46 datasets found
  1. d

    Data from: Coral reef state influences resilience to acute climate-mediated...

    • search.dataone.org
    • researchdata.edu.au
    • +2more
    Updated Jul 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anna Cresswell; Michael Renton; Timothy Langlois; Damian Thomson; Jasmine Lynn; Joachim Claudet (2025). Coral reef state influences resilience to acute climate-mediated disturbances [Dataset]. http://doi.org/10.5061/dryad.rfj6q57gz
    Explore at:
    Dataset updated
    Jul 12, 2025
    Dataset provided by
    Dryad Digital Repository
    Authors
    Anna Cresswell; Michael Renton; Timothy Langlois; Damian Thomson; Jasmine Lynn; Joachim Claudet
    Time period covered
    Jan 1, 2023
    Description

    Aim: Understand the interplay between resistance and recovery on coral reefs, and investigate dependence on pre- and post-disturbance states, to inform generalisable reef resilience theory across large spatial and temporal scales. Location: Tropical coral reefs globally. Time period: 1966 to 2017. Major taxa studied: Scleratinian hard corals. Methods: We conducted a literature search to compile a global dataset of total coral cover before and after acute storms, temperature stress, and coastal runoff from flooding events. We used meta-regression to identify variables that explained significant variation in disturbance impact, including disturbance type, year, depth, and pre-disturbance coral cover. We further investigated the influence of these same variables, as well as post-disturbance coral cover and disturbance impact, on recovery rate. We examined the shape of recovery, assigning qualitatively distinct, ecologically relevant, population growth trajectories: linear, logistic, logari..., The dataset provides a summary of all studies included in the analysis and the key statistics obtained from the studies and used in the analyses for the manuscript entitled "Coral reef state influences resilience to acute climate-mediated disturbances" as published in Global Ecology and Biogeography. The dataset includes details about the publication, spatial identifiers (e.g. realm, province, ecoregion) unique site code, information on the disturbance type and timing, the pre-and post-disturbance coral cover, the 5-year annual recovery rate, the recovery shape and recovery completeness classifications. Please see details Methods in the journal article "Coral reef state influences resilience to acute climate-mediated disturbances" as published in Global Ecology and Biogeography., , # Coral reef state influences resilience to acute climate-mediated disturbances_Table S1

    https://doi.org/10.5061/dryad.rfj6q57gz

    The dataset provides a summary of all publications included in the analysis for this study and the key statistics obtained from the studies and used in the analyses. The dataset includes details about the publication, spatial identifiers (e.g. realm, province, ecoregion) unique site code, information on the disturbance type and timing, the pre-and post-disturbance coral cover, the 5-year annual recovery rate, the recovery shape and recovery completeness classifications. Please see details Methods in the journal article "Coral reef state influences resilience to acute climate-mediated disturbances" as published in Global Ecology and Biogeography.

    Description of the data and file structure

    Each column provides the following information:

    ColumnDetail
    RealmAll studies were assigned...
  2. d

    Johns Hopkins COVID-19 Case Tracker

    • data.world
    csv, zip
    Updated Oct 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Johns Hopkins COVID-19 Case Tracker [Dataset]. https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Oct 7, 2025
    Authors
    The Associated Press
    Time period covered
    Jan 22, 2020 - Mar 9, 2023
    Area covered
    Description

    Updates

    • Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.

    • April 9, 2020

      • The population estimate data for New York County, NY has been updated to include all five New York City counties (Kings County, Queens County, Bronx County, Richmond County and New York County). This has been done to match the Johns Hopkins COVID-19 data, which aggregates counts for the five New York City counties to New York County.
    • April 20, 2020

      • Johns Hopkins death totals in the US now include confirmed and probable deaths in accordance with CDC guidelines as of April 14. One significant result of this change was an increase of more than 3,700 deaths in the New York City count. This change will likely result in increases for death counts elsewhere as well. The AP does not alter the Johns Hopkins source data, so probable deaths are included in this dataset as well.
    • April 29, 2020

      • The AP is now providing timeseries data for counts of COVID-19 cases and deaths. The raw counts are provided here unaltered, along with a population column with Census ACS-5 estimates and calculated daily case and death rates per 100,000 people. Please read the updated caveats section for more information.
    • September 1st, 2020

      • Johns Hopkins is now providing counts for the five New York City counties individually.
    • February 12, 2021

      • The Ohio Department of Health recently announced that as many as 4,000 COVID-19 deaths may have been underreported through the state’s reporting system, and that the "daily reported death counts will be high for a two to three-day period."
      • Because deaths data will be anomalous for consecutive days, we have chosen to freeze Ohio's rolling average for daily deaths at the last valid measure until Johns Hopkins is able to back-distribute the data. The raw daily death counts, as reported by Johns Hopkins and including the backlogged death data, will still be present in the new_deaths column.
    • February 16, 2021

      - Johns Hopkins has reconciled Ohio's historical deaths data with the state.

      Overview

    The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.

    The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.

    This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.

    The AP is updating this dataset hourly at 45 minutes past the hour.

    To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

    Queries

    Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic

    Interactive

    The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.

    @(https://datawrapper.dwcdn.net/nRyaf/15/)

    Interactive Embed Code

    <iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
    

    Caveats

    • This data represents the number of cases and deaths reported by each state and has been collected by Johns Hopkins from a number of sources cited on their website.
    • In some cases, deaths or cases of people who've crossed state lines -- either to receive treatment or because they became sick and couldn't return home while traveling -- are reported in a state they aren't currently in, because of state reporting rules.
    • In some states, there are a number of cases not assigned to a specific county -- for those cases, the county name is "unassigned to a single county"
    • This data should be credited to Johns Hopkins University's COVID-19 tracking project. The AP is simply making it available here for ease of use for reporters and members.
    • Caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
    • Population estimates at the county level are drawn from 2014-18 5-year estimates from the American Community Survey.
    • The Urban/Rural classification scheme is from the Center for Disease Control and Preventions's National Center for Health Statistics. It puts each county into one of six categories -- from Large Central Metro to Non-Core -- according to population and other characteristics. More details about the classifications can be found here.

    Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here

    Attribution

    This data should be credited to Johns Hopkins University COVID-19 tracking project

  3. e

    World handbook of political and social indicators III 1982 - Dataset -...

    • b2find.eudat.eu
    Updated Jul 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). World handbook of political and social indicators III 1982 - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/186489bd-65b4-5b2f-8068-490153cafbd4
    Explore at:
    Dataset updated
    Jul 20, 2025
    Description

    Indicators of 155 countries in the world from the fields of politics, economy, public finance, demography and society/ World Handbook III is a continuation for the years 1970 and 1975 of World Handbook II that covered 1950, 1955, 1960, and 1965/ for some selected variables the time-series were continued up to 1978. Revenues and expenditures of central government in percentage of Gross National Product ( GNP ) / tax revenues in percentage of public revenues / absolute level of military expenditures and share in GNP / public expenditures on education and health in percentage of GNP / number of soldiers / share of soldiers in labour force / total size of labour force / total population and number of adults / share of votes and of seats in parliament of 5 major parties / voting participation / civil rights, political rights, political and economic discrimination ( indices ) / ethnolinguistic groups / separatistic movements / size of total area / size of area used for agricultural purposes / density of population / absolute GNP / GNP per capita and growth rate of GNP / number of scientific authors / use of energy per capita / energy reserves and energy production / import, export and commerce in percentage of GNP / export concentrated on special countries or products / income distribution respectively concentration of income / food supply per capita / density of medical care / life expectations for men and women / infant mortality / birth-rate and death-rate / water supply by pipes / educational level of population / illiteracy / spread of newspapers, radios, tv sets, cinemas and telephones / foreign and domestic mail per capita / percentage of population in big cities / percentage of labour force in agriculture, industry and services / proportion of each single sector in GNP / private and public consumption in percentage of GNP / domestic investments / percentage of workers organized in unions / frequency of strikes and number of workers participating / loss of working days due to strikes. Daily events political events in 139 countries of the world / determining kind of political events, like demonstrations, police action, riot, strike, armed political conflict, political assassination, political strikes, irregular power transfers, elections, regular executive transfer / easing of censorship and political restrictions / date of events / question at issue and goal of political action / number of participators and wounded / damage / duration and spread of events / number of dead / agitating groups / source from which event was coded. Annual events political events in 136 countries on annual base/ consists of parts of the daily events data in aggregated form for single countries on annual base / the frequency of single political events is summarized in a time series for 30 years.

  4. f

    Nest boxes buffer the effects of climate on breeding performance in an...

    • figshare.com
    • zivahub.uct.ac.za
    xlsx
    Updated Jun 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Petra Sumasgutner; Andrew Jenkins; Arjun Amar; Res Altwegg (2020). Nest boxes buffer the effects of climate on breeding performance in an African urban raptor (dataset) [Dataset]. http://doi.org/10.25375/uct.12192186.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 9, 2020
    Dataset provided by
    University of Cape Town
    Authors
    Petra Sumasgutner; Andrew Jenkins; Arjun Amar; Res Altwegg
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Africa
    Description

    As the world’s human population increases, transformation of natural landscapes into urban habitats continues to increase. In Africa, rates of human population growth and urbanisation are among the highest in the world, but the impacts of these processes on the continent’s biodiversity remain largely unexplored. Furthermore, the effects of ongoing anthropogenic climate change are likely to be severe and to interact with urbanisation.

