEX’s Terms of Use.

  3. F

    S&P 500

    • fred.stlouisfed.org
    json
    Updated Jul 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). S&P 500 [Dataset]. https://fred.stlouisfed.org/series/SP500
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 11, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval

    Description

    View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.

  4. T

    United States Stock Market Index Data

    • tradingeconomics.com
    • jp.tradingeconomics.com
    • +11more
    csv, excel, json, xml
    Updated Mar 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2024). United States Stock Market Index Data [Dataset]. https://tradingeconomics.com/united-states/stock-market??sa=u&ei=ffhqvnvmn5dloatmoocabw&ved=0cjmbebywfq&usg=afqjcngzbcc8p0owixmdsdjcu_endviwgg
    Explore at:
    csv, json, excel, xmlAvailable download formats
    Dataset updated
    Mar 6, 2024
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 3, 1928 - Jul 14, 2025
    Area covered
    United States
    Description

    The main stock market index of United States, the US500, fell to 6226 points on July 14, 2025, losing 0.54% from the previous session. Over the past month, the index has climbed 3.20% and is up 10.56% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on July of 2025.

  5. T

    United States Stock Market Index Data

    • tradingeconomics.com
    • fa.tradingeconomics.com
    • +12more
    csv, excel, json, xml
    Updated Mar 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2024). United States Stock Market Index Data [Dataset]. https://tradingeconomics.com/united-states/stock-market?&sa=u&ei=oscuvi_vm87uaom-gzah&ved=0cdcqfjag&usg=afqjcnft8xo94npdcodluglxnqi05ysxta
    Explore at:
    excel, json, csv, xmlAvailable download formats
    Dataset updated
    Mar 6, 2024
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 3, 1928 - Jul 4, 2025
    Area covered
    United States
    Description

    The main stock market index of United States, the US500, fell to 6238 points on July 4, 2025, losing 0.65% from the previous session. Over the past month, the index has climbed 5.04% and is up 12.06% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on July of 2025.

  6. N

    Dow City, IA Population Pyramid Dataset: Age Groups, Male and Female...

    • neilsberg.com
    csv, json
    Updated Feb 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Dow City, IA Population Pyramid Dataset: Age Groups, Male and Female Population, and Total Population for Demographics Analysis // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/dow-city-ia-population-by-age/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 22, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Iowa, Dow City
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Total Population for Age Groups, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the three variables, namely (a) male population, (b) female population and (b) total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the data for the Dow City, IA population pyramid, which represents the Dow City population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.

    Key observations

    • Youth dependency ratio, which is the number of children aged 0-14 per 100 persons aged 15-64, for Dow City, IA, is 22.4.
    • Old-age dependency ratio, which is the number of persons aged 65 or over per 100 persons aged 15-64, for Dow City, IA, is 39.7.
    • Total dependency ratio for Dow City, IA is 62.0.
    • Potential support ratio, which is the number of youth (working age population) per elderly, for Dow City, IA is 2.5.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group for the Dow City population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the Dow City for the selected age group is shown in the following column.
    • Population (Female): The female population in the Dow City for the selected age group is shown in the following column.
    • Total Population: The total population of the Dow City for the selected age group is shown in the following column.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Dow City Population by Age. You can refer the same here

  7. N

    Income Bracket Analysis by Age Group Dataset: Age-Wise Distribution of Dow...

    • neilsberg.com
    csv, json
    Updated Feb 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Income Bracket Analysis by Age Group Dataset: Age-Wise Distribution of Dow City, IA Household Incomes Across 16 Income Brackets // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/f3485c6d-f353-11ef-8577-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 25, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Iowa, Dow City
    Variables measured
    Number of households with income $200,000 or more, Number of households with income less than $10,000, Number of households with income between $15,000 - $19,999, Number of households with income between $20,000 - $24,999, Number of households with income between $25,000 - $29,999, Number of households with income between $30,000 - $34,999, Number of households with income between $35,000 - $39,999, Number of households with income between $40,000 - $44,999, Number of households with income between $45,000 - $49,999, Number of households with income between $50,000 - $59,999, and 6 more
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It delineates income distributions across 16 income brackets (mentioned above) following an initial analysis and categorization. Using this dataset, you can find out the total number of households within a specific income bracket along with how many households with that income bracket for each of the 4 age cohorts (Under 25 years, 25-44 years, 45-64 years and 65 years and over). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the the household distribution across 16 income brackets among four distinct age groups in Dow City: Under 25 years, 25-44 years, 45-64 years, and over 65 years. The dataset highlights the variation in household income, offering valuable insights into economic trends and disparities within different age categories, aiding in data analysis and decision-making..

