Until the 1800s, population growth was incredibly slow on a global level. The global population was estimated to have been around 188 million people in the year 1CE, and did not reach one billion until around 1803. However, since the 1800s, a phenomenon known as the demographic transition has seen population growth skyrocket, reaching eight billion people in 2023, and this is expected to peak at over 10 billion in the 2080s.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
<ul style='margin-top:20px;'>
<li>Total population for the world in 2024 was <strong>8,118,835,999</strong>, a <strong>0.71% increase</strong> from 2023.</li>
<li>Total population for the world in 2023 was <strong>8,061,876,001</strong>, a <strong>0.9% increase</strong> from 2022.</li>
<li>Total population for the world in 2022 was <strong>7,989,981,520</strong>, a <strong>0.87% increase</strong> from 2021.</li>
</ul>Total population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship. The values shown are midyear estimates.
The region of present-day China has historically been the most populous region in the world; however, its population development has fluctuated throughout history. In 2022, China was overtaken as the most populous country in the world, and current projections suggest its population is heading for a rapid decline in the coming decades. Transitions of power lead to mortality The source suggests that conflict, and the diseases brought with it, were the major obstacles to population growth throughout most of the Common Era, particularly during transitions of power between various dynasties and rulers. It estimates that the total population fell by approximately 30 million people during the 14th century due to the impact of Mongol invasions, which inflicted heavy losses on the northern population through conflict, enslavement, food instability, and the introduction of bubonic plague. Between 1850 and 1870, the total population fell once more, by more than 50 million people, through further conflict, famine and disease; the most notable of these was the Taiping Rebellion, although the Miao an Panthay Rebellions, and the Dungan Revolt, also had large death tolls. The third plague pandemic also originated in Yunnan in 1855, which killed approximately two million people in China. 20th and 21st centuries There were additional conflicts at the turn of the 20th century, which had significant geopolitical consequences for China, but did not result in the same high levels of mortality seen previously. It was not until the overlapping Chinese Civil War (1927-1949) and Second World War (1937-1945) where the death tolls reached approximately 10 and 20 million respectively. Additionally, as China attempted to industrialize during the Great Leap Forward (1958-1962), economic and agricultural mismanagement resulted in the deaths of tens of millions (possibly as many as 55 million) in less than four years, during the Great Chinese Famine. This mortality is not observable on the given dataset, due to the rapidity of China's demographic transition over the entire period; this saw improvements in healthcare, sanitation, and infrastructure result in sweeping changes across the population. The early 2020s marked some significant milestones in China's demographics, where it was overtaken by India as the world's most populous country, and its population also went into decline. Current projections suggest that China is heading for a "demographic disaster", as its rapidly aging population is placing significant burdens on China's economy, government, and society. In stark contrast to the restrictive "one-child policy" of the past, the government has introduced a series of pro-fertility incentives for couples to have larger families, although the impact of these policies are yet to materialize. If these current projections come true, then China's population may be around half its current size by the end of the century.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Rheumatoid arthritis (RA) affects an estimated 0.1% to 2.0% of the world’s population, leading to a substantial impact on global health. The adverse effects and toxicity associated with conventional RA treatment pathways underscore the critical need to seek potential new therapeutic candidates, particularly those of natural sources that can treat the condition with minimal side effects. To address this challenge, this study employed a deep-learning (DL) based approach to conduct a virtual assessment of natural compounds against the Tumor Necrosis Factor-alpha (TNF-α) protein. TNF-α stands out as the primary pro-inflammatory cytokine, crucial in the development of RA. Our predictive model demonstrated appreciable performance, achieving MSE of 0.6, MAPE of 10%, and MAE of 0.5. The model was then deployed to screen a comprehensive set of 2563 natural compounds obtained from the Selleckchem database. Utilizing their predicted bioactivity (pIC50), the top 128 compounds were identified. Among them, 68 compounds were taken for further analysis based on drug-likeness analysis. Subsequently, selected compounds underwent additional evaluation using molecular docking (< − 8.7 kcal/mol) and ADMET resulting in four compounds posing nominal toxicity, which were finally subjected to MD simulation for 200 ns. Later on, the stability of complexes was assessed via analysis encompassing RMSD, RMSF, Rg, H-Bonds, SASA, and Essential Dynamics. Ultimately, based on the total binding free energy estimated using the MM/GBSA method, Imperialine, Veratramine, and Gelsemine are proven to be potential natural inhibitors of TNF-α.