    Some organisms appear resilient to urbanisation, and even proliferate in human-modified environments. One such species is the peregrine falcon Falco peregrinus in Cape Town, South Africa. Using a long-term data set (1989-2014), we investigate the relationship between breeding attempts, timing of breeding and breeding performance under varying weather conditions. Exploring these issues along an urbanisation gradient, we focus on the role of artificially provided nest boxes, and their capacity to buffer against extreme weather events.

    Pairs in more urbanised areas, and particularly those in nest boxes, were more likely to breed and to commence breeding earlier. Additionally, pairs using nest boxes were more likely to breed in years with higher rainfall. Warm and dry weather conditions generally advanced the timing of breeding, although this relationship with weather was not seen for urban pairs using nest boxes. Furthermore, weather did not impact breeding performance directly (breeding success and fledged brood size), but timing of breeding did, with earlier breeders producing more fledglings.

    Our study shows that falcons breeding in specially provided nest boxes were less sensitive to local weather dynamics than pairs using more natural nest sites. This has important implications as it suggests that the managed provision of such nesting sites can help this key urban species to cope with extreme weather events, which are predicted to increase with climate change.

  5. Data from: Whole genome sequencing of two North American Drosophila...

    • zenodo.org
    • datasetcatalog.nlm.nih.gov
    • +3more
    bin, tar
    Updated May 31, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Daniel Campo; Kjong Lehmann; Courtney Fjeldsted; Tade Souaiaia; Joyce Kao; Sergey V. Nuzhdin; Daniel Campo; Kjong Lehmann; Courtney Fjeldsted; Tade Souaiaia; Joyce Kao; Sergey V. Nuzhdin (2022). Data from: Whole genome sequencing of two North American Drosophila melanogaster populations reveals genetic differentiation and positive selection [Dataset]. http://doi.org/10.5061/dryad.kt062
    Explore at:
    tar, binAvailable download formats
    Dataset updated
    May 31, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Daniel Campo; Kjong Lehmann; Courtney Fjeldsted; Tade Souaiaia; Joyce Kao; Sergey V. Nuzhdin; Daniel Campo; Kjong Lehmann; Courtney Fjeldsted; Tade Souaiaia; Joyce Kao; Sergey V. Nuzhdin
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    The prevailing demographic model for Drosophila melanogaster suggests that the colonization of North America occurred very recently from a subset of European flies that rapidly expanded across the continent. This model implies a sudden population growth and range expansion consistent with very low or no population subdivision. As flies adapt to new environments, local adaptation events may be expected. To describe demographic and selective events during North American colonization, we have generated a data set of 35 individual whole-genome sequences from inbred lines of D. melanogaster from a west coast US population (Winters, California, USA) and compared them with a public genome data set from Raleigh (Raleigh, North Carolina, USA). We analysed nuclear and mitochondrial genomes and described levels of variation and divergence within and between these two North American D. melanogaster populations. Both populations exhibit negative values of Tajima's D across the genome, a common signature of demographic expansion. We also detected a low but significant level of genome-wide differentiation between the two populations, as well as multiple allele surfing events, which can be the result of gene drift in local subpopulations on the edge of an expansion wave. In contrast to this genome-wide pattern, we uncovered a 50-kilobase segment in chromosome arm 3L that showed all the hallmarks of a soft selective sweep in both populations. A comparison of allele frequencies within this divergent region among six populations from three continents allowed us to cluster these populations in two differentiated groups, providing evidence for the action of natural selection on a global scale.

  6. e

    Data sets for the identification of a global typology for coastal urban...

    • b2find.eudat.eu
    Updated Aug 12, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Data sets for the identification of a global typology for coastal urban vulnerability under rapid urbanization - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/11772b0e-db21-5fa8-a40f-007ef3137e1d
    Explore at:
    Dataset updated
    Aug 12, 2023
    Description

    Coastal areas are urbanizing at unprecedented rates, particularly in low- and middle-income countries. Combinations of long-standing and emerging problems in these urban areas generate vulnerability for human well-being and ecosystems alike. Based on the presented data sets a spatially explicit global systematization of these problems into typical urban vulnerability profiles can be derived for the year 2000 using largely sub-national data. We present here 11 indicator datasets for urban expansion, urban population growth, marginalization of poor populations, government effectiveness, exposures and damages to climate-related extreme events, low-lying settlement, and wetlands prevalence. Applying a standard k-means cluster analysis to this input data reveals a global typology of seven clearly distinguishable clusters, or urban profiles of vulnerability (for results see Sterzel et. al., 2019).

  7. T

    Danger Assessment Dataset of Storm Surge Disasters at ten meters Scale of...

    • data.tpdc.ac.cn
    • tpdc.ac.cn
    zip
    Updated Dec 28, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TPDC (2020). Danger Assessment Dataset of Storm Surge Disasters at ten meters Scale of hambantota [Dataset]. http://doi.org/10.11888/Disas.tpdc.271048
    Explore at:
    zipAvailable download formats
    Dataset updated
    Dec 28, 2020
    Dataset provided by
    TPDC
    Area covered
    Description

    On the basis of the global tropical cyclone track dataset, the global disaster events and losses dataset, the global tide level observation dataset and DEM data, coastline distribution data, land cover information, population and other related data of Hambantota, indicators related to the disaster danger of storm surge in each unit are extracted and calculated using ten meters grid as evaluation unit. Based on statistical method, the tide level of every 20 years, 50 years and 100 years is estimated. The comprehensive index of storm surge disaster danger is constructed, and the danger index of storm surge is obtained by using the weighted method, which can be used to evaluate the danger level of storm surge in each assessment unit. The data set includes 20-year, 50-year and 100-year hazard assessment results of the port area of Hambantota.

  8. PRAMS Maternal Attitudes Data

    • kaggle.com
    Updated Jan 29, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). PRAMS Maternal Attitudes Data [Dataset]. https://www.kaggle.com/datasets/thedevastator/prams-maternal-attitudes-data/data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 29, 2023
    Dataset provided by
    Kaggle
    Authors
    The Devastator
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Description

    PRAMS Maternal Attitudes Data

    US Pregnancy Risk Assessment Monitoring, 2009

    By Health [source]

    About this dataset

    This dataset provides a fascinating glimpse into the attitudes and experiences of women before, during, and after pregnancy in the United States. Produced by the Centers for Disease Control and Prevention (CDC) as part of the Pregnancy Risk Assessment Monitoring System (PRAMS), this population-based data contains insights into maternal abuse, alcohol use, contraception, breastfeeding habits, mental health issues, morbidity rates, obesity rates, preconception care patterns , pregnancy history data , prenatal care trends , sleep behaviors , smoke exposure rates , stress levels , tobacco use , WIC involvement Medicaid utilization infant health outcomes and unintended pregnancies. State health departments can use this information to devise strategies to improve the overall wellbeing of mothers and infants throughout all phases of prenatal care. Discover new perspectives on maternal habits while you explore this diverse set of columns including LocationAbbv., LocationDesc., Class., Topic,. Question., DataSource., Response,. DataValueUnit,, DataValueType,. FootnoteSymbol. DataValueStdErr., SampleSize,, BreakOut,,,, BreakOutCategory.. Geolocation. With annual updates available from PRAMS project as new results are available don't be out of the loop - dive in today!

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset contains population-based data on maternal attitudes and experiences before, during, and shortly after pregnancy in the US. It is provided by the Centers for Disease Control and Prevention (CDC). This dataset offers valuable insights into the individual experiences of mothers in the US, which could be used for a variety of purposes.

    The PRAMS dataset contains data from 2009 onwards. The entries include year, location ID, location description, question type classabbreviation topicquestion response source unit value typevalue symbol standard error sample size break out category geolocation . In order to make better use of this dataset, it is important to understand how each entry relates to one another.

    Year:The year indicates when the data was collected.

    Location Abbr: This field provides an abbreviated region or state id where the data was collected.

    Location Desc: The description provides a more detailed geographic area where the data was collected such as city or county that can help pinpoint more exact locations than a broad regional viewpoint provides.

    Class : This is what PIDSS considers a “question type” and can range from asked directly to respondents or sentinel events often recorded within insurance claims-based datasets such as emergency room visits specific questions about smoking habits are also included in this section along with questions about family history as part of an overall health status assessment/risk categorization depiction done retrospectively on participants/respondents who already have experienced some level of health issue arising from their situation whether pre-pregnancy postpartum etc..

    Topic : Each question references an umbrella topic so answers can be compared across various aspects related to difficulty experienced during pregnancy expectancy time frames protocols that should have been followed etc..

    Question – Wordsmithing for clarity aims increase accuracy when deciphering causality links meaning by increasing terminology clarification which becomes essential when determining statistically significant correlations at different subgroups where appropriate additional information—including sensitivity may exist regarding certain politically or religiously charged topics answered within survey settings etc…

    Data Source - These are static character strings HDDHCPPVPCDAODMBMTXNCVwhatever whichever methodology employed answer gathering-- telephone interviews focus groups electronic surveys abstractions from records found at provider lab radiology sites whatever descriptors saved intended capture magnitude relevant details having meaningful impact upon analysis discussions . . .also encompass elements incidenceprevalence cummulative extents seasonality temporal trends individual contributory factors identified linkages with confounders if any…..

    Response

    Research Ideas

    • Analyzing trends in maternal attitudes and experiences among different states in the US to inform policy-making.
    • Identifying associations between pregnancy health outcomes and specific behaviors, like alcohol consumption o...
  9. 2019 Novel Coronavirus cases in South Korea (대한민국)

    • kaggle.com
    Updated Feb 26, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The citation is currently not available for this dataset.
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 26, 2020
    Dataset provided by
    Kaggle
    Authors
    Danny Toeun Kim
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    South Korea
    Description

    Context

    On December 2019, the first case of Novel Coronavirus was identified in Wuhan, Hubei, China. As of mid-February 2020, the number of confirmed cases in South Korea started to surge exponentially.