    Key observations

    • Upon closer examination of the distribution of households among age brackets, it reveals that there are 38(22.49%) households where the householder is under 25 years old, 16(9.47%) households with a householder aged between 25 and 44 years, 56(33.14%) households with a householder aged between 45 and 64 years, and 59(34.91%) households where the householder is over 65 years old.
    • The age group of 25 to 44 years exhibits the highest median household income, while the largest number of households falls within the 65 years and over bracket. This distribution hints at economic disparities within the city of Dow City, showcasing varying income levels among different age demographics.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income brackets:

    • Less than $10,000
    • $10,000 to $14,999
    • $15,000 to $19,999
    • $20,000 to $24,999
    • $25,000 to $29,999
    • $30,000 to $34,999
    • $35,000 to $39,999
    • $40,000 to $44,999
    • $45,000 to $49,999
    • $50,000 to $59,999
    • $60,000 to $74,999
    • $75,000 to $99,999
    • $100,000 to $124,999
    • $125,000 to $149,999
    • $150,000 to $199,999
    • $200,000 or more

    Variables / Data Columns

    • Household Income: This column showcases 16 income brackets ranging from Under $10,000 to $200,000+ ( As mentioned above).
    • Under 25 years: The count of households led by a head of household under 25 years old with income within a specified income bracket.
    • 25 to 44 years: The count of households led by a head of household 25 to 44 years old with income within a specified income bracket.
    • 45 to 64 years: The count of households led by a head of household 45 to 64 years old with income within a specified income bracket.
    • 65 years and over: The count of households led by a head of household 65 years and over old with income within a specified income bracket.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Dow City median household income by age. You can refer the same here

  8. N

    Age-wise distribution of Dow City, IA household incomes: Comparative...

    • neilsberg.com
    csv, json
    Updated Jan 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Age-wise distribution of Dow City, IA household incomes: Comparative analysis across 16 income brackets [Dataset]. https://www.neilsberg.com/research/datasets/8592542e-8dec-11ee-9302-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jan 9, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Iowa, Dow City
    Variables measured
    Number of households with income $200,000 or more, Number of households with income less than $10,000, Number of households with income between $15,000 - $19,999, Number of households with income between $20,000 - $24,999, Number of households with income between $25,000 - $29,999, Number of households with income between $30,000 - $34,999, Number of households with income between $35,000 - $39,999, Number of households with income between $40,000 - $44,999, Number of households with income between $45,000 - $49,999, Number of households with income between $50,000 - $59,999, and 6 more
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. It delineates income distributions across 16 income brackets (mentioned above) following an initial analysis and categorization. Using this dataset, you can find out the total number of households within a specific income bracket along with how many households with that income bracket for each of the 4 age cohorts (Under 25 years, 25-44 years, 45-64 years and 65 years and over). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the the household distribution across 16 income brackets among four distinct age groups in Dow City: Under 25 years, 25-44 years, 45-64 years, and over 65 years. The dataset highlights the variation in household income, offering valuable insights into economic trends and disparities within different age categories, aiding in data analysis and decision-making..

    Key observations

    • Upon closer examination of the distribution of households among age brackets, it reveals that there are 32(15.02%) households where the householder is under 25 years old, 41(19.25%) households with a householder aged between 25 and 44 years, 93(43.66%) households with a householder aged between 45 and 64 years, and 47(22.07%) households where the householder is over 65 years old.
    • The age group of 25 to 44 years exhibits the highest median household income, while the largest number of households falls within the 45 to 64 years bracket. This distribution hints at economic disparities within the city of Dow City, showcasing varying income levels among different age demographics.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Income brackets:

    • Less than $10,000
    • $10,000 to $14,999
    • $15,000 to $19,999
    • $20,000 to $24,999
    • $25,000 to $29,999
    • $30,000 to $34,999
    • $35,000 to $39,999
    • $40,000 to $44,999
    • $45,000 to $49,999
    • $50,000 to $59,999
    • $60,000 to $74,999
    • $75,000 to $99,999
    • $100,000 to $124,999
    • $125,000 to $149,999
    • $150,000 to $199,999
    • $200,000 or more