The Human Sciences Research Council (HSRC) carried out the Migration and Remittances Survey in South Africa for the World Bank in collaboration with the African Development Bank. The primary mandate of the HSRC in this project was to come up with a migration database that includes both immigrants and emigrants. The specific activities included: · A household survey with a view of producing a detailed demographic/economic database of immigrants, emigrants and non migrants · The collation and preparation of a data set based on the survey · The production of basic primary statistics for the analysis of migration and remittance behaviour in South Africa.
Like many other African countries, South Africa lacks reliable census or other data on migrants (immigrants and emigrants), and on flows of resources that accompanies movement of people. This is so because a large proportion of African immigrants are in the country undocumented. A special effort was therefore made to design a household survey that would cover sufficient numbers and proportions of immigrants, and still conform to the principles of probability sampling. The approach that was followed gives a representative picture of migration in 2 provinces, Limpopo and Gauteng, which should be reflective of migration behaviour and its impacts in South Africa.
Two provinces: Gauteng and Limpopo
Limpopo is the main corridor for migration from African countries to the north of South Africa while Gauteng is the main port of entry as it has the largest airport in Africa. Gauteng is a destination for internal and international migrants because it has three large metropolitan cities with a great economic potential and reputation for offering employment, accommodations and access to many different opportunities within a distance of 56 km. These two provinces therefore were expected to accommodate most African migrants in South Africa, co-existing with a large host population.
The target group consists of households in all communities. The survey will be conducted among metro and non-metro households. Non-metro households include those in: - small towns, - secondary cities, - peri-urban settlements and - deep rural areas. From each selected household, one adult respondent will be selected to participate in the study.
Sample survey data [ssd]
Migration data for South Africa are available for 2007 only at the level of local governments or municipalities from the 2007 Census; for smaller areas called "sub places" (SPs) only as recently as the 2001 census, and for the desired EAs only back so far as the Census of 1996. In sum, there was no single source that provided recent data on the five types of migrants of principal interest at the level of the Enumeration Area, which was the area for which data were needed to draw the sample since it was going to be necessary to identify migrant and non-migrant households in the sample areas in order to oversample those with migrants for interview.
In an attempt to overcome the data limitations referred to above, it was necessary to adopt a novel approach to the design of the sample for the World Bank's household migration survey in South Africa, to identify EAs with a high probability of finding immigrants and those with a low probability. This required the combined use of the three sources of data described above. The starting point was the CS 2007 survey, which provided data on migration at a local government level, classifying each local government cluster in terms of migration level, taking into account the types of migrants identified. The researchers then spatially zoomed in from these clusters to the so-called sub-places (SPs) from the 2001 Census to classifying SP clusters by migration level. Finally, the 1996 Census data were used to zoom in even further down to the EA level, using the 1996 census data on migration levels of various typed, to identify the final level of clusters for the survey, namely the spatially small EAs (each typically containing about 200 households, and hence amenable to the listing operation in the field).
A higher score or weight was attached to the 2007 Community Survey municipality-level (MN) data than to the Census 2001 sub-place (SP) data, which in turn was given a greater weight than the 1996 enumerator area (EA) data. The latter was derived exclusively from the Census 1996 EA data, but has then been reallocated to the 2001 EAs proportional to geographical size. Although these weights are purely arbitrary since it was composed from different sources, they give an indication of the relevant importance attached to the different migrant categories. These weighted migrant proportions (secondary strata), therefore constituted the second level of clusters for sampling purposes.
In addition, a system of weighting or scoring the different persons by migrant type was applied to ensure that the likelihood of finding migrants would be optimised. As part of this procedure, recent migrants (who had migrated in the preceding five years) received a higher score than lifetime migrants (who had not migrated during the preceding five years). Similarly, a higher score was attached to international immigrants (both recent and lifetime, who had come to SA from abroad) than to internal migrants (who had only moved within SA's borders). A greater weight also applied to inter-provincial (internal) than to intra-provincial migrants (who only moved within the same South African province).
