The United States Census Bureau’s international dataset provides estimates of country populations since 1950 and projections through 2050. Specifically, the dataset includes midyear population figures broken down by age and gender assignment at birth. Additionally, time-series data is provided for attributes including fertility rates, birth rates, death rates, and migration rates.
You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.census_bureau_international.
What countries have the longest life expectancy? In this query, 2016 census information is retrieved by joining the mortality_life_expectancy and country_names_area tables for countries larger than 25,000 km2. Without the size constraint, Monaco is the top result with an average life expectancy of over 89 years!
SELECT
age.country_name,
age.life_expectancy,
size.country_area
FROM (
SELECT
country_name,
life_expectancy
FROM
bigquery-public-data.census_bureau_international.mortality_life_expectancy
WHERE
year = 2016) age
INNER JOIN (
SELECT
country_name,
country_area
FROM
bigquery-public-data.census_bureau_international.country_names_area
where country_area > 25000) size
ON
age.country_name = size.country_name
ORDER BY
2 DESC
/* Limit removed for Data Studio Visualization */
LIMIT
10
Which countries have the largest proportion of their population under 25? Over 40% of the world’s population is under 25 and greater than 50% of the world’s population is under 30! This query retrieves the countries with the largest proportion of young people by joining the age-specific population table with the midyear (total) population table.
SELECT
age.country_name,
SUM(age.population) AS under_25,
pop.midyear_population AS total,
ROUND((SUM(age.population) / pop.midyear_population) * 100,2) AS pct_under_25
FROM (
SELECT
country_name,
population,
country_code
FROM
bigquery-public-data.census_bureau_international.midyear_population_agespecific
WHERE
year =2017
AND age < 25) age
INNER JOIN (
SELECT
midyear_population,
country_code
FROM
bigquery-public-data.census_bureau_international.midyear_population
WHERE
year = 2017) pop
ON
age.country_code = pop.country_code
GROUP BY
1,
3
ORDER BY
4 DESC /* Remove limit for visualization*/
LIMIT
10
The International Census dataset contains growth information in the form of birth rates, death rates, and migration rates. Net migration is the net number of migrants per 1,000 population, an important component of total population and one that often drives the work of the United Nations Refugee Agency. This query joins the growth rate table with the area table to retrieve 2017 data for countries greater than 500 km2.
SELECT
growth.country_name,
growth.net_migration,
CAST(area.country_area AS INT64) AS country_area
FROM (
SELECT
country_name,
net_migration,
country_code
FROM
bigquery-public-data.census_bureau_international.birth_death_growth_rates
WHERE
year = 2017) growth
INNER JOIN (
SELECT
country_area,
country_code
FROM
bigquery-public-data.census_bureau_international.country_names_area
Historic (none)
United States Census Bureau
Terms of use: This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
See the GCP Marketplace listing for more details and sample queries: https://console.cloud.google.com/marketplace/details/united-states-census-bureau/international-census-data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is a digital compilation of the "Population of States and Counties of the United States: 1790-1990" publication and the "Census U.S. Decennial County Population Data, 1900-1990" resource. It provides population data for U.S. states and counties from the years 1790 to 1950. In addition to the county and state population figures, the dataset also includes the total U.S. population and state population data, as presented in the "Population of States and Counties of the United States: 1790-1990" publication.
Midyear population estimates and projections for all countries and areas of the world with a population of 5,000 or more // Source: U.S. Census Bureau, Population Division, International Programs Center// Note: Total population available from 1950 to 2100 for 227 countries and areas. Other demographic variables available from base year to 2100. Base year varies by country and therefore data are not available for all years for all countries. For the United States, total population available from 1950-2060, and other demographic variables available from 1980-2060. See methodology at https://www.census.gov/programs-surveys/international-programs/about/idb.html
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The United States Census Bureau’s International Dataset provides estimates of country populations since 1950 and projections through 2050.
The U.S. Census Bureau provides estimates and projections for countries and areas that are recognized by the U.S. Department of State that have a population of at least 5,000. Specifically, the data set includes midyear population figures broken down by age and gender assignment at birth. Additionally, they provide time-series data for attributes including fertility rates, birth rates, death rates, and migration rates.