    Content

    • corona_rok.csv
    • mers_rok.csv
    • korea_china_population.csv

    Future Content

    • sars_rok.csv
    • h1n1_rok.csv

    Acknowledgements

    This wouldn't be here without the help of others.

    COVID-19
    Korea Centers for Disease Control and Prevention

    MERS-CoV
    NetMiner
    WHO

    Population data Korea 2011-2020
    Korea and China 1960-2010
    China 2010-2020

  10. g

    USGS, M 1+ earthquakes, World, 6.30.08 through 7.7.08

    • geocommons.com
    Updated Jul 7, 2008
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Burkey (2008). USGS, M 1+ earthquakes, World, 6.30.08 through 7.7.08 [Dataset]. http://geocommons.com/search.html
    Explore at:
    Dataset updated
    Jul 7, 2008
    Dataset provided by
    United State Geological Survey (USGS)
    Burkey
    Description

    This datasets displays the locations of all recorded earthquakes of a magnitude of 1 or greater around the world from the period of 6.30.08 to 7.7.08. The findings are from the US Geological Survey (USGS). Earthquake information is extracted from a merged catalog of earthquakes located by the USGS and contributing networks. Earthquakes will be broadcast within a few minutes for California events and within 30-minutes for world-wide events.

  11. ECO-DRR - Tropical Cyclone Surge exposure

    • datacore-gn.unepgrid.ch
    Updated Apr 28, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UNEP, Crisis Management Branch, Geneva (2020). ECO-DRR - Tropical Cyclone Surge exposure [Dataset]. https://datacore-gn.unepgrid.ch/geonetwork/srv/api/records/e535667a-241e-4491-9a57-5a4a26fb231e
    Explore at:
    ogc:wms-1.3.0-http-get-map, www:link-1.0-http--linkAvailable download formats
    Dataset updated
    Apr 28, 2020
    Dataset provided by
    United Nations Environment Programmehttp://www.unep.org/
    Authors
    UNEP, Crisis Management Branch, Geneva
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Area covered
    Description

    EcoDRR global classification scheme based on spatial combination of ecosystem coverage and natural hazard physical exposure. The physical exposure data-set shows the product of hazard frequency and people exposed to this hazard in the same 100 square kilometer cell. For a specific natural hazard, a 0.01 degree resolution raster is generated, showing hazard annual frequency weighted with portion of pixel potentially affected. The population raster has the same resolution and represents the absolute number of inhabitants in a 0.01 degree cell. The physical exposure in a 100 km2 grid cell is the sum of the included physical exposure raster cells.

    Sources: Estimate of surges triggered by tropical cyclone frequency of Saffir-Simpson category 1. It is based on three sources: 1) A compilation of best tracks dataset from WMO Regional Specialised Meteorological Centres (RSMCs) and Tropical Cyclone Warning Centres (TCWCs). As well as personal communication with Dr. Varigonda Subrahmanyam, Dr. James Weyman, Kiichi Sasaki, Philippe CAROFF, Jim Davidson, Simon Mc Gree, Steve Ready, Peter Kreft, Henrike Brecht. 2) A GIS modeling based on an initial equation from Greg Holland, which was further modified to take into consideration the movement of the cyclones through time. 3) A Digital Elevation Model (SRTM). Unit is expected average number of event per 1000 years. This product was designed by UNEP/GRID-Europe for the Global Assessment Report on Risk Reduction (GAR). It was modeled using global data. Credit: GIS processing UNEP/GRID-Europe.

    GHS Population GRID. The spatial raster dataset depicts the distribution of population, expressed as the number of people per cell. Residential population estimates for target years 1975, 1990, 2000 and 2015 provided by CIESIN GPWv4.10 were disaggregated from census or administrative units to grid cells, informed by the distribution and density of built-up as mapped in the Global Human Settlement Layer (GHSL) global layer per corresponding epoch. Credit: European Commission, Joint Research Centre; Columbia University, Center for International Earth Science Information Network (2015): GHS-POP R2015A - GHS population grid, derived from GPW4, multitemporal (1975, 1990, 2000, 2015). European Commission, Joint Research Centre (JRC) [Dataset] PID: http://data.europa.eu/89h/jrc-ghsl-ghs_pop_gpw4_globe_r2015a

  12. a

    RTB Mapping application

    • hub.arcgis.com
    • data.amerigeoss.org
    Updated Aug 12, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS StoryMaps (2015). RTB Mapping application [Dataset]. https://hub.arcgis.com/datasets/81ea77e8b5274b879b9d71010d8743aa
    Explore at:
    Dataset updated
    Aug 12, 2015
    Dataset authored and provided by
    ArcGIS StoryMaps
    Description

    RTB Maps is a cloud-based electronic Atlas. We used ArGIS 10 for Desktop with Spatial Analysis Extension, ArcGIS 10 for Server on-premise, ArcGIS API for Javascript, IIS web services based on .NET, and ArcGIS Online combining data on the cloud with data and applications on our local server to develop an Atlas that brings together many of the map themes related to development of roots, tubers and banana crops. The Atlas is structured to allow our participating scientists to understand the distribution of the crops and observe the spatial distribution of many of the obstacles to production of these crops. The Atlas also includes an application to allow our partners to evaluate the importance of different factors when setting priorities for research and development. The application uses weighted overlay analysis within a multi-criteria decision analysis framework to rate the importance of factors when establishing geographic priorities for research and development.Datasets of crop distribution maps, agroecology maps, biotic and abiotic constraints to crop production, poverty maps and other demographic indicators are used as a key inputs to multi-objective criteria analysis.Further metadata/references can be found here: http://gisweb.ciat.cgiar.org/RTBmaps/DataAvailability_RTBMaps.htmlDISCLAIMER, ACKNOWLEDGMENTS AND PERMISSIONS:This service is provided by Roots, Tubers and Bananas CGIAR Research Program as a public service. Use of this service to retrieve information constitutes your awareness and agreement to the following conditions of use.This online resource displays GIS data and query tools subject to continuous updates and adjustments. The GIS data has been taken from various, mostly public, sources and is supplied in good faith.RTBMaps GIS Data Disclaimer• The data used to show the Base Maps is supplied by ESRI.• The data used to show the photos over the map is supplied by Flickr.• The data used to show the videos over the map is supplied by Youtube.• The population map is supplied to us by CIESIN, Columbia University and CIAT.• The Accessibility map is provided by Global Environment Monitoring Unit - Joint Research Centre of the European Commission. Accessibility maps are made for a specific purpose and they cannot be used as a generic dataset to represent "the accessibility" for a given study area.• Harvested area and yield for banana, cassava, potato, sweet potato and yam for the year 200, is provided by EarthSat (University of Minnesota’s Institute on the Environment-Global Landscapes initiative and McGill University’s Land Use and the Global Environment lab). Dataset from Monfreda C., Ramankutty N., and Foley J.A. 2008.• Agroecology dataset: global edapho-climatic zones for cassava based on mean growing season, temperature, number of dry season months, daily temperature range and seasonality. Dataset from CIAT (Carter et al. 1992)• Demography indicators: Total and Rural Population from Center for International Earth Science Information Network (CIESIN) and CIAT 2004.• The FGGD prevalence of stunting map is a global raster datalayer with a resolution of 5 arc-minutes. The percentage of stunted children under five years old is reported according to the lowest available sub-national administrative units: all pixels within the unit boundaries will have the same value. Data have been compiled by FAO from different sources: Demographic and Health Surveys (DHS), UNICEF MICS, WHO Global Database on Child Growth and Malnutrition, and national surveys. Data provided by FAO – GIS Unit 2007.• Poverty dataset: Global poverty headcount and absolute number of poor. Number of people living on less than $1.25 or $2.00 per day. Dataset from IFPRI and CIATTHE RTBMAPS GROUP MAKES NO WARRANTIES OR GUARANTEES, EITHER EXPRESSED OR IMPLIED AS TO THE COMPLETENESS, ACCURACY, OR CORRECTNESS OF THE DATA PORTRAYED IN THIS PRODUCT NOR ACCEPTS ANY LIABILITY, ARISING FROM ANY INCORRECT, INCOMPLETE OR MISLEADING INFORMATION CONTAINED THEREIN. ALL INFORMATION, DATA AND DATABASES ARE PROVIDED "AS IS" WITH NO WARRANTY, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO, FITNESS FOR A PARTICULAR PURPOSE. By accessing this website and/or data contained within the databases, you hereby release the RTB group and CGCenters, its employees, agents, contractors, sponsors and suppliers from any and all responsibility and liability associated with its use. In no event shall the RTB Group or its officers or employees be liable for any damages arising in any way out of the use of the website, or use of the information contained in the databases herein including, but not limited to the RTBMaps online Atlas product.APPLICATION DEVELOPMENT:• Desktop and web development - Ernesto Giron E. (GeoSpatial Consultant) e.giron.e@gmail.com• GIS Analyst - Elizabeth Barona. (Independent Consultant) barona.elizabeth@gmail.comCollaborators:Glenn Hyman, Bernardo Creamer, Jesus David Hoyos, Diana Carolina Giraldo Soroush Parsa, Jagath Shanthalal, Herlin Rodolfo Espinosa, Carlos Navarro, Jorge Cardona and Beatriz Vanessa Herrera at CIAT, Tunrayo Alabi and Joseph Rusike from IITA, Guy Hareau, Reinhard Simon, Henry Juarez, Ulrich Kleinwechter, Greg Forbes, Adam Sparks from CIP, and David Brown and Charles Staver from Bioversity International.Please note these services may be unavailable at times due to maintenance work.Please feel free to contact us with any questions or problems you may be having with RTBMaps.