How the three data sources were combined to provide overall scores for EA can be briefly described. First, in each of the two provinces, all local government units were given migration scores according to the numbers or relative proportions of the population classified in the various categories of migrants (with non-migrants given a score of 1.0. Migrants were assigned higher scores according to their priority, with international migrants given higher scores than internal migrants and recent migrants higher scores than lifetime migrants. Then within the local governments, sub-places were assigned scores assigned on the basis of inter vs. intra-provincial migrants using the 2001 census data. Each SP area in a local government was thus assigned a value which was the product of its local government score (the same for all SPs in the local government) and its own SP score. The third and final stage was to develop relative migration scores for all the EAs from the 1996 census by similarly weighting the proportions of migrants (and non-migrants, assigned always 1.0) of each type. The the final migration score for an EA is the product of its own EA score from 1996, the SP score of which it is a part (assigned to all the EAs within the SP), and the local government score from the 2007 survey.
Based on all the above principles the set of weights or scores was developed.
In sum, we multiplied the proportion of populations of each migrant type, or their incidence, by the appropriate final corresponding EA scores for persons of each type in the EA (based on multiplying the three weights together), to obtain the overall score for each EA. This takes into account the distribution of persons in the EA according to migration status in 1996, the SP score of the EA in 2001, and the local government score (in which the EA is located) from 2007. Finally, all EAs in each province were then classified into quartiles, prior to sampling from the quartiles.
From the EAs so classified, the sampling took the form of selecting EAs, i.e., primary sampling units (PSUs, which in this case are also Ultimate Sampling Units, since this is a single stage sample), according to their classification into quartiles. The proportions selected from each quartile are based on the range of EA-level scores which are assumed to reflect weighted probabilities of finding desired migrants in each EA. To enhance the likelihood of finding migrants, much higher proportions of EAs were selected into the sample from the quartiles with the higher scores compared to the lower scores (disproportionate sampling). The decision on the most appropriate categorisations was informed by the observed migration levels in the two provinces of the study area during 2007, 2001 and 1996, analysed at the lowest spatial level for which migration data was available in each case.
Because of the differences in their characteristics it was decided that the provinces of Gauteng and Limpopo should each be regarded as an explicit stratum for sampling purposes. These two provinces therefore represented the primary explicit strata. It was decided to select an equal number of EAs from these two primary strata.
The migration-level categories referred to above were treated as secondary explicit strata to ensure optimal coverage of each in the sample. The distribution of migration levels was then used to draw EAs in such a way that greater preference could be given to areas with higher proportions of migrants in general, but especially immigrants (note the relative scores assigned to each type of person above). The proportion of EAs selected into the sample from the quartiles draws upon the relative mean weighted migrant scores (referred to as proportions) found below the table, but this is a coincidence and not necessary, as any disproportionate sampling of EAs from the quartiles could be done, since it would be rectified in the weighting at the end for the analysis.
The resultant proportions of migrants then led to the following proportional allocation of sampled EAs (Quartile 1: 5 per cent (instead of 25% as in an equal distribution), Quartile 2: 15 per cent (instead
Survey based Harmonized Indicators (SHIP) files are harmonized data files from household surveys that are conducted by countries in Africa. To ensure the quality and transparency of the data, it is critical to document the procedures of compiling consumption aggregation and other indicators so that the results can be duplicated with ease. This process enables consistency and continuity that make temporal and cross-country comparisons consistent and more reliable.
Four harmonized data files are prepared for each survey to generate a set of harmonized variables that have the same variable names. Invariably, in each survey, questions are asked in a slightly different way, which poses challenges on consistent definition of harmonized variables. The harmonized household survey data present the best available variables with harmonized definitions, but not identical variables. The four harmonized data files are
a) Individual level file (Labor force indicators in a separate file): This file has information on basic characteristics of individuals such as age and sex, literacy, education, health, anthropometry and child survival. b) Labor force file: This file has information on labor force including employment/unemployment, earnings, sectors of employment, etc. c) Household level file: This file has information on household expenditure, household head characteristics (age and sex, level of education, employment), housing amenities, assets, and access to infrastructure and services. d) Household Expenditure file: This file has consumption/expenditure aggregates by consumption groups according to Purpose (COICOP) of Household Consumption of the UN.
National
The survey covered all de jure household members (usual residents).
Sample survey data [ssd]
SAMPLE DESIGN FOR ROUND 4 OF THE GLSS A nationally representative sample of households was selected in order to achieve the survey objectives.
Sample Frame For the purposes of this survey the list of the 1984 population census Enumeration Areas (EAs) with population and household information was used as the sampling frame. The primary sampling units were the 1984 EAs with the secondary units being the households in the EAs. This frame, though quite old, was considered inadequate, it being the best available at the time. Indeed, this frame was used for the earlier rounds of the GLSS.