Fork this kernel to get started.
https://bigquery.cloud.google.com/dataset/bigquery-public-data:census_bureau_international
https://cloud.google.com/bigquery/public-data/international-census
Dataset Source: www.census.gov
This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source -http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
Banner Photo by Steve Richey from Unsplash.
What countries have the longest life expectancy?
Which countries have the largest proportion of their population under 25?
Which countries are seeing the largest net migration?
Unadjusted decennial census data from 1950-2000 and projected figures from 2010-2040: summary table of New York City population numbers and percentage share by Borough, including school-age (5 to 17), 65 and Over, and total population.
This data collection contains a stratified 1-percent sample of households, with separate records for each household, each "sample line" respondent, and each person in the household. These records were encoded from microfilm copies of original handwritten enumeration schedules from the 1950 Census of Population. Geographic identification of the location of the sampled households includes Census regions and divisions, states (except Alaska and Hawaii), Standard Metropolitan Areas (SMAs), and State Economic Areas (SEAs). The data collection was constructed from and consists of 20 independently-drawn subsamples stored in 20 discrete physical files. The 1950 Census had both a complete-count and a sample component. Individuals selected for the sample component were asked a set of additional questions. Only households with a sample line person were included in the 1950 Public Use Microdata Sample. The collection also contains records of group quarters members who were also on the Census sample line. Each household record contains variables describing the location and composition of the household. The sample line records contain variables describing demographic characteristics such as nativity, marital status, number of children, veteran status, education, income, and occupation. The person records contain demographic variables such as nativity, marital status, family membership, and occupation. (Source: downloaded from ICPSR 7/13/10)
Please Note: This dataset is part of the historical CISER Data Archive Collection and is also available at ICPSR at https://doi.org/10.3886/ICPSR08251.v1. We highly recommend using the ICPSR version as they may make this dataset available in multiple data formats in the future.
The United States Census Bureau’s international dataset provides estimates of country populations since 1950 and projections through 2050. Specifically, the dataset includes midyear population figures broken down by age and gender assignment at birth. Additionally, time-series data is provided for attributes including fertility rates, birth rates, death rates, and migration rates. Note: The U.S. Census Bureau provides estimates and projections for countries and areas that are recognized by the U.S. Department of State that have a population of at least 5,000. This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data set provides the annual population of counties and states calculated from decennial U.S. censuses conducted from 1890-1950 and the Census Bureau’s annual projections of state population growth. The primary sources are “Population of States and Counties of the United States: 1790-1990,” published by the U.S. Bureau of the Census (1966); “Census U.S. Decennial County Population Data, 1900-1990” published by the NBER (2007); “Historical Statistics of Hawaii,” published by University Press of Hawaii (1977); and “Annual Estimates of the Population for the U.S. and States,” published by the U.S. Bureau of the Census from 1890 to 1950. The digitized, transparent, and consistent nature of this data and provides numerous benefits, including ease of access and greater potential for analysis.
This study was conducted under the auspices of the Center for Studies in Demography and Ecology at the University of Washington. It is a nationally representative sample of the population of the United States in 1900, drawn from the manuscript returns of individuals enumerated in the 1900 United States Census. Household variables include region, state and county of household, size of household, and type and ownership of dwelling. Individual variables for each household member include relationship to head of household, race, sex, age, marital status, number of children, and birthplace. Immigration variables include parents' birthplace, year of immigration and number of years in the United States. Occupation variables include occupation, coded by both the 1900 and 1950 systems, and number of months unemployed. Education variables include number of months in school, whether respondents could read or write a language, and whether they spoke English. (Source: downloaded from ICPSR 7/13/10)
Please Note: This dataset is part of the historical CISER Data Archive Collection and is also available at ICPSR at https://doi.org/10.3886/ICPSR07825.v1. We highly recommend using the ICPSR version as they may make this dataset available in multiple data formats in the future.