  13. w

    Fire statistics data tables

    • gov.uk
    • s3.amazonaws.com
    Updated Sep 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ministry of Housing, Communities and Local Government (2025). Fire statistics data tables [Dataset]. https://www.gov.uk/government/statistical-data-sets/fire-statistics-data-tables
    Explore at:
    Dataset updated
    Sep 25, 2025
    Dataset provided by
    GOV.UK
    Authors
    Ministry of Housing, Communities and Local Government
    Description

    On 1 April 2025 responsibility for fire and rescue transferred from the Home Office to the Ministry of Housing, Communities and Local Government.

    This information covers fires, false alarms and other incidents attended by fire crews, and the statistics include the numbers of incidents, fires, fatalities and casualties as well as information on response times to fires. The Ministry of Housing, Communities and Local Government (MHCLG) also collect information on the workforce, fire prevention work, health and safety and firefighter pensions. All data tables on fire statistics are below.

    MHCLG has responsibility for fire services in England. The vast majority of data tables produced by the Ministry of Housing, Communities and Local Government are for England but some (0101, 0103, 0201, 0501, 1401) tables are for Great Britain split by nation. In the past the Department for Communities and Local Government (who previously had responsibility for fire services in England) produced data tables for Great Britain and at times the UK. Similar information for devolved administrations are available at https://www.firescotland.gov.uk/about/statistics/">Scotland: Fire and Rescue Statistics, https://statswales.gov.wales/Catalogue/Community-Safety-and-Social-Inclusion/Community-Safety">Wales: Community safety and https://www.nifrs.org/home/about-us/publications/">Northern Ireland: Fire and Rescue Statistics.

    If you use assistive technology (for example, a screen reader) and need a version of any of these documents in a more accessible format, please email alternativeformats@communities.gov.uk. Please tell us what format you need. It will help us if you say what assistive technology you use.

    Related content

    Fire statistics guidance
    Fire statistics incident level datasets

    Incidents attended

    https://assets.publishing.service.gov.uk/media/686d2aa22557debd867cbe14/FIRE0101.xlsx">FIRE0101: Incidents attended by fire and rescue services by nation and population (MS Excel Spreadsheet, 153 KB) Previous FIRE0101 tables

    https://assets.publishing.service.gov.uk/media/686d2ab52557debd867cbe15/FIRE0102.xlsx">FIRE0102: Incidents attended by fire and rescue services in England, by incident type and fire and rescue authority (MS Excel Spreadsheet, 2.19 MB) Previous FIRE0102 tables

    https://assets.publishing.service.gov.uk/media/686d2aca10d550c668de3c69/FIRE0103.xlsx">FIRE0103: Fires attended by fire and rescue services by nation and population (MS Excel Spreadsheet, 201 KB) Previous FIRE0103 tables

    https://assets.publishing.service.gov.uk/media/686d2ad92557debd867cbe16/FIRE0104.xlsx">FIRE0104: Fire false alarms by reason for false alarm, England (MS Excel Spreadsheet, 492 KB) Previous FIRE0104 tables

    Dwelling fires attended

    https://assets.publishing.service.gov.uk/media/686d2af42cfe301b5fb6789f/FIRE0201.xlsx">FIRE0201: Dwelling fires attended by fire and rescue services by motive, population and nation (MS Excel Spreadsheet, 192 KB) Previous FIRE0201 tables

    <span class="gem

  14. a

    Top 10 Dioceses CCF

    • catholic-geo-hub-cgisc.hub.arcgis.com
    Updated Oct 26, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    burhansm2 (2019). Top 10 Dioceses CCF [Dataset]. https://catholic-geo-hub-cgisc.hub.arcgis.com/items/6f42562cfc57427abe9b132dc05cfeb4
    Explore at:
    Dataset updated
    Oct 26, 2019
    Dataset authored and provided by
    burhansm2
    License

    Attribution-NoDerivs 4.0 (CC BY-ND 4.0)https://creativecommons.org/licenses/by-nd/4.0/
    License information was derived automatically

    Description

    PerCapita_CO2_Footprint_InDioceses_FULLBurhans, Molly A., Cheney, David M., Gerlt, R.. . “PerCapita_CO2_Footprint_InDioceses_FULL”. Scale not given. Version 1.0. MO and CT, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2019.MethodologyThis is the first global Carbon footprint of the Catholic population. We will continue to improve and develop these data with our research partners over the coming years. While it is helpful, it should also be viewed and used as a "beta" prototype that we and our research partners will build from and improve. The years of carbon data are (2010) and (2015 - SHOWN). The year of Catholic data is 2018. The year of population data is 2016. Care should be taken during future developments to harmonize the years used for catholic, population, and CO2 data.1. Zonal Statistics: Esri Population Data and Dioceses --> Population per dioceses, non Vatican based numbers2. Zonal Statistics: FFDAS and Dioceses and Population dataset --> Mean CO2 per Diocese3. Field Calculation: Population per Diocese and Mean CO2 per diocese --> CO2 per Capita4. Field Calculation: CO2 per Capita * Catholic Population --> Catholic Carbon FootprintAssumption: PerCapita CO2Deriving per-capita CO2 from mean CO2 in a geography assumes that people's footprint accounts for their personal lifestyle and involvement in local business and industries that are contribute CO2. Catholic CO2Assumes that Catholics and non-Catholic have similar CO2 footprints from their lifestyles.Derived from:A multiyear, global gridded fossil fuel CO2 emission data product: Evaluation and analysis of resultshttp://ffdas.rc.nau.edu/About.htmlRayner et al., JGR, 2010 - The is the first FFDAS paper describing the version 1.0 methods and results published in the Journal of Geophysical Research.Asefi et al., 2014 - This is the paper describing the methods and results of the FFDAS version 2.0 published in the Journal of Geophysical Research.Readme version 2.2 - A simple readme file to assist in using the 10 km x 10 km, hourly gridded Vulcan version 2.2 results.Liu et al., 2017 - A paper exploring the carbon cycle response to the 2015-2016 El Nino through the use of carbon cycle data assimilation with FFDAS as the boundary condition for FFCO2."S. Asefi‐Najafabady P. J. Rayner K. R. Gurney A. McRobert Y. Song K. Coltin J. Huang C. Elvidge K. BaughFirst published: 10 September 2014 https://doi.org/10.1002/2013JD021296 Cited by: 30Link to FFDAS data retrieval and visualization: http://hpcg.purdue.edu/FFDAS/index.phpAbstractHigh‐resolution, global quantification of fossil fuel CO2 emissions is emerging as a critical need in carbon cycle science and climate policy. We build upon a previously developed fossil fuel data assimilation system (FFDAS) for estimating global high‐resolution fossil fuel CO2 emissions. We have improved the underlying observationally based data sources, expanded the approach through treatment of separate emitting sectors including a new pointwise database of global power plants, and extended the results to cover a 1997 to 2010 time series at a spatial resolution of 0.1°. Long‐term trend analysis of the resulting global emissions shows subnational spatial structure in large active economies such as the United States, China, and India. These three countries, in particular, show different long‐term trends and exploration of the trends in nighttime lights, and population reveal a decoupling of population and emissions at the subnational level. Analysis of shorter‐term variations reveals the impact of the 2008–2009 global financial crisis with widespread negative emission anomalies across the U.S. and Europe. We have used a center of mass (CM) calculation as a compact metric to express the time evolution of spatial patterns in fossil fuel CO2 emissions. The global emission CM has moved toward the east and somewhat south between 1997 and 2010, driven by the increase in emissions in China and South Asia over this time period. Analysis at the level of individual countries reveals per capita CO2 emission migration in both Russia and India. The per capita emission CM holds potential as a way to succinctly analyze subnational shifts in carbon intensity over time. Uncertainties are generally lower than the previous version of FFDAS due mainly to an improved nightlight data set."Global Diocesan Boundaries:Burhans, M., Bell, J., Burhans, D., Carmichael, R., Cheney, D., Deaton, M., Emge, T. Gerlt, B., Grayson, J., Herries, J., Keegan, H., Skinner, A., Smith, M., Sousa, C., Trubetskoy, S. “Diocesean Boundaries of the Catholic Church” [Feature Layer]. Scale not given. Version 1.2. Redlands, CA, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2016.Using: ArcGIS. 10.4. Version 10.0. Redlands, CA: Environmental Systems Research Institute, Inc., 2016.Boundary ProvenanceStatistics and Leadership DataCheney, D.M. “Catholic Hierarchy of the World” [Database]. Date Updated: August 2019. Catholic Hierarchy. Using: Paradox. Retrieved from Original Source.Catholic HierarchyAnnuario Pontificio per l’Anno .. Città del Vaticano :Tipografia Poliglotta Vaticana, Multiple Years.The data for these maps was extracted from the gold standard of Church data, the Annuario Pontificio, published yearly by the Vatican. The collection and data development of the Vatican Statistics Office are unknown. GoodLands is not responsible for errors within this data. We encourage people to document and report errant information to us at data@good-lands.org or directly to the Vatican.Additional information about regular changes in bishops and sees comes from a variety of public diocesan and news announcements.GoodLands’ polygon data layers, version 2.0 for global ecclesiastical boundaries of the Roman Catholic Church:Although care has been taken to ensure the accuracy, completeness and reliability of the information provided, due to this being the first developed dataset of global ecclesiastical boundaries curated from many sources it may have a higher margin of error than established geopolitical administrative boundary maps. Boundaries need to be verified with appropriate Ecclesiastical Leadership. The current information is subject to change without notice. No parties involved with the creation of this data are liable for indirect, special or incidental damage resulting from, arising out of or in connection with the use of the information. We referenced 1960 sources to build our global datasets of ecclesiastical jurisdictions. Often, they were isolated images of dioceses, historical documents and information about parishes that were cross checked. These sources can be viewed here:https://docs.google.com/spreadsheets/d/11ANlH1S_aYJOyz4TtG0HHgz0OLxnOvXLHMt4FVOS85Q/edit#gid=0To learn more or contact us please visit: https://good-lands.org/Esri Gridded Population Data 2016DescriptionThis layer is a global estimate of human population for 2016. Esri created this estimate by modeling a footprint of where people live as a dasymetric settlement likelihood surface, and then assigned 2016 population estimates stored on polygons of the finest level of geography available onto the settlement surface. Where people live means where their homes are, as in where people sleep most of the time, and this is opposed to where they work. Another way to think of this estimate is a night-time estimate, as opposed to a day-time estimate.Knowledge of population distribution helps us understand how humans affect the natural world and how natural events such as storms and earthquakes, and other phenomena affect humans. This layer represents the footprint of where people live, and how many people live there.Dataset SummaryEach cell in this layer has an integer value with the estimated number of people likely to live in the geographic region represented by that cell. Esri additionally produced several additional layers World Population Estimate Confidence 2016: the confidence level (1-5) per cell for the probability of people being located and estimated correctly. World Population Density Estimate 2016: this layer is represented as population density in units of persons per square kilometer.World Settlement Score 2016: the dasymetric likelihood surface used to create this layer by apportioning population from census polygons to the settlement score raster.To use this layer in analysis, there are several properties or geoprocessing environment settings that should be used:Coordinate system: WGS_1984. This service and its underlying data are WGS_1984. We do this because projecting population count data actually will change the populations due to resampling and either collapsing or splitting cells to fit into another coordinate system. Cell Size: 0.0013474728 degrees (approximately 150-meters) at the equator. No Data: -1Bit Depth: 32-bit signedThis layer has query, identify, pixel, and export image functions enabled, and is restricted to a maximum analysis size of 30,000 x 30,000 pixels - an area about the size of Africa.Frye, C. et al., (2018). Using Classified and Unclassified Land Cover Data to Estimate the Footprint of Human Settlement. Data Science Journal. 17, p.20. DOI: http://doi.org/10.5334/dsj-2018-020.What can you do with this layer?This layer is unsuitable for mapping or cartographic use, and thus it does not include a convenient legend. Instead, this layer is useful for analysis, particularly for estimating counts of people living within watersheds, coastal areas, and other areas that do not have standard boundaries. Esri recommends using the Zonal Statistics tool or the Zonal Statistics to Table tool where you provide input zones as either polygons, or raster data, and the tool will summarize the count of population within those zones. https://www.esri.com/arcgis-blog/products/arcgis-living-atlas/data-management/2016-world-population-estimate-services-are-now-available/