Stratification In order to increase precision and reliability of the estimates, the technique of stratification was employed in the sample design, using geographical factors, ecological zones and location of residence as the main controls. Specifically, the EAs were first stratified according to the three ecological zones namely; Coastal, Forest and Savannah, and then within each zone further stratification was done based on the size of the locality into rural or urban.
SAMPLE SELECTION EAs A two-stage sample was selected for the survey. At the first stage, 300 EAs were selected using systematic sampling with probability proportional to size method (PPS) where the size measure is the 1984 number of households in the EA. This was achieved by ordering the list of EAs with their sizes according to the strata. The size column was then cumulated, and with a random start and a fixed interval the sample EAs were selected.
It was observed that some of the selected EAs had grown in size over time and therefore needed segmentation. In this connection, such EAs were divided into approximately equal parts, each segment constituting about 200 households. Only one segment was then randomly selected for listing of the households.
Households At the second stage, a fixed number of 20 households was systematically selected from each selected EA to give a total of 6,000 households. Additional 5 households were selected as reserve to replace missing households. Equal number of households was selected from each EA in order to reflect the labour force focus of the survey.
NOTE: The above sample selection procedure deviated slightly from that used for the earlier rounds of the GLSS, as such the sample is not self-weighting. This is because, 1. given the long period between 1984 and the GLSS 4 fieldwork the number of households in the various EAs are likely to have grown at different rates. 2. the listing exercise was not properly done as some of the selected EAs were not listed completely. Moreover, it was noted that the segmentation done for larger EAs during the listing was a bit arbitrary.
Face-to-face [f2f]
Since 2018, the Listening to the Citizens of Uzbekistan Survey (L2CU) has been implemented by the World Bank with the support of the UK Government. Around 1,500 households across the country regularly participate in the phone survey that is carried out every month. The L2CU collects information on public’s perception of overall socio-economic conditions and policy reforms, migration, employment, access to public service, household income, savings, food security, and coping mechanisms. That helps to inform the Government’s crucial decision-making for delivering essential social and economic reforms, implementing poverty reduction initiatives, and improving the well-being of citizens.
National, urban and rural
Sample survey data [ssd]
The sample of the L2CU is a subsample of the 2018 baseline survey. The 2018 baseline survey was conducted face-to-face interviews with a nationally and urban/rural representative sample of 4,000 households from 200 PSU (mahallas – lowest administrative unit) in Uzbekistan. The baseline survey took the two-stage sampling approach, and the sample was stratified for all 14 regions, taking into consideration settlement type (urban and rural) within each region, except for Tashkent city which fully refers to urban area. As a result, 27 strata were formed where 1 stratum was dedicated to Tashkent city and 26 strata to 13 regions. In the first stage, 200 PSU were selected with probability proportion to the population size of 27 strata and in the second stage, 20 households are randomly selected in each PSU. In the baseline, households were asked to provide phone number of their most knowledgeable member for future contact during short phone interviews (CATI - Computer Assisted Telephone Interview).
After completion of the 2018 baseline survey, L2CU monthly interviewers began regularly calling a randomly selected panel of 1,500 households over the phone to conduct short interviews, following a set monthly schedule agreed to by the participating household. For the phone L2CU survey, 7-8 households are randomly selected in each of 200 clusters in the Baseline.
To ensure that non-response in the first round (and attrition in subsequent rounds) did not affect the required sample size for survey representativeness, households that refused to participate were replaced with other households drawn from the same PSU in the baseline data.
Computer Assisted Telephone Interview [cati]
The questionnaire was administered in local languages (i.e. Uzbek and Russian) with about varying length (about 20 minutes).
At the end of data collection, the raw dataset was cleaned by the NBT with the support of the WB team. This included formatting, and correcting results based on monitoring issues, enumerator feedback and survey changes.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Every year, Carlos Hernández Mejía, a 35-year-old research scientist in Amsterdam, sends 3,000 to 4,000 euros to help maintain his mother’s house in Mexico. During the pandemic, he also helped his brother, sending 300 euros a month to cover rent while he was studying.
Carlos is one of 200 million migrants who regularly send back money to support their families and communities.1 These cash transfers reach around 800 million people globally — more than the populations of the United States and the European Union combined.
Imagine a classroom of 30 students representing the world’s population; at least three would get money from remittances — one in ten people.
These payments have quietly become a major force in helping families pay school fees, make repairs to their homes, and cover medical bills.