This dataset contains information on the number of deaths and age-adjusted death rates for the five leading causes of death in 1900, 1950, and 2000. Age-adjusted death rates (deaths per 100,000) after 1998 are calculated based on the 2000 U.S. standard population. Populations used for computing death rates for 2011–2017 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years between 2000 and 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Data on age-adjusted death rates prior to 1999 are taken from historical data (see References below). SOURCES CDC/NCHS, National Vital Statistics System, historical data, 1900-1998 (see https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm); CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES National Center for Health Statistics, Data Warehouse. Comparability of cause-of-death between ICD revisions. 2008. Available from: http://www.cdc.gov/nchs/nvss/mortality/comparability_icd.htm. National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm. Kochanek KD, Murphy SL, Xu JQ, Arias E. Deaths: Final data for 2017. National Vital Statistics Reports; vol 68 no 9. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_09-508.pdf. Arias E, Xu JQ. United States life tables, 2017. National Vital Statistics Reports; vol 68 no 7. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_07-508.pdf. National Center for Health Statistics. Historical Data, 1900-1998. 2009. Available from: https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm.
The world population surpassed eight billion people in 2022, having doubled from its figure less than 50 years previously. Looking forward, it is projected that the world population will reach nine billion in 2038, and 10 billion in 2060, but it will peak around 10.3 billion in the 2080s before it then goes into decline. Regional variations The global population has seen rapid growth since the early 1800s, due to advances in areas such as food production, healthcare, water safety, education, and infrastructure, however, these changes did not occur at a uniform time or pace across the world. Broadly speaking, the first regions to undergo their demographic transitions were Europe, North America, and Oceania, followed by Latin America and Asia (although Asia's development saw the greatest variation due to its size), while Africa was the last continent to undergo this transformation. Because of these differences, many so-called "advanced" countries are now experiencing population decline, particularly in Europe and East Asia, while the fastest population growth rates are found in Sub-Saharan Africa. In fact, the roughly two billion difference in population between now and the 2080s' peak will be found in Sub-Saharan Africa, which will rise from 1.2 billion to 3.2 billion in this time (although populations in other continents will also fluctuate). Changing projections The United Nations releases their World Population Prospects report every 1-2 years, and this is widely considered the foremost demographic dataset in the world. However, recent years have seen a notable decline in projections when the global population will peak, and at what number. Previous reports in the 2010s had suggested a peak of over 11 billion people, and that population growth would continue into the 2100s, however a sooner and shorter peak is now projected. Reasons for this include a more rapid population decline in East Asia and Europe, particularly China, as well as a prolongued development arc in Sub-Saharan Africa.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Mamaroneck town population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Mamaroneck town across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2022, the population of Mamaroneck town was 30,943, a 1.28% decrease year-by-year from 2021. Previously, in 2021, Mamaroneck town population was 31,343, a decline of 0.79% compared to a population of 31,594 in 2020. Over the last 20 plus years, between 2000 and 2022, population of Mamaroneck town increased by 1,950. In this period, the peak population was 31,594 in the year 2020. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Mamaroneck town Population by Year. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Baltimore township population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Baltimore township across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2022, the population of Baltimore township was 1,991, a 0.86% increase year-by-year from 2021. Previously, in 2021, Baltimore township population was 1,974, an increase of 1.23% compared to a population of 1,950 in 2020. Over the last 20 plus years, between 2000 and 2022, population of Baltimore township increased by 144. In this period, the peak population was 1,991 in the year 2022. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Baltimore township Population by Year. You can refer the same here
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Polygon geometry with attributes displaying the 1950 ward boundaries with respective Census population numbers for East Baton Rouge Parish, Louisiana.
This map service displays data derived from the 2008-2012 American Community Survey (ACS). Values derived from the ACS and used for this map service include: Total Population, Population Density (per square mile), Percent Minority, Percent Below Poverty Level, Percent Age (less than 5, less than 18, and greater than 64), Percent Housing Units Built Before 1950, Percent (population) 25 years and over (with less than a High School Degree and with a High School Degree), Percent Linguistically Isolated Households, Population of American Indians and Alaskan Natives, Population of American Indians and Alaskan Natives Below Poverty Level, and Percent Low Income Population (Less Than 2X Poverty Level). This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Life Expectancy vs GDP, 1950-2018’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/luxoloshilofunde/life-expectancy-vs-gdp-19502018 on 13 February 2022.
--- Dataset description provided by original source is as follows ---
Life expectancy at birth is defined as the average number of years that a newborn could expect to live if he or she were to pass through life subject to the age-specific mortality rates of a given period. The years are from 1950 to 2018.
For regional- and global-level data pre-1950, data from a study by Riley was used, which draws from over 700 sources to estimate life expectancy at birth from 1800 to 2001.
