Facebook
TwitterBitcoin, the pioneering cryptocurrency, has captured the world's attention as a decentralized digital asset with a fluctuating market value. This dataset offers a comprehensive record of Bitcoin's price evolution, spanning from August 2017 to July 2023. The data has been meticulously collected from the Binance API, with price data captured at one-minute intervals. Each record includes essential information such as the open, high, low, and close prices, alongside associated trading volume. This dataset provides an invaluable resource for those interested in studying Bitcoin's price trends and market dynamics.
Total Number of Entries: 3.126.000
Attributes: Timestamp, Open Price, High Price, Low Price, Close Price, Volume , Quote asset volume, Number of trades, Taker buy base asset volume, Taker buy quote asset volume.
Data Type: csv
Size: 133 MB
Date ranges: 2023/08/17 till 2023/07/31
This dataset provides granular insights into the price history of Bitcoin, allowing users to explore minute-by-minute changes in its market value. The dataset includes attributes such as the open price, high price, low price, close price, trading volume, and the timestamp of each recorded interval. The data is presented in CSV format, making it easily accessible for analysis and visualization.
The Bitcoin Price Dataset opens up numerous avenues for exploration and analysis, driven by the availability of high-frequency data. Potential research directions include:
Intraday Price Patterns: How do Bitcoin prices vary within a single day? Are there recurring patterns or trends during specific hours? Volatility Analysis: What are the periods of heightened volatility in Bitcoin's price history, and how do they correlate with external events or market developments? Correlation with Events: Can you identify instances where significant price movements coincide with notable events in the cryptocurrency space or broader financial markets? Long-Term Trends: How has the average price of Bitcoin evolved over different years? Are there multi-year trends that stand out? Trading Volume Impact: Is there a relationship between trading volume and price movement? How does trading activity affect short-term price fluctuations?
The dataset has been sourced directly from the Binance API, a prominent cryptocurrency exchange platform. The collaboration with Binance ensures the dataset's accuracy and reliability, offering users a trustworthy foundation for conducting analyses and research related to Bitcoin's price movements.
Users are welcome to utilize this dataset for personal, educational, and research purposes, with attribution to the Binance API as the source of the data.
Hope you enjoy this dataset as much as I enjoyed putting it together. Can't wait to see what you can come up with :)
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
This minute by minute historical dataset of bitcoin prices offers a wealth of information for data scientists and analysts. In addition to the OHLC prices for each minute, this dataset also includes the volume of bitcoin traded during that time period. This granular data, going back to 2015, allows for in-depth analysis of the market fluctuations and trends of the world's most popular cryptocurrency.
With this dataset, researchers can study the underlying mechanisms of the bitcoin network, traders can gain a better understanding of market movements, and investors can make more informed decisions about their investments. The open, high, low, and close prices, as well as the volume data, provide a wealth of information for analyzing the market and identifying potential opportunities.
Whether you're looking to gain a competitive edge as a trader, conduct research on the bitcoin market, or simply want to learn more about the world of cryptocurrency, this dataset is a valuable resource. With its rich and detailed data, you'll be able to dive deep into the world of bitcoin and uncover insights that can help you make better decisions.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In March 2024 Bitcoin BTC reached a new all-time high with prices exceeding 73000 USD marking a milestone for the cryptocurrency market This surge was due to the approval of Bitcoin exchange-traded funds ETFs in the United States allowing investors to access Bitcoin without directly holding it This development increased Bitcoin’s credibility and brought fresh demand from institutional investors echoing previous price surges in 2021 when Tesla announced its 15 billion investment in Bitcoin and Coinbase was listed on the Nasdaq By the end of 2022 Bitcoin prices dropped sharply to 15000 USD following the collapse of cryptocurrency exchange FTX and its bankruptcy which caused a loss of confidence in the market By August 2024 Bitcoin rebounded to approximately 64178 USD but remained volatile due to inflation and interest rate hikes Unlike fiat currency like the US dollar Bitcoin’s supply is finite with 21 million coins as its maximum supply By September 2024 over 92 percent of Bitcoin had been mined Bitcoin’s value is tied to its scarcity and its mining process is regulated through halving events which cut the reward for mining every four years making it harder and more energy-intensive to mine The next halving event in 2024 will reduce the reward to 