The World Bank estimates that money sent back by migrants constitutes around two-thirds of what is called “remittances” in global statistics.2 The rest comes from border, seasonal, and other short-term jobs abroad or work with non-resident employers, such as embassies and international organizations.
In this article, we’ll ditch the jargon and refer to remittances as money sent back or brought back by migrants. “Sent back” refers to personal transfers, and “brought back” refers to the compensation of employees.
As of July 2024, Nigeria's population was estimated at around 229.5 million. Between 1965 and 2024, the number of people living in Nigeria increased at an average rate of over two percent. In 2024, the population grew by 2.42 percent compared to the previous year. Nigeria is the most populous country in Africa. By extension, the African continent records the highest growth rate in the world. Africa's most populous country Nigeria was the most populous country in Africa as of 2023. As of 2022, Lagos held the distinction of being Nigeria's biggest urban center, a status it also retained as the largest city across all of sub-Saharan Africa. The city boasted an excess of 17.5 million residents. Notably, Lagos assumed the pivotal roles of the nation's primary financial hub, cultural epicenter, and educational nucleus. Furthermore, Lagos was one of the largest urban agglomerations in the world. Nigeria's youthful population In Nigeria, a significant 50 percent of the populace is under the age of 19. The most prominent age bracket is constituted by those up to four years old: comprising 8.3 percent of men and eight percent of women as of 2021. Nigeria boasts one of the world's most youthful populations. On a broader scale, both within Africa and internationally, Niger maintains the lowest median age record. Nigeria secures the 20th position in global rankings. Furthermore, the life expectancy in Nigeria is an average of 62 years old. However, this is different between men and women. The main causes of death have been neonatal disorders, malaria, and diarrheal diseases.
The total amount of data created, captured, copied, and consumed globally is forecast to increase rapidly, reaching 149 zettabytes in 2024. Over the next five years up to 2028, global data creation is projected to grow to more than 394 zettabytes. In 2020, the amount of data created and replicated reached a new high. The growth was higher than previously expected, caused by the increased demand due to the COVID-19 pandemic, as more people worked and learned from home and used home entertainment options more often. Storage capacity also growing Only a small percentage of this newly created data is kept though, as just two percent of the data produced and consumed in 2020 was saved and retained into 2021. In line with the strong growth of the data volume, the installed base of storage capacity is forecast to increase, growing at a compound annual growth rate of 19.2 percent over the forecast period from 2020 to 2025. In 2020, the installed base of storage capacity reached 6.7 zettabytes.
As of April 2024, almost 32 percent of global Instagram audiences were aged between 18 and 24 years, and 30.6 percent of users were aged between 25 and 34 years. Overall, 16 percent of users belonged to the 35 to 44 year age group. Instagram users With roughly one billion monthly active users, Instagram belongs to the most popular social networks worldwide. The social photo sharing app is especially popular in India and in the United States, which have respectively 362.9 million and 169.7 million Instagram users each. Instagram features One of the most popular features of Instagram is Stories. Users can post photos and videos to their Stories stream and the content is live for others to view for 24 hours before it disappears. In January 2019, the company reported that there were 500 million daily active Instagram Stories users. Instagram Stories directly competes with Snapchat, another photo sharing app that initially became famous due to it’s “vanishing photos” feature. As of the second quarter of 2021, Snapchat had 293 million daily active users.
As of April 2024, around 16.5 percent of global active Instagram users were men between the ages of 18 and 24 years. More than half of the global Instagram population worldwide was aged 34 years or younger. Teens and social media As one of the biggest social networks worldwide, Instagram is especially popular with teenagers. As of fall 2020, the photo-sharing app ranked third in terms of preferred social network among teenagers in the United States, second to Snapchat and TikTok. Instagram was one of the most influential advertising channels among female Gen Z users when making purchasing decisions. Teens report feeling more confident, popular, and better about themselves when using social media, and less lonely, depressed and anxious. Social media can have negative effects on teens, which is also much more pronounced on those with low emotional well-being. It was found that 35 percent of teenagers with low social-emotional well-being reported to have experienced cyber bullying when using social media, while in comparison only five percent of teenagers with high social-emotional well-being stated the same. As such, social media can have a big impact on already fragile states of mind.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Until the 1800s, population growth was incredibly slow on a global level. The global population was estimated to have been around 188 million people in the year 1CE, and did not reach one billion until around 1803. However, since the 1800s, a phenomenon known as the demographic transition has seen population growth skyrocket, reaching eight billion people in 2023, and this is expected to peak at over 10 billion in the 2080s.