  15. a

    Catholic CO2 Footprint Beta FullSees MinusTop10

    • hub.arcgis.com
    • catholic-geo-hub-cgisc.hub.arcgis.com
    Updated Oct 7, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    burhansm2 (2019). Catholic CO2 Footprint Beta FullSees MinusTop10 [Dataset]. https://hub.arcgis.com/content/0624329f7fb54c59a2cca4feea48afe5
    Explore at:
    Dataset updated
    Oct 7, 2019
    Dataset authored and provided by
    burhansm2
    License

    Attribution-NoDerivs 4.0 (CC BY-ND 4.0)https://creativecommons.org/licenses/by-nd/4.0/
    License information was derived automatically

    Area covered
    Description

    Catholic_CO2_Footprint_Beta_FullSees_MinusTop10Burhans, Molly A., Cheney, David M., Gerlt, R.. . “Catholic_CO2_Footprint_Beta_FullSees_MinusTop10”. Scale not given. Version 1.0. MO and CT, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2019.DEVELOPED AS A POPUP LAYERMethodologyThis is the first global Carbon footprint of the Catholic population. We will continue to improve and develop these data with our research partners over the coming years. While it is helpful, it should also be viewed and used as a "beta" prototype that we and our research partners will build from and improve. The years of carbon data are (2010) and (2015 - SHOWN). The year of Catholic data is 2018. The year of population data is 2016. Care should be taken during future developments to harmonize the years used for catholic, population, and CO2 data.1. Zonal Statistics: Esri Population Data and Dioceses --> Population per dioceses, non Vatican based numbers2. Zonal Statistics: FFDAS and Dioceses and Population dataset --> Mean CO2 per Diocese3. Field Calculation: Population per Diocese and Mean CO2 per diocese --> CO2 per Capita4. Field Calculation: CO2 per Capita * Catholic Population --> Catholic Carbon FootprintAssumption: PerCapita CO2Deriving per-capita CO2 from mean CO2 in a geography assumes that people's footprint accounts for their personal lifestyle and involvement in local business and industries that are contribute CO2. Catholic CO2Assumes that Catholics and non-Catholic have similar CO2 footprints from their lifestyles.Derived from:A multiyear, global gridded fossil fuel CO2 emission data product: Evaluation and analysis of resultshttp://ffdas.rc.nau.edu/About.htmlRayner et al., JGR, 2010 - The is the first FFDAS paper describing the version 1.0 methods and results published in the Journal of Geophysical Research.Asefi et al., 2014 - This is the paper describing the methods and results of the FFDAS version 2.0 published in the Journal of Geophysical Research.Readme version 2.2 - A simple readme file to assist in using the 10 km x 10 km, hourly gridded Vulcan version 2.2 results.Liu et al., 2017 - A paper exploring the carbon cycle response to the 2015-2016 El Nino through the use of carbon cycle data assimilation with FFDAS as the boundary condition for FFCO2."S. Asefi‐Najafabady P. J. Rayner K. R. Gurney A. McRobert Y. Song K. Coltin J. Huang C. Elvidge K. BaughFirst published: 10 September 2014 https://doi.org/10.1002/2013JD021296 Cited by: 30Link to FFDAS data retrieval and visualization: http://hpcg.purdue.edu/FFDAS/index.phpAbstractHigh‐resolution, global quantification of fossil fuel CO2 emissions is emerging as a critical need in carbon cycle science and climate policy. We build upon a previously developed fossil fuel data assimilation system (FFDAS) for estimating global high‐resolution fossil fuel CO2 emissions. We have improved the underlying observationally based data sources, expanded the approach through treatment of separate emitting sectors including a new pointwise database of global power plants, and extended the results to cover a 1997 to 2010 time series at a spatial resolution of 0.1°. Long‐term trend analysis of the resulting global emissions shows subnational spatial structure in large active economies such as the United States, China, and India. These three countries, in particular, show different long‐term trends and exploration of the trends in nighttime lights, and population reveal a decoupling of population and emissions at the subnational level. Analysis of shorter‐term variations reveals the impact of the 2008–2009 global financial crisis with widespread negative emission anomalies across the U.S. and Europe. We have used a center of mass (CM) calculation as a compact metric to express the time evolution of spatial patterns in fossil fuel CO2 emissions. The global emission CM has moved toward the east and somewhat south between 1997 and 2010, driven by the increase in emissions in China and South Asia over this time period. Analysis at the level of individual countries reveals per capita CO2 emission migration in both Russia and India. The per capita emission CM holds potential as a way to succinctly analyze subnational shifts in carbon intensity over time. Uncertainties are generally lower than the previous version of FFDAS due mainly to an improved nightlight data set."Global Diocesan Boundaries:Burhans, M., Bell, J., Burhans, D., Carmichael, R., Cheney, D., Deaton, M., Emge, T. Gerlt, B., Grayson, J., Herries, J., Keegan, H., Skinner, A., Smith, M., Sousa, C., Trubetskoy, S. “Diocesean Boundaries of the Catholic Church” [Feature Layer]. Scale not given. Version 1.2. Redlands, CA, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2016.Using: ArcGIS. 10.4. Version 10.0. Redlands, CA: Environmental Systems Research Institute, Inc., 2016.Boundary ProvenanceStatistics and Leadership DataCheney, D.M. “Catholic Hierarchy of the World” [Database]. Date Updated: August 2019. Catholic Hierarchy. Using: Paradox. Retrieved from Original Source.Catholic HierarchyAnnuario Pontificio per l’Anno .. Città del Vaticano :Tipografia Poliglotta Vaticana, Multiple Years.The data for these maps was extracted from the gold standard of Church data, the Annuario Pontificio, published yearly by the Vatican. The collection and data development of the Vatican Statistics Office are unknown. GoodLands is not responsible for errors within this data. We encourage people to document and report errant information to us at data@good-lands.org or directly to the Vatican.Additional information about regular changes in bishops and sees comes from a variety of public diocesan and news announcements.GoodLands’ polygon data layers, version 2.0 for global ecclesiastical boundaries of the Roman Catholic Church:Although care has been taken to ensure the accuracy, completeness and reliability of the information provided, due to this being the first developed dataset of global ecclesiastical boundaries curated from many sources it may have a higher margin of error than established geopolitical administrative boundary maps. Boundaries need to be verified with appropriate Ecclesiastical Leadership. The current information is subject to change without notice. No parties involved with the creation of this data are liable for indirect, special or incidental damage resulting from, arising out of or in connection with the use of the information. We referenced 1960 sources to build our global datasets of ecclesiastical jurisdictions. Often, they were isolated images of dioceses, historical documents and information about parishes that were cross checked. These sources can be viewed here:https://docs.google.com/spreadsheets/d/11ANlH1S_aYJOyz4TtG0HHgz0OLxnOvXLHMt4FVOS85Q/edit#gid=0To learn more or contact us please visit: https://good-lands.org/Esri Gridded Population Data 2016DescriptionThis layer is a global estimate of human population for 2016. Esri created this estimate by modeling a footprint of where people live as a dasymetric settlement likelihood surface, and then assigned 2016 population estimates stored on polygons of the finest level of geography available onto the settlement surface. Where people live means where their homes are, as in where people sleep most of the time, and this is opposed to where they work. Another way to think of this estimate is a night-time estimate, as opposed to a day-time estimate.Knowledge of population distribution helps us understand how humans affect the natural world and how natural events such as storms and earthquakes, and other phenomena affect humans. This layer represents the footprint of where people live, and how many people live there.Dataset SummaryEach cell in this layer has an integer value with the estimated number of people likely to live in the geographic region represented by that cell. Esri additionally produced several additional layers World Population Estimate Confidence 2016: the confidence level (1-5) per cell for the probability of people being located and estimated correctly. World Population Density Estimate 2016: this layer is represented as population density in units of persons per square kilometer.World Settlement Score 2016: the dasymetric likelihood surface used to create this layer by apportioning population from census polygons to the settlement score raster.To use this layer in analysis, there are several properties or geoprocessing environment settings that should be used:Coordinate system: WGS_1984. This service and its underlying data are WGS_1984. We do this because projecting population count data actually will change the populations due to resampling and either collapsing or splitting cells to fit into another coordinate system. Cell Size: 0.0013474728 degrees (approximately 150-meters) at the equator. No Data: -1Bit Depth: 32-bit signedThis layer has query, identify, pixel, and export image functions enabled, and is restricted to a maximum analysis size of 30,000 x 30,000 pixels - an area about the size of Africa.Frye, C. et al., (2018). Using Classified and Unclassified Land Cover Data to Estimate the Footprint of Human Settlement. Data Science Journal. 17, p.20. DOI: http://doi.org/10.5334/dsj-2018-020.What can you do with this layer?This layer is unsuitable for mapping or cartographic use, and thus it does not include a convenient legend. Instead, this layer is useful for analysis, particularly for estimating counts of people living within watersheds, coastal areas, and other areas that do not have standard boundaries. Esri recommends using the Zonal Statistics tool or the Zonal Statistics to Table tool where you provide input zones as either polygons, or raster data, and the tool will summarize the count of population within those zones. https://www.esri.com/arcgis-blog/products/arcgis-living-atlas/data-management/2016-world-population-estimate-services-are-now-available/