    Variables / Data Columns

    • Household Income: This column showcases 16 income brackets ranging from Under $10,000 to $200,000+ ( As mentioned above).
    • Under 25 years: The count of households led by a head of household under 25 years old with income within a specified income bracket.
    • 25 to 44 years: The count of households led by a head of household 25 to 44 years old with income within a specified income bracket.
    • 45 to 64 years: The count of households led by a head of household 45 to 64 years old with income within a specified income bracket.
    • 65 years and over: The count of households led by a head of household 65 years and over old with income within a specified income bracket.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Dow City median household income by age. You can refer the same here

  9. h

    dow-usd-positions

    • huggingface.co
    Updated Jan 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Earn Liners (2025). dow-usd-positions [Dataset]. https://huggingface.co/datasets/earnliners/dow-usd-positions
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 29, 2025
    Authors
    Earn Liners
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    DOW-USD Bot Positions Dataset

    This dataset stores positions for DOW/USD trading strategies. It includes position types, timestamps, and other relevant data generated from a trading bot using machine learning techniques. It is updated hourly using this link dataset The dataset on huggingface is not up to date but is given as an example Use this link dataset to update (hourly)

      Dataset Description
    

    The dataset consists of the following columns:

    timestamp: The time when… See the full description on the dataset page: https://huggingface.co/datasets/earnliners/dow-usd-positions.

  10. o

    Old Dow Road Cross Street Data in Carolina Beach, NC

    • ownerly.com
    Updated Dec 9, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ownerly (2021). Old Dow Road Cross Street Data in Carolina Beach, NC [Dataset]. https://www.ownerly.com/nc/carolina-beach/old-dow-rd-home-details
    Explore at:
    Dataset updated
    Dec 9, 2021
    Dataset authored and provided by
    Ownerly
    Area covered
    Carolina Beach, Old Dow Road, North Carolina
    Description

    This dataset provides information about the number of properties, residents, and average property values for Old Dow Road cross streets in Carolina Beach, NC.

  11. k

    The Dow Jones Industrial Average (Forecast)

    • kappasignal.com
    Updated Mar 29, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). The Dow Jones Industrial Average (Forecast) [Dataset]. https://www.kappasignal.com/2023/03/the-dow-jones-industrial-average.html
    Explore at:
    Dataset updated
    Mar 29, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    The Dow Jones Industrial Average

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  12. a

    Ky DOW Waterbody Features 3DHP

    • hamhanding-dcdev.opendata.arcgis.com
    • data.lojic.org
    Updated Jan 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KyGovMaps (2025). Ky DOW Waterbody Features 3DHP [Dataset]. https://hamhanding-dcdev.opendata.arcgis.com/datasets/kygeonet::ky-dow-waterbody-features-3dhp/about
    Explore at:
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    KyGovMaps
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    The 3D Hydrography Program (3DHP) data is an integrated, National, 3D-enabled hydrologic dataset derived from the USGS 3D Elevation Program (3DEP) data. For areas where Elevation-derived Hydrography (EDH) has not yet been collected, 3DHP data is supplemented by hydrologic vector data from the National Hydrography Dataset (NHD). As further EDH data is collected, it will replace the NHD data in those areas. 3DHP data ingested from EDH sources includes ‘value added’ catchments and flowline network derivative attributes. All the data is open and non-proprietary. However, users should be aware that temporal changes may have occurred since this dataset was collected and that some parts of this data may no longer represent actual surface conditions. Users should not use this data for critical applications without a full awareness of its limitations. This dataset is not intended to be used for site-specific regulatory determinations. 3DHP datasets include a three-dimensional (3D) hydrography network generated from, and integrated with, elevation data from the 3DEP to better represent stream gradients and channel conditions, along with waterbodies, hydrologic units, hydrologically enhanced elevation and other surfaces, and more consistent and accurate attributes. This product is new in federal fiscal year 2025 (FY25), and consists only of vector data in a series of feature classes. The product represents the 3DHP dataset and the schema in which it is contained as of September 30, 2024 Future Annual Staged Product releases will reflect the schema at the time the product is generated and include more EDH-sourced data holdings.

  13. T

    Russia Stock Market Index MOEX CFD Data

    • tradingeconomics.com
    • ko.tradingeconomics.com
    • +12more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, Russia Stock Market Index MOEX CFD Data [Dataset]. https://tradingeconomics.com/russia/stock-market
    Explore at:
    json, csv, excel, xmlAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Sep 22, 1997 - Jul 11, 2025
    Area covered
    Russia
    Description

    Russia's main stock market index, the MOEX, fell to 2642 points on July 11, 2025, losing 3.31% from the previous session. Over the past month, the index has declined 3.94% and is down 11.21% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Russia. Russia Stock Market Index MOEX CFD - values, historical data, forecasts and news - updated on July of 2025.