Riley estimated life expectancy before 1800, which he calls "the pre-health transition period". "Health transitions began in different countries in different periods, as early as the 1770s in Denmark and as late as the 1970s in some countries of sub-Saharan Africa". As such, for the sake of consistency, we have assigned the period before the health transition to the year 1770. "The life expectancy values employed are averages of estimates for the period before the beginning of the transitions for countries within that region. ... This period has presumably the weakest basis, the largest margin of error, and the simplest method of deriving an estimate."
For country-level data pre-1950, Clio Infra's dataset was used, compiled by Zijdeman and Ribeira da Silva (2015).
For country-, regional- and global-level data post-1950, data published by the United Nations Population Division was used, since they are updated every year. This is possible because Riley writes that "for 1950-2001, I have drawn life expectancy estimates chiefly from various sources provided by the United Nations, the World Bank’s World Development Indicators, and the Human Mortality Database".
For the Americas from 1950-2015, the population-weighted average of Northern America and Latin America and the Caribbean was taken, using UN Population Division estimates of population size.
Life expectancy:
Data publisher's source: https://www.lifetable.de/RileyBib.pdf Data published by: James C. Riley (2005) – Estimates of Regional and Global Life Expectancy, 1800–2001. Issue Population and Development Review. Population and Development Review. Volume 31, Issue 3, pages 537–543, September 2005., Zijdeman, Richard; Ribeira da Silva, Filipa, 2015, "Life Expectancy at Birth (Total)", http://hdl.handle.net/10622/LKYT53, IISH Dataverse, V1, and UN Population Division (2019) Link: https://datasets.socialhistory.org/dataset.xhtml?persistentId=hdl:10622/LKYT53, http://onlinelibrary.wiley.com/doi/10.1111/j.1728-4457.2005.00083.x/epdf, https://population.un.org/wpp/Download/Standard/Population/ Dataset: https://ourworldindata.org/life-expectancy
GDP per capita:
Data publisher's source: The Maddison Project Database is based on the work of many researchers that have produced estimates of economic growth for individual countries. Data published by: Bolt, Jutta and Jan Luiten van Zanden (2020), “Maddison style estimates of the evolution of the world economy. A new 2020 update”. Link: https://www.rug.nl/ggdc/historicaldevelopment/maddison/releases/maddison-project-database-2020 Dataset: https://ourworldindata.org/life-expectancy
The life expectancy vs GDP per capita analysis.
--- Original source retains full ownership of the source dataset ---
https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de451385https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de451385
Abstract (en): This collection includes county-level data from the United States Censuses of Agriculture for the years 1840 to 2012. The files provide data about the number, types, output, and prices of various agricultural products, as well as information on the amount, expenses, sales, values, and production of machinery. Most of the basic crop output data apply to the previous harvest year. Data collected also included the population and value of livestock, the number of animals slaughtered, and the size, type, and value of farms. Part 46 of this collection contains data from 1980 through 2010. Variables in part 46 include information such as the average value of farmland, number and value of buildings per acre, food services, resident population, composition of households, and unemployment rates. ICPSR data undergo a confidentiality review and are altered when necessary to limit the risk of disclosure. ICPSR also routinely creates ready-to-go data files along with setups in the major statistical software formats as well as standard codebooks to accompany the data. In addition to these procedures, ICPSR performed the following processing steps for this data collection: Checked for undocumented or out-of-range codes.. Response Rates: Not applicable. Datasets:DS0: Study-Level FilesDS1: Farm Land Value Data Set (County and State) 1850-1959DS2: 1840 County and StateDS3: 1850 County and StateDS4: 1860 County and StateDS5: 1870 County and StateDS6: 1880 County and StateDS7: 1890 County and StateDS8: 1900 County and StateDS9: 1910 County and StateDS10: 1920 County and State, Dataset 1DS11: 1920 County and State, Dataset 2DS12: 1925 County and StateDS13: 1930 County and State, Dataset 1DS14: 1930 County and State, Dataset 2DS15: 1935 County and StateDS16: 1940 County and State, Dataset 1DS17: 1940 County and State, Dataset 2DS18: 1940 County and State, Dataset 3DS19: 1940 County and State, Dataset 4 (Water)DS20: 1945 County and StateDS21: 1950 County and State, Dataset 1DS22: 1950 Crops, County and State, Dataset 2DS23: 1950 County, Dataset 3DS24: 1950 County and State, Dataset 4DS25: 1954 County and State, Dataset 1DS26: 1954 Crops, County and State, Dataset 2DS27: 1959 County and