  16. D

    Data from: Sand lizard (Lacerta agilis) phenology in a warming world

    • datasetcatalog.nlm.nih.gov
    • data.niaid.nih.gov
    • +2more
    Updated Sep 8, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ljungström, Gabriella; Wapstra, Erik; Olsson, Mats (2015). Sand lizard (Lacerta agilis) phenology in a warming world [Dataset]. http://doi.org/10.5061/dryad.d25s3
    Explore at:
    Dataset updated
    Sep 8, 2015
    Authors
    Ljungström, Gabriella; Wapstra, Erik; Olsson, Mats
    Description

    Background: Present-day climate change has altered the phenology (the timing of periodic life cycle events) of many plant and animal populations worldwide. Some of these changes have been adaptive, leading to an increase in population fitness, whereas others have been associated with fitness decline. Representing short-term responses to an altered weather regime, hitherto observed changes are largely explained by phenotypic plasticity. However, to track climatically induced shifts in optimal phenotype as climate change proceeds, evolutionary capacity in key limiting climate- and fitness-related traits is likely to be crucial. In order to produce realistic predictions about the effects of climate change on species and populations, a main target for conservation biologists is thus to assess the potential of natural populations to respond by these two mechanisms. In this study we use a large 15-year dataset on an ectotherm model, the Swedish sand lizard (Lacerta agilis), to investigate how higher spring temperature is likely to affect oviposition timing in a high latitude population, a trait strongly linked to offspring fitness and survival. Results: With an interest in both the short- and potential long-term effect of rising temperatures, we applied a random regression model, which yields estimates of population-level plasticity and among-individual variation in the average, as well as the plastic, response to temperature. Population plasticity represents capacity for short-term adjustments whereas variation among individuals in a fitness-related trait indicates an opportunity for natural selection and hence for evolutionary adaptation. The analysis revealed both population-level plasticity and individual-level variation in average laying date. In contrast, we found no evidence for variation among females in their plastic responses to spring temperature, which could demonstrate a similarity in responses amongst females, but may also be due to a lack of statistical power to detect such an effect. Conclusion: Our findings indicate that climate warming may have positive fitness effects in this lizard population through an advancement of oviposition date. This prediction is consistent over shorter and potentially also longer time scales as the analysis revealed both population-level plasticity and individual-level variation in average laying date. However, the genetic basis for this variation would have to be examined in order to predict an evolutionary response.

  17. a

    Catholic Carbon Footprint Story Map Map

    • catholic-geo-hub-cgisc.hub.arcgis.com
    Updated Oct 7, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    burhansm2 (2019). Catholic Carbon Footprint Story Map Map [Dataset]. https://catholic-geo-hub-cgisc.hub.arcgis.com/maps/8c3112552bdd4bd3962ab8b94bcf6ee5
    Explore at:
    Dataset updated
    Oct 7, 2019
    Dataset authored and provided by
    burhansm2
    License

    Attribution-NoDerivs 4.0 (CC BY-ND 4.0)https://creativecommons.org/licenses/by-nd/4.0/
    License information was derived automatically