3125 BTC from its current 625 BTC The final Bitcoin is expected to be mined around 2140 The energy required to mine Bitcoin has led to criticisms about its environmental impact with estimates in 2021 suggesting that one Bitcoin transaction used as much energy as Argentina Bitcoin’s future price is difficult to predict due to the influence of large holders known as whales who own about 92 percent of all Bitcoin These whales can cause dramatic market swings by making large trades and many retail investors still dominate the market While institutional interest has grown it remains a small fraction compared to retail Bitcoin is vulnerable to external factors like regulatory changes and economic crises leading some to believe it is in a speculative bubble However others argue that Bitcoin is still in its early stages of adoption and will grow further as more institutions and governments recognize its potential as a hedge against inflation and a store of value 2024 has also seen the rise of Bitcoin Layer 2 technologies like the Lightning Network which improve scalability by enabling faster and cheaper transactions These innovations are crucial for Bitcoin’s wider adoption especially for day-to-day use and cross-border remittances At the same time central bank digital currencies CBDCs are gaining traction as several governments including China and the European Union have accelerated the development of their own state-controlled digital currencies while Bitcoin remains decentralized offering financial sovereignty for those who prefer independence from government control The rise of CBDCs is expected to increase interest in Bitcoin as a hedge against these centralized currencies Bitcoin’s journey in 2024 highlights its growing institutional acceptance alongside its inherent market volatility While the approval of Bitcoin ETFs has significantly boosted interest the market remains sensitive to events like exchange collapses and regulatory decisions With the limited supply of Bitcoin and improvements in its transaction efficiency it is expected to remain a key player in the financial world for years to come Whether Bitcoin is currently in a speculative bubble or on a sustainable path to greater adoption will ultimately be revealed over time.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset is curated for those who are interested in predicting Bitcoin prices using historical data. It contains comprehensive information on Bitcoin's market behavior over time, including daily prices, trading volumes, and other relevant financial indicators. This dataset can be used to develop and test predictive models, analyze trends, and gain insights into the cryptocurrency market.
Features: Date: The date corresponding to each entry. Open: The opening price of Bitcoin for the given date. High: The highest price reached by Bitcoin on the given date. Low: The lowest price reached by Bitcoin on the given date. Close: The closing price of Bitcoin for the given date. Volume: The total volume of Bitcoin traded on the given date. Market Cap: The total market capitalization of Bitcoin on the given date. Adjusted Close: The closing price adjusted for any dividends or stock splits. Usage: This dataset can be used for various purposes, including:
Time Series Analysis: Understanding how Bitcoin prices fluctuate over time. Predictive Modeling: Building models to predict future prices based on historical data. Market Research: Analyzing trends and patterns in the cryptocurrency market.
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
This dataset contains the prices of Bitcoin every minute over a period from 2017-11-06 03:00 to 2023-03-10 2:59 (YYYY-MM-DD). The data includes the time, close time, open, high, low, close prices, the volume exchanged per minute and the number of trades per minute. It represent Bitcoin prices over 2.8 millions values. This dataset is ideal for anyone who want to track, study and analyze BTC/USDT values over more than 5 years.
Time range: From 2017-11-06 04:00 to 2023-03-40 14:00
File format: Datas are in .csv format
Columns values: - time: Date in milliseconds where observation begins - open: Opening ETH price in the minute - high: Highest ETH price in the minute - low: Lowest ETH price in the minute - close: Closing ETH price in the minute - volume: Volume exchanges between time and close_time - close_time: Date in milliseconds were observation ends
Economic
Bitcoin,BTC,#btc,Cryptocurrency,Crypto
2808000
$149.00
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The following dataset contains the attributes: Date: Specific date to be observed for the corresponding price. Open: The opening price for the day High: The maximum price it has touched for the day Low: The minimum price it has touched for the day Close: The closing price for the day percent_change_24h: Percentage change for the last 24hours Volume: Volume of Bitcoin traded at the date Market Cap: Market Value of traded Bitcoin
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset contains historical price data for Bitcoin (BTC) against the U.S. Dollar (USD), spanning from June 2010 to November 2024. The data is organized on a daily basis and includes key market metrics such as the opening price, closing price, high, low, volume, and market capitalization for each day.