  14. Coca Cola Stock - Live and Updated

    • kaggle.com
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kalilur Rahman (2025). Coca Cola Stock - Live and Updated [Dataset]. https://www.kaggle.com/kalilurrahman/coca-cola-stock-live-and-updated/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 10, 2025
    Dataset provided by
    Kaggle
    Authors
    Kalilur Rahman
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    https://upload.wikimedia.org/wikipedia/commons/thumb/0/09/The_Coca-Cola_Company_%282020%29.svg/330px-The_Coca-Cola_Company_%282020%29.svg.png" alt=""> https://upload.wikimedia.org/wikipedia/commons/f/f6/15-09-26-RalfR-WLC-0098.jpg" alt="">

    https://upload.wikimedia.org/wikipedia/commons/thumb/5/5e/The_Coca-Cola_Company_logo.svg/330px-The_Coca-Cola_Company_logo.svg.png" alt="">

    The Coca-Cola Company is an North American multinational beverage corporation incorporated under Delaware's General Corporation Law[a] and headquartered in Atlanta, Georgia. The Coca-Cola Company has interests in the manufacturing, retailing, and marketing of non-alcoholic beverage concentrates and syrups, and alcoholic beverages. The company produces Coca-Cola, the sugary drink for which it is best known for, invented in 1886 by pharmacist John Stith Pemberton. At the time, the product was made with coca leaves, which added an amount of cocaine to the drink, and with kola nuts, which added caffeine, so that the coca and the kola together provided a stimulative effect. This stimulative effect is the reason the drink was sold to the public as a healthy "tonic", and the coca and the kola are also the source of the name of the product and of the company.In 1889, the formula and brand were sold for $2,300 (roughly $68,000 in 2021) to Asa Griggs Candler, who incorporated The Coca-Cola Company in Atlanta in 1892.

    Since 1919, Coca-Cola has been a publicly traded company. Its stock is listed on the New York Stock Exchange under the ticker symbol "KO". One share of stock purchased in 1919 for $40, with all dividends reinvested, would have been worth $9.8 million in 2012, a 10.7% annual increase adjusted for inflation. A predecessor bank of SunTrust received $100,000 for underwriting Coca-Cola's 1919 public offering; the bank sold that stock for over $2 billion in 2012. In 1987, Coca-Cola once again became one of the 30 stocks which makes up the Dow Jones Industrial Average, which is commonly referenced as a proxy for stock market performance; it had previously been a Dow stock from 1932 to 1935. Coca-Cola has paid a dividend since 1920 and, as of 2019, had increased it each year for 57 years straight.

  15. T

    China Shanghai Composite Stock Market Index Data

    • tradingeconomics.com
    • jp.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). China Shanghai Composite Stock Market Index Data [Dataset]. https://tradingeconomics.com/china/stock-market
    Explore at:
    xml, csv, excel, jsonAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 19, 1990 - Jul 14, 2025
    Area covered
    China
    Description

    China's main stock market index, the SHANGHAI, rose to 3520 points on July 14, 2025, gaining 0.27% from the previous session. Over the past month, the index has climbed 3.86% and is up 18.35% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from China. China Shanghai Composite Stock Market Index - values, historical data, forecasts and news - updated on July of 2025.

  16. Stock market statistics, Canada and United States, Bank of Canada

    • www150.statcan.gc.ca
    • data.urbandatacentre.ca
    • +4more
    Updated May 24, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2018). Stock market statistics, Canada and United States, Bank of Canada [Dataset]. http://doi.org/10.25318/1010012401-eng
    Explore at:
    Dataset updated
    May 24, 2018
    Dataset provided by
    Government of Canadahttp://www.gg.ca/
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    This table contains 14 series, with data starting from 1953 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (1 items: Canada ...), Stock market statistics (14 items: Toronto Stock Exchange; value of shares traded; United States common stocks; Dow-Jones industrials; high; United States common stocks; Dow-Jones industrials; low; Toronto Stock Exchange; volume of shares traded ...).

  17. Dow Jones Real Estate Futures tick data (RX) - CME Globex MDP 3.0

    • databento.com
    csv, dbn, json
    Updated Jun 6, 2010
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Databento (2010). Dow Jones Real Estate Futures tick data (RX) - CME Globex MDP 3.0 [Dataset]. https://databento.com/catalog/cme/GLBX.MDP3/futures/RX
    Explore at:
    dbn, json, csvAvailable download formats
    Dataset updated
    Jun 6, 2010
    Dataset provided by
    Databento Inc.
    Authors
    Databento
    Time period covered
    Jun 6, 2010 - Present
    Description

    Browse Dow Jones Real Estate Futures (RX) market data. Get instant pricing estimates and make batch downloads of binary, CSV, and JSON flat files.