    Area covered
    Description

    Catholic Carbon Footprint Story Map Map:DataBurhans, Molly A., Cheney, David M., Gerlt, R.. . “PerCapita_CO2_Footprint_InDioceses_FULL”. Scale not given. Version 1.0. MO and CT, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2019.Map Development: Molly BurhansMethodologyThis is the first global Carbon footprint of the Catholic population. We will continue to improve and develop these data with our research partners over the coming years. While it is helpful, it should also be viewed and used as a "beta" prototype that we and our research partners will build from and improve. The years of carbon data are (2010) and (2015 - SHOWN). The year of Catholic data is 2018. The year of population data is 2016. Care should be taken during future developments to harmonize the years used for catholic, population, and CO2 data.1. Zonal Statistics: Esri Population Data and Dioceses --> Population per dioceses, non Vatican based numbers2. Zonal Statistics: FFDAS and Dioceses and Population dataset --> Mean CO2 per Diocese3. Field Calculation: Population per Diocese and Mean CO2 per diocese --> CO2 per Capita4. Field Calculation: CO2 per Capita * Catholic Population --> Catholic Carbon FootprintAssumption: PerCapita CO2Deriving per-capita CO2 from mean CO2 in a geography assumes that people's footprint accounts for their personal lifestyle and involvement in local business and industries that are contribute CO2. Catholic CO2Assumes that Catholics and non-Catholic have similar CO2 footprints from their lifestyles.Derived from:A multiyear, global gridded fossil fuel CO2 emission data product: Evaluation and analysis of resultshttp://ffdas.rc.nau.edu/About.htmlRayner et al., JGR, 2010 - The is the first FFDAS paper describing the version 1.0 methods and results published in the Journal of Geophysical Research.Asefi et al., 2014 - This is the paper describing the methods and results of the FFDAS version 2.0 published in the Journal of Geophysical Research.Readme version 2.2 - A simple readme file to assist in using the 10 km x 10 km, hourly gridded Vulcan version 2.2 results.Liu et al., 2017 - A paper exploring the carbon cycle response to the 2015-2016 El Nino through the use of carbon cycle data assimilation with FFDAS as the boundary condition for FFCO2."S. Asefi‐Najafabady P. J. Rayner K. R. Gurney A. McRobert Y. Song K. Coltin J. Huang C. Elvidge K. BaughFirst published: 10 September 2014 https://doi.org/10.1002/2013JD021296 Cited by: 30Link to FFDAS data retrieval and visualization: http://hpcg.purdue.edu/FFDAS/index.phpAbstractHigh‐resolution, global quantification of fossil fuel CO2 emissions is emerging as a critical need in carbon cycle science and climate policy. We build upon a previously developed fossil fuel data assimilation system (FFDAS) for estimating global high‐resolution fossil fuel CO2 emissions. We have improved the underlying observationally based data sources, expanded the approach through treatment of separate emitting sectors including a new pointwise database of global power plants, and extended the results to cover a 1997 to 2010 time series at a spatial resolution of 0.1°. Long‐term trend analysis of the resulting global emissions shows subnational spatial structure in large active economies such as the United States, China, and India. These three countries, in particular, show different long‐term trends and exploration of the trends in nighttime lights, and population reveal a decoupling of population and emissions at the subnational level. Analysis of shorter‐term variations reveals the impact of the 2008–2009 global financial crisis with widespread negative emission anomalies across the U.S. and Europe. We have used a center of mass (CM) calculation as a compact metric to express the time evolution of spatial patterns in fossil fuel CO2 emissions. The global emission CM has moved toward the east and somewhat south between 1997 and 2010, driven by the increase in emissions in China and South Asia over this time period. Analysis at the level of individual countries reveals per capita CO2 emission migration in both Russia and India. The per capita emission CM holds potential as a way to succinctly analyze subnational shifts in carbon intensity over time. Uncertainties are generally lower than the previous version of FFDAS due mainly to an improved nightlight data set."Global Diocesan Boundaries:Burhans, M., Bell, J., Burhans, D., Carmichael, R., Cheney, D., Deaton, M., Emge, T. Gerlt, B., Grayson, J., Herries, J., Keegan, H., Skinner, A., Smith, M., Sousa, C., Trubetskoy, S. “Diocesean Boundaries of the Catholic Church” [Feature Layer]. Scale not given. Version 1.2. Redlands, CA, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2016.Using: ArcGIS. 10.4. Version 10.0. Redlands, CA: Environmental Systems Research Institute, Inc., 2016.Boundary ProvenanceStatistics and Leadership DataCheney, D.M. “Catholic Hierarchy of the World” [Database]. Date Updated: August 2019. Catholic Hierarchy. Using: Paradox. Retrieved from Original Source.Catholic HierarchyAnnuario Pontificio per l’Anno .. Città del Vaticano :Tipografia Poliglotta Vaticana, Multiple Years.The data for these maps was extracted from the gold standard of Church data, the Annuario Pontificio, published yearly by the Vatican. The collection and data development of the Vatican Statistics Office are unknown. GoodLands is not responsible for errors within this data. We encourage people to document and report errant information to us at data@good-lands.org or directly to the Vatican.Additional information about regular changes in bishops and sees comes from a variety of public diocesan and news announcements.GoodLands’ polygon data layers, version 2.0 for global ecclesiastical boundaries of the Roman Catholic Church:Although care has been taken to ensure the accuracy, completeness and reliability of the information provided, due to this being the first developed dataset of global ecclesiastical boundaries curated from many sources it may have a higher margin of error than established geopolitical administrative boundary maps. Boundaries need to be verified with appropriate Ecclesiastical Leadership. The current information is subject to change without notice. No parties involved with the creation of this data are liable for indirect, special or incidental damage resulting from, arising out of or in connection with the use of the information. We referenced 1960 sources to build our global datasets of ecclesiastical jurisdictions. Often, they were isolated images of dioceses, historical documents and information about parishes that were cross checked. These sources can be viewed here:https://docs.google.com/spreadsheets/d/11ANlH1S_aYJOyz4TtG0HHgz0OLxnOvXLHMt4FVOS85Q/edit#gid=0To learn more or contact us please visit: https://good-lands.org/Esri Gridded Population Data 2016DescriptionThis layer is a global estimate of human population for 2016. Esri created this estimate by modeling a footprint of where people live as a dasymetric settlement likelihood surface, and then assigned 2016 population estimates stored on polygons of the finest level of geography available onto the settlement surface. Where people live means where their homes are, as in where people sleep most of the time, and this is opposed to where they work. Another way to think of this estimate is a night-time estimate, as opposed to a day-time estimate.Knowledge of population distribution helps us understand how humans affect the natural world and how natural events such as storms and earthquakes, and other phenomena affect humans. This layer represents the footprint of where people live, and how many people live there.Dataset SummaryEach cell in this layer has an integer value with the estimated number of people likely to live in the geographic region represented by that cell. Esri additionally produced several additional layers World Population Estimate Confidence 2016: the confidence level (1-5) per cell for the probability of people being located and estimated correctly. World Population Density Estimate 2016: this layer is represented as population density in units of persons per square kilometer.World Settlement Score 2016: the dasymetric likelihood surface used to create this layer by apportioning population from census polygons to the settlement score raster.To use this layer in analysis, there are several properties or geoprocessing environment settings that should be used:Coordinate system: WGS_1984. This service and its underlying data are WGS_1984. We do this because projecting population count data actually will change the populations due to resampling and either collapsing or splitting cells to fit into another coordinate system. Cell Size: 0.0013474728 degrees (approximately 150-meters) at the equator. No Data: -1Bit Depth: 32-bit signedThis layer has query, identify, pixel, and export image functions enabled, and is restricted to a maximum analysis size of 30,000 x 30,000 pixels - an area about the size of Africa.Frye, C. et al., (2018). Using Classified and Unclassified Land Cover Data to Estimate the Footprint of Human Settlement. Data Science Journal. 17, p.20. DOI: http://doi.org/10.5334/dsj-2018-020.What can you do with this layer?This layer is unsuitable for mapping or cartographic use, and thus it does not include a convenient legend. Instead, this layer is useful for analysis, particularly for estimating counts of people living within watersheds, coastal areas, and other areas that do not have standard boundaries. Esri recommends using the Zonal Statistics tool or the Zonal Statistics to Table tool where you provide input zones as either polygons, or raster data, and the tool will summarize the count of population within those zones. https://www.esri.com/arcgis-blog/products/arcgis-living-atlas/data-management/2016-world-population-estimate-services-are-now-available/

  18. g

    HAZUS, Residential Data, Indiana Section of the Chicago - IL MSA, 2006

    • geocommons.com
    Updated Jun 2, 2008
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data (2008). HAZUS, Residential Data, Indiana Section of the Chicago - IL MSA, 2006 [Dataset]. http://geocommons.com/search.html
    Explore at:
    Dataset updated
    Jun 2, 2008
    Dataset provided by
    data
    HAZUS
    Description

    HAZUS is an abbreviation for Hazards United States, and was developed by FEMA. The HAZUS dataset was designed to estimate the potential physical, economic and social losses during hazardous events such as flooding or earthquakes. To Measure the social impact of these events HAZUS includes detailed demographic data for the United States. This dataset pulls out the residential data from the demographic files, at the census block level for the Indiana section of the Chicago Metropolitan Statistic Area (MSA). Attributes included in the resident section of demographics include population group quarters, School enrollment, population commuting at 5 pm, population in hotels, visiting populations, population residing by day or night, and others. Demographics data was recent as of May 2006. Source: http://www.fema.gov/plan/prevent/hazus/index.shtm

  19. a

    Catholic CO2 Footprint FULL

    • catholic-geo-hub-cgisc.hub.arcgis.com
    • hub.arcgis.com
    Updated Sep 23, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    burhansm2 (2019). Catholic CO2 Footprint FULL [Dataset]. https://catholic-geo-hub-cgisc.hub.arcgis.com/content/c35ebf2c09b34779b389524733c4b92c
    Explore at:
    Dataset updated
    Sep 23, 2019
    Dataset authored and provided by
    burhansm2
    License

    Attribution-NoDerivs 4.0 (CC BY-ND 4.0)https://creativecommons.org/licenses/by-nd/4.0/
    License information was derived automatically