Columns: The dataset consists of the following columns:
Date: The date of the recorded data point (format: YYYY-MM-DD). Open: The opening price of Bitcoin on that day. High: The highest price Bitcoin reached on that day. Low: The lowest price Bitcoin reached on that day. Close: The closing price of Bitcoin on that day. Volume: The total trading volume of Bitcoin during that day. Market Cap: The total market capitalization of Bitcoin on that day (calculated by multiplying the closing price by the circulating supply of Bitcoin at the time). Source: The data is sourced from Yahoo Finance.
Time Period: The data spans from June 2010, when Bitcoin first began trading, to November 2024. This provides a comprehensive view of Bitcoin’s historical price movements, from its early days of trading at a fraction of a cent to its more recent valuation in the thousands of dollars.
Use Cases:
This dataset is valuable for a variety of purposes, including:
Time Series Analysis: Analyze Bitcoin price movements, identify trends, and develop predictive models for future prices. Financial Modeling: Use the dataset to assess Bitcoin as an asset class, model its volatility, or simulate investment strategies. Machine Learning: Train machine learning algorithms to forecast Bitcoin’s future price or predict market trends based on historical data. Economic Research: Study the impact of global events on Bitcoin’s price, such as regulatory changes, technological developments, or macroeconomic factors. Visualization: Generate visualizations of Bitcoin price trends, trading volume, and market capitalization over time.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
BTC (Bitcoin) Historical Data Dataset This dataset provides historical data of Bitcoin (BTC) including various key features over a period of time. The dataset includes the following features:
Date: Date of the recorded data point. Price: The price of Bitcoin at the given date. Volume Weighted Average Price (VWAP): Average price of Bitcoin weighted by trading volume. Open: Opening price of Bitcoin at the beginning of the day. High: Highest price of Bitcoin during the day. Low: Lowest price of Bitcoin during the day. Close: Closing price of Bitcoin at the end of the day. Volume: Trading volume of Bitcoin at the given date.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about cryptos per day. It has 3,581 rows and is filtered where the crypto is Bitcoin. It features 3 columns: date, and highest price.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The following dataset contains the attributes:
Date: Specific date to be observed for the corresponding price.
Open: The opening price for the day
High: The maximum price it has touched for the day
Low: The minimum price it has touched for the day
Close: The closing price for the day
percent_change_24h: Percentage change for the last 24hours
Volume: Volume of Bitcoin traded at the date
Market Cap: Market Value of traded Bitcoin
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Cryptocurrency historical datasets from January 2012 (if available) to October 2021 were obtained and integrated from various sources and Application Programming Interfaces (APIs) including Yahoo Finance, Cryptodownload, CoinMarketCap, various Kaggle datasets, and multiple APIs. While these datasets used various formats of time (e.g., minutes, hours, days), in order to integrate the datasets days format was used for in this research study. The integrated cryptocurrency historical datasets for 80 cryptocurrencies including but not limited to Bitcoin (BTC), Ethereum (ETH), Binance Coin (BNB), Cardano (ADA), Tether (USDT), Ripple (XRP), Solana (SOL), Polkadot (DOT), USD Coin (USDC), Dogecoin (DOGE), Tron (TRX), Bitcoin Cash (BCH), Litecoin (LTC), EOS (EOS), Cosmos (ATOM), Stellar (XLM), Wrapped Bitcoin (WBTC), Uniswap (UNI), Terra (LUNA), SHIBA INU (SHIB), and 60 more cryptocurrencies were uploaded in this online Mendeley data repository. Although the primary attribute of including the mentioned cryptocurrencies was the Market Capitalization, a subject matter expert i.e., a professional trader has also guided the initial selection of the cryptocurrencies by analyzing various indicators such as Relative Strength Index (RSI), Moving Average Convergence/Divergence (MACD), MYC Signals, Bollinger Bands, Fibonacci Retracement, Stochastic Oscillator and Ichimoku Cloud. The primary features of this dataset