    The CME Group Market Data Platform (MDP) 3.0 disseminates event-based bid, ask, trade, and statistical data for CME Group markets and also provides recovery and support services for market data processing. MDP 3.0 includes the introduction of Simple Binary Encoding (SBE) and Event Driven Messaging to the CME Group Market Data Platform. Simple Binary Encoding (SBE) is based on simple primitive encoding, and is optimized for low bandwidth, low latency, and direct data access. Since March 2017, MDP 3.0 has changed from providing aggregated depth at every price level (like CME's legacy FAST feed) to providing full granularity of every order event for every instrument's direct book. MDP 3.0 is the sole data feed for all instruments traded on CME Globex, including futures, options, spreads and combinations. Note: We classify exchange-traded spreads between futures outrights as futures, and option combinations as options.

    Origin: Directly captured at Aurora DC3 with an FPGA-based network card and hardware timestamping. Synchronized to UTC with PTP

    Supported data encodings: DBN, CSV, JSON Learn more

    Supported market data schemas: MBO, MBP-1, MBP-10, TBBO, Trades, OHLCV-1s, OHLCV-1m, OHLCV-1h, OHLCV-1d, Definition, Statistics Learn more

    Resolution: Immediate publication, nanosecond-resolution timestamps

  18. Dow Jones Telecom: Ready for the Next Surge? (Forecast)

    • kappasignal.com
    Updated Mar 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Dow Jones Telecom: Ready for the Next Surge? (Forecast) [Dataset]. https://www.kappasignal.com/2024/03/dow-jones-telecom-ready-for-next-surge.html
    Explore at:
    Dataset updated
    Mar 28, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Dow Jones Telecom: Ready for the Next Surge?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  19. d

    Foreshore Conditions - Erosion (DWER-007) - Datasets - data.wa.gov.au

    • catalogue.data.wa.gov.au
    Updated Jan 23, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). Foreshore Conditions - Erosion (DWER-007) - Datasets - data.wa.gov.au [Dataset]. https://catalogue.data.wa.gov.au/dataset/foreshore-conditions-erosion
    Explore at:
    Dataset updated
    Jan 23, 2018
    Area covered
    Western Australia
    Description

    Points of Erosion as found in the river foreshore assessment. DISCLAIMER: While the dataset has been prepared by the Department of Water and Environmental Regulation, it contains information from State and federally funded foreshore assessment projects conducted at different times by Natural Resource Management groups with support from DWER regional offices. It should be noted that for any given location, the data provides a ‘snapshot’ of the attributes recorded at one specific time. Any information or representation expressed or implied in this database is made in good faith and on the basis that the Department of Water and Environmental Regulation and its employees are not liable for any damage or loss whatsoever which may occur as a result of action taken or not taken, as the case may be in respect of any information or representation referred to herein. Professional advice should be obtained to verify the information contained in this database before applying to particular circumstances. The Department of Water and Environmental Regulation accepts no responsibility for collecting or updating this data but some known errors are being addressed. This dataset was formerly known as Foreshore Conditions - Erosion (DOW-045)

  20. k

    Oil Equipment & Services Sector Poised for Moderate Growth, Analyst...

    • kappasignal.com
    Updated May 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2025). Oil Equipment & Services Sector Poised for Moderate Growth, Analyst Forecasts for Dow Jones U.S. Select Oil Equipment & Services index. (Forecast) [Dataset]. https://www.kappasignal.com/2025/05/oil-equipment-services-sector-poised.html
    Explore at:
    Dataset updated
    May 16, 2025
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Oil Equipment & Services Sector Poised for Moderate Growth, Analyst Forecasts for Dow Jones U.S. Select Oil Equipment & Services index.

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2025). Dow Jones Industrial Average [Dataset]. https://fred.stlouisfed.org/series/DJIA

Dow Jones Industrial Average

DJIA

Explore at:
29 scholarly articles cite this dataset (View in Google Scholar)
jsonAvailable download formats
Dataset updated
Jul 11, 2025
License

https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval

Description

Graph and download economic data for Dow Jones Industrial Average (DJIA) from 2015-07-13 to 2025-07-11 about stock market, average, industry, and USA.

Search
Clear search
Close search
Google apps
Main menu