    Area covered
    Description

    PerCapita_CO2_Footprint_InDioceses_FULLBurhans, Molly A., Cheney, David M., Gerlt, R.. . “PerCapita_CO2_Footprint_InDioceses_FULL”. Scale not given. Version 1.0. MO and CT, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2019.MethodologyThis is the first global Carbon footprint of the Catholic population. We will continue to improve and develop these data with our research partners over the coming years. While it is helpful, it should also be viewed and used as a "beta" prototype that we and our research partners will build from and improve. The years of carbon data are (2010) and (2015 - SHOWN). The year of Catholic data is 2018. The year of population data is 2016. Care should be taken during future developments to harmonize the years used for catholic, population, and CO2 data.1. Zonal Statistics: Esri Population Data and Dioceses --> Population per dioceses, non Vatican based numbers2. Zonal Statistics: FFDAS and Dioceses and Population dataset --> Mean CO2 per Diocese3. Field Calculation: Population per Diocese and Mean CO2 per diocese --> CO2 per Capita4. Field Calculation: CO2 per Capita * Catholic Population --> Catholic Carbon FootprintAssumption: PerCapita CO2Deriving per-capita CO2 from mean CO2 in a geography assumes that people's footprint accounts for their personal lifestyle and involvement in local business and industries that are contribute CO2. Catholic CO2Assumes that Catholics and non-Catholic have similar CO2 footprints from their lifestyles.Derived from:A multiyear, global gridded fossil fuel CO2 emission data product: Evaluation and analysis of resultshttp://ffdas.rc.nau.edu/About.htmlRayner et al., JGR, 2010 - The is the first FFDAS paper describing the version 1.0 methods and results published in the Journal of Geophysical Research.Asefi et al., 2014 - This is the paper describing the methods and results of the FFDAS version 2.0 published in the Journal of Geophysical Research.Readme version 2.2 - A simple readme file to assist in using the 10 km x 10 km, hourly gridded Vulcan version 2.2 results.Liu et al., 2017 - A paper exploring the carbon cycle response to the 2015-2016 El Nino through the use of carbon cycle data assimilation with FFDAS as the boundary condition for FFCO2."S. Asefi‐Najafabady P. J. Rayner K. R. Gurney A. McRobert Y. Song K. Coltin J. Huang C. Elvidge K. BaughFirst published: 10 September 2014 https://doi.org/10.1002/2013JD021296 Cited by: 30Link to FFDAS data retrieval and visualization: http://hpcg.purdue.edu/FFDAS/index.phpAbstractHigh‐resolution, global quantification of fossil fuel CO2 emissions is emerging as a critical need in carbon cycle science and climate policy. We build upon a previously developed fossil fuel data assimilation system (FFDAS) for estimating global high‐resolution fossil fuel CO2 emissions. We have improved the underlying observationally based data sources, expanded the approach through treatment of separate emitting sectors including a new pointwise database of global power plants, and extended the results to cover a 1997 to 2010 time series at a spatial resolution of 0.1°. Long‐term trend analysis of the resulting global emissions shows subnational spatial structure in large active economies such as the United States, China, and India. These three countries, in particular, show different long‐term trends and exploration of the trends in nighttime lights, and population reveal a decoupling of population and emissions at the subnational level. Analysis of shorter‐term variations reveals the impact of the 2008–2009 global financial crisis with widespread negative emission anomalies across the U.S. and Europe. We have used a center of mass (CM) calculation as a compact metric to express the time evolution of spatial patterns in fossil fuel CO2 emissions. The global emission CM has moved toward the east and somewhat south between 1997 and 2010, driven by the increase in emissions in China and South Asia over this time period. Analysis at the level of individual countries reveals per capita CO2 emission migration in both Russia and India. The per capita emission CM holds potential as a way to succinctly analyze subnational shifts in carbon intensity over time. Uncertainties are generally lower than the previous version of FFDAS due mainly to an improved nightlight data set."Global Diocesan Boundaries:Burhans, M., Bell, J., Burhans, D., Carmichael, R., Cheney, D., Deaton, M., Emge, T. Gerlt, B., Grayson, J., Herries, J., Keegan, H., Skinner, A., Smith, M., Sousa, C., Trubetskoy, S. “Diocesean Boundaries of the Catholic Church” [Feature Layer]. Scale not given. Version 1.2. Redlands, CA, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2016.Using: ArcGIS. 10.4. Version 10.0. Redlands, CA: Environmental Systems Research Institute, Inc., 2016.Boundary ProvenanceStatistics and Leadership DataCheney, D.M. “Catholic Hierarchy of the World” [Database]. Date Updated: August 2019. Catholic Hierarchy. Using: Paradox. Retrieved from Original Source.Catholic HierarchyAnnuario Pontificio per l’Anno .. Città del Vaticano :Tipografia Poliglotta Vaticana, Multiple Years.The data for these maps was extracted from the gold standard of Church data, the Annuario Pontificio, published yearly by the Vatican. The collection and data development of the Vatican Statistics Office are unknown. GoodLands is not responsible for errors within this data. We encourage people to document and report errant information to us at data@good-lands.org or directly to the Vatican.Additional information about regular changes in bishops and sees comes from a variety of public diocesan and news announcements.GoodLands’ polygon data layers, version 2.0 for global ecclesiastical boundaries of the Roman Catholic Church:Although care has been taken to ensure the accuracy, completeness and reliability of the information provided, due to this being the first developed dataset of global ecclesiastical boundaries curated from many sources it may have a higher margin of error than established geopolitical administrative boundary maps. Boundaries need to be verified with appropriate Ecclesiastical Leadership. The current information is subject to change without notice. No parties involved with the creation of this data are liable for indirect, special or incidental damage resulting from, arising out of or in connection with the use of the information. We referenced 1960 sources to build our global datasets of ecclesiastical jurisdictions. Often, they were isolated images of dioceses, historical documents and information about parishes that were cross checked. These sources can be viewed here:https://docs.google.com/spreadsheets/d/11ANlH1S_aYJOyz4TtG0HHgz0OLxnOvXLHMt4FVOS85Q/edit#gid=0To learn more or contact us please visit: https://good-lands.org/Esri Gridded Population Data 2016DescriptionThis layer is a global estimate of human population for 2016. Esri created this estimate by modeling a footprint of where people live as a dasymetric settlement likelihood surface, and then assigned 2016 population estimates stored on polygons of the finest level of geography available onto the settlement surface. Where people live means where their homes are, as in where people sleep most of the time, and this is opposed to where they work. Another way to think of this estimate is a night-time estimate, as opposed to a day-time estimate.Knowledge of population distribution helps us understand how humans affect the natural world and how natural events such as storms and earthquakes, and other phenomena affect humans. This layer represents the footprint of where people live, and how many people live there.Dataset SummaryEach cell in this layer has an integer value with the estimated number of people likely to live in the geographic region represented by that cell. Esri additionally produced several additional layers World Population Estimate Confidence 2016: the confidence level (1-5) per cell for the probability of people being located and estimated correctly. World Population Density Estimate 2016: this layer is represented as population density in units of persons per square kilometer.World Settlement Score 2016: the dasymetric likelihood surface used to create this layer by apportioning population from census polygons to the settlement score raster.To use this layer in analysis, there are several properties or geoprocessing environment settings that should be used:Coordinate system: WGS_1984. This service and its underlying data are WGS_1984. We do this because projecting population count data actually will change the populations due to resampling and either collapsing or splitting cells to fit into another coordinate system. Cell Size: 0.0013474728 degrees (approximately 150-meters) at the equator. No Data: -1Bit Depth: 32-bit signedThis layer has query, identify, pixel, and export image functions enabled, and is restricted to a maximum analysis size of 30,000 x 30,000 pixels - an area about the size of Africa.Frye, C. et al., (2018). Using Classified and Unclassified Land Cover Data to Estimate the Footprint of Human Settlement. Data Science Journal. 17, p.20. DOI: http://doi.org/10.5334/dsj-2018-020.What can you do with this layer?This layer is unsuitable for mapping or cartographic use, and thus it does not include a convenient legend. Instead, this layer is useful for analysis, particularly for estimating counts of people living within watersheds, coastal areas, and other areas that do not have standard boundaries. Esri recommends using the Zonal Statistics tool or the Zonal Statistics to Table tool where you provide input zones as either polygons, or raster data, and the tool will summarize the count of population within those zones. https://www.esri.com/arcgis-blog/products/arcgis-living-atlas/data-management/2016-world-population-estimate-services-are-now-available/

  20. g

    boston.com, Daily Presidential Candidate Campaign Activities, New Hampshire,...

    • geocommons.com
    Updated Apr 29, 2008
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Boston.com (2008). boston.com, Daily Presidential Candidate Campaign Activities, New Hampshire, 1.7.2008 [Dataset]. http://geocommons.com/search.html
    Explore at:
    Dataset updated
    Apr 29, 2008
    Dataset provided by
    Boston.com
    data
    Description

    Where are the Presidential Candidates today in New Hampshire? This dataset shows where the 2008 Presidential Candidates are today campaigning on January 7th, 2008. The data provides the Candidate's name, their Party, their campaign stop's location, the event description, and the time of the event. Information for the dataset was obtained from boston.com Data was accessed on January 4th, 2008 http://www.boston.com/news/politics/2008/nh/calendar/

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Anna Cresswell; Michael Renton; Timothy Langlois; Damian Thomson; Jasmine Lynn; Joachim Claudet (2025). Coral reef state influences resilience to acute climate-mediated disturbances [Dataset]. http://doi.org/10.5061/dryad.rfj6q57gz

Data from: Coral reef state influences resilience to acute climate-mediated disturbances

Related Article
Explore at:
Dataset updated
Jul 12, 2025
Dataset provided by
Dryad Digital Repository
Authors
Anna Cresswell; Michael Renton; Timothy Langlois; Damian Thomson; Jasmine Lynn; Joachim Claudet
Time period covered
Jan 1, 2023
Description

Aim: Understand the interplay between resistance and recovery on coral reefs, and investigate dependence on pre- and post-disturbance states, to inform generalisable reef resilience theory across large spatial and temporal scales. Location: Tropical coral reefs globally. Time period: 1966 to 2017. Major taxa studied: Scleratinian hard corals. Methods: We conducted a literature search to compile a global dataset of total coral cover before and after acute storms, temperature stress, and coastal runoff from flooding events. We used meta-regression to identify variables that explained significant variation in disturbance impact, including disturbance type, year, depth, and pre-disturbance coral cover. We further investigated the influence of these same variables, as well as post-disturbance coral cover and disturbance impact, on recovery rate. We examined the shape of recovery, assigning qualitatively distinct, ecologically relevant, population growth trajectories: linear, logistic, logari..., The dataset provides a summary of all studies included in the analysis and the key statistics obtained from the studies and used in the analyses for the manuscript entitled "Coral reef state influences resilience to acute climate-mediated disturbances" as published in Global Ecology and Biogeography. The dataset includes details about the publication, spatial identifiers (e.g. realm, province, ecoregion) unique site code, information on the disturbance type and timing, the pre-and post-disturbance coral cover, the 5-year annual recovery rate, the recovery shape and recovery completeness classifications. Please see details Methods in the journal article "Coral reef state influences resilience to acute climate-mediated disturbances" as published in Global Ecology and Biogeography., , # Coral reef state influences resilience to acute climate-mediated disturbances_Table S1

https://doi.org/10.5061/dryad.rfj6q57gz

The dataset provides a summary of all publications included in the analysis for this study and the key statistics obtained from the studies and used in the analyses. The dataset includes details about the publication, spatial identifiers (e.g. realm, province, ecoregion) unique site code, information on the disturbance type and timing, the pre-and post-disturbance coral cover, the 5-year annual recovery rate, the recovery shape and recovery completeness classifications. Please see details Methods in the journal article "Coral reef state influences resilience to acute climate-mediated disturbances" as published in Global Ecology and Biogeography.

Description of the data and file structure

Each column provides the following information:

ColumnDetail
RealmAll studies were assigned...
Search
Clear search
Close search
Google apps
Main menu