that were used as the decision-making criteria of the CLUS-MCDA II approach are Timestamps, Open, High, Low, Closed, Volume (Currency), % Change (7 days and 24 hours), Market Cap and Weighted Price values. The available excel and CSV files in this data set are just part of the integrated data and other databases, datasets and API References that was used in this study are as follows: [1] https://finance.yahoo.com/ [2] https://coinmarketcap.com/historical/ [3] https://cryptodatadownload.com/ [4] https://kaggle.com/philmohun/cryptocurrency-financial-data [5] https://kaggle.com/deepshah16/meme-cryptocurrency-historical-data [6] https://kaggle.com/sudalairajkumar/cryptocurrencypricehistory [7] https://min-api.cryptocompare.com/data/price?fsym=BTC&tsyms=USD [8] https://min-api.cryptocompare.com/ [9] https://p.nomics.com/cryptocurrency-bitcoin-api [10] https://www.coinapi.io/ [11] https://www.coingecko.com/en/api [12] https://cryptowat.ch/ [13] https://www.alphavantage.co/ This dataset is part of the CLUS-MCDA (Cluster analysis for improving Multiple Criteria Decision Analysis) and CLUS-MCDAII Project: https://aimaghsoodi.github.io/CLUSMCDA-R-Package/ https://github.com/Aimaghsoodi/CLUS-MCDA-II https://github.com/azadkavian/CLUS-MCDA
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The selected variables were chosen base on the literature for time series of stock prices prediction or Forex (currency) prediction. The analises test only variables associated with the price like Bitcoin close, open, high and low price and volumn (for one representative exchange). Like Chen and Bahar, we used moving average of the variables to generate new variables in order to capture other information that could be hidden due the high noise generate characteristic of a high volatile asset. Also, like \cite{Bahar2016}, we use Gold an Death Cross, that are very common data for technical analysis.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is the market data of Bitcoin in terms of price and volume from August 2015 to August 2021. The time interval of sampling is selected as four-hour, that is to say, we choose every kind of price and volume every of four-hour as the original data. The original market data of Bitcoin are obtained from Poloniex, one of the most active crypto-asset exchanges. Download link on XBlock: http://xblock.pro/#/dataset/5
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Sentiment analyzed the form of data having columns:
Date Compound_Score Total Volume of Tweets Count_Negatives Count_Positives Count_Neutrals Sent_Negatives Sent_Positives Count_News Count_Bots Open High Low Close Volume (BTC) Volume (Currency)
For the most recent BTC daily tweets volume dataset contact me on the given email: imzeeshan.ai@gmail.com
Markets
#btc
12358
Free
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Explore the Pulse of Bitcoin! This meticulously curated dataset offers a detailed view of Bitcoin's USD value, capturing the highs, lows, and everything in between. With data spanning over a decade, analysts, researchers, and enthusiasts can delve into the nuances of market trends, perform predictive analytics, and unearth insights into the cryptocurrency's volatile nature.
Ready to dive deeper? Check out our starter notebook designed to help you kickstart your analysis using this dataset. Whether you're new to data science or an experienced analyst, this notebook will guide you through a comprehensive exploration of Bitcoin's daily prices, equipping you with the tools to start your own analysis.
👉 Start Analyzing Bitcoin Daily Prices Now!
Utilize this dataset as a foundation for your research, analysis, and predictions. Happy exploring!
Facebook
Twitterhttps://www.namecoinnews.com/price-prediction/https://www.namecoinnews.com/price-prediction/
Bitcoin yearly price prediction dataset covering 2025 to 2050 with minimum and maximum forecast values.
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
This Dataset contains historical price data for 10 cryptocurrencies spanning from 2021 to 2024, in three different time frames: 1 day, 4 hours, and 1 hour. The data is sourced from the Binance API and stored in CSV (Comma Separated Values) format for easy accessibility and analysis.
You can use this data for various purposes such as backtesting trading strategies, conducting statistical analysis, or building predictive models related to cryptocurrency markets.
Facebook
Twitterhttps://www.namecoinnews.com/price-prediction/https://www.namecoinnews.com/price-prediction/
Bitcoin 2029 monthly price prediction dataset with minimum and maximum values for each month.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
OHLCV is an abbreviation for the five critical data points: Open, High, Low, Close, and Volume. It refers to the key points in analyzing an asset such as Bitcoin (BTC) in the market over a specified time. The dataset is important for not only traders and analysts but also for data scientists who work on BTC market prediction using artificial intelligence. The 'Open' and 'Close' prices represent the starting and ending price levels, while the 'High' and 'Low' are the highest and lowest prices during that period (a daily time frame (24h)). The 'Volume' is a measure of the total number of trades. This dataset provides five OHLCV data columns for BTC along with a column called "Next day close price" for regression problems and machine learning applications. The dataset includes daily information from 1/1/2012 to 8/6/2022.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We present a high-frequency dataset of algorithmic trading. Given that, the dataset contains different time intervals depending on the timestamp when an arbitrage opportunity occurred. Our dataset has 9,799,130 tick-level records of the Bitcoin-to-Euro exchange rate starting from 2019-01-01 00:00:31 until 2020-03-30 23:59:48. Data covered information about different cryptocurrency pairs from 18 cryptocurrency exchanges. These pairs contained information about exchanges in which it was possible to buy and sell simultaneously. Each row presented the amount of arbitrage that it was possible to earn if a transaction would have been executed. The dataset contains information about the amount of arbitrage that could be earned after executing a transaction in given cryptocurrency exchanges, the quantity which had to be bought to earn arbitrage, the best sell, and the best buy prices, the balance of fiat currency in “Exchange 1” and the balance of cryptocurrency in “Exchange 2”. If there was enough fiat currency in “Exchange 1” and enough cryptocurrency in “Exchange 2” it means that the transaction was successfully executed and given arbitrage amount was earned. This information could be used by investors to discover potential earning capabilities, and create effective arbitrage trading strategies. Moreover, this dataset could serve academics for deeper analysis of efficiency and liquidity questions as well as it could be used to spot and evaluate risks in the market, identify patterns in the market.
Short description of the dataset: ID - Unique ID arb_timestamp - timestamp of arbitrage opportunity arb_exch1 - presents exchanges where one was able to successfully buy Bitcoin arb_exch2 - presents exchanges where one was able to successfully sell Bitcoin arb_ticker - BTCEUR exchange rate arb_prc - percentage earned compared to the invested amount arb_amount - the amount of arbitrage that would be earned if a transaction had been executed arb_quantity - Bitcoin quantity that needed to be bought in order to execute a transaction and to earn arbitrage best_sell_price - best price at which it was possible to sell Bitcoin in "Exchange 2" best_buy_price - best price at which it was possible to buy Bitcoin in "Exchange 1" balance_fiat - the amount of Euros available in “Exchange 1” balance_crypto - the amount of Bitcoin available in “Exchange 2”
Facebook
TwitterBitcoin, the pioneering cryptocurrency, has captured the world's attention as a decentralized digital asset with a fluctuating market value. This dataset offers a comprehensive record of Bitcoin's price evolution, spanning from August 2017 to July 2023. The data has been meticulously collected from the Binance API, with price data captured at one-minute intervals. Each record includes essential information such as the open, high, low, and close prices, alongside associated trading volume. This dataset provides an invaluable resource for those interested in studying Bitcoin's price trends and market dynamics.
Total Number of Entries: 3.126.000
Attributes: Timestamp, Open Price, High Price, Low Price, Close Price, Volume , Quote asset volume, Number of trades, Taker buy base asset volume, Taker buy quote asset volume.
Data Type: csv
Size: 133 MB
Date ranges: 2023/08/17 till 2023/07/31
This dataset provides granular insights into the price history of Bitcoin, allowing users to explore minute-by-minute changes in its market value. The dataset includes attributes such as the open price, high price, low price, close price, trading volume, and the timestamp of each recorded interval. The data is presented in CSV format, making it easily accessible for analysis and visualization.
The Bitcoin Price Dataset opens up numerous avenues for exploration and analysis, driven by the availability of high-frequency data. Potential research directions include:
Intraday Price Patterns: How do Bitcoin prices vary within a single day? Are there recurring patterns or trends during specific hours? Volatility Analysis: What are the periods of heightened volatility in Bitcoin's price history, and how do they correlate with external events or market developments? Correlation with Events: Can you identify instances where significant price movements coincide with notable events in the cryptocurrency space or broader financial markets? Long-Term Trends: How has the average price of Bitcoin evolved over different years? Are there multi-year trends that stand out? Trading Volume Impact: Is there a relationship between trading volume and price movement? How does trading activity affect short-term price fluctuations?
The dataset has been sourced directly from the Binance API, a prominent cryptocurrency exchange platform. The collaboration with Binance ensures the dataset's accuracy and reliability, offering users a trustworthy foundation for conducting analyses and research related to Bitcoin's price movements.
Users are welcome to utilize this dataset for personal, educational, and research purposes, with attribution to the Binance API as the source of the data.
Hope you enjoy this dataset as much as I enjoyed putting it together. Can't wait to see what you can come up with :)