State, Dataset 1DS28: 1959 Crops, County and State, Dataset 2DS29: 1959 County, Dataset 3DS30: 1964 Dataset 1DS31: 1964 Crops, County and State, Dataset 2DS32: 1964 County, Dataset 3DS33: 1969 All Farms, County and State, Dataset 1DS34: 1969 Farms 2500, County and State, Dataset 2DS35: 1969 Crops, County and State, Dataset 3DS36: 1974 All Farms, County and State, Dataset 1DS37: 1974 Farms 2500, County and State, Dataset 2DS38: 1974 Crops, County and State, Dataset 3DS39: 1978 County and StateDS40: 1982 County and StateDS41: 1987 County and StateDS42: 1992 County and StateDS43: 1997 County and StateDS44: 2002 County and StateDS45: 2007 County and StateDS46: State and County Data, United States, 1980-2010DS47: 2012 County and State Farms within United States counties and states. Smallest Geographic Unit: FIPS code The sample was the universe of agricultural operating units. For 1969-2007, data were taken from computer files from the Census Bureau and the United States Department of Agriculture. 2018-08-20 The P.I. resupplied data and documentation for 1935 County and State (dataset 15) and 1997 County and State (dataset 43). Additionally, documentation updates and variable label revisions have been incorporated in datasets 22, 26, 28, 31, 35, and 38 at the request of the P.I.2016-06-29 The data and documentation for 2012 County and State (data set 47) have been added to this collection. The collection and documentation titles have been updated to reflect the new year.2015-08-05 The data, setup files, and documentation for 1964 Dataset 1 have been updated to reflect changes from the producer. Funding insitution(s): National Science Foundation (NSF-SES-0921732; 0648045). United States Department of Health and Human Services. National Institutes of Health (R01 HD057929).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Labor Force Participation Rate in the United States decreased to 62.30 percent in June from 62.40 percent in May of 2025. This dataset provides the latest reported value for - United States Labor Force Participation Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
The population of Latin America and the Caribbean increased from 175 million in 1950 to 515 million in 2000. Where did this growth occur? What is the magnitude of change in different places? How can we visualize the geographic dimensions of population change in Latin America and the Caribbean? We compiled census and other public domain information to analyze both temporal and geographic changes in population in the region. Our database includes population totals for over 18,300 administrative districts within Latin America and the Caribbean. Tabular census data was linked to an administrative division map of the region and handled in a geographic information system. We transformed vector population maps to raster surfaces to make the digital maps comparable with other commonly available geographic information. Validation and error-checking analyses were carried out to compare the database with other sources of population information. The digital population maps created in this project have been put in the public domain and can be downloaded from our website. The Latin America and Caribbean map is part of a larger multi-institutional effort to map population in developing countries. This is the third version of the Latin American and Caribbean population database and it contains new data from the 2000 round of censuses and new and improved accessibility surfaces for creating the raster maps.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Roseville population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Roseville across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2022, the population of Roseville was 1,736, a 0.29% decrease year-by-year from 2021. Previously, in 2021, Roseville population was 1,741, a decline of 0.23% compared to a population of 1,745 in 2020. Over the last 20 plus years, between 2000 and 2022, population of Roseville decreased by 212. In this period, the peak population was 1,950 in the year 2003. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Roseville Population by Year. You can refer the same here
The United States Census Bureau’s international dataset provides estimates of country populations since 1950 and projections through 2050. Specifically, the dataset includes midyear population figures broken down by age and gender assignment at birth. Additionally, time-series data is provided for attributes including fertility rates, birth rates, death rates, and migration rates.
You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.census_bureau_international.
What countries have the longest life expectancy? In this query, 2016 census information is retrieved by joining the mortality_life_expectancy and country_names_area tables for countries larger than 25,000 km2. Without the size constraint, Monaco is the top result with an average life expectancy of over 89 years!
SELECT
age.country_name,
age.life_expectancy,
size.country_area
FROM (
SELECT
country_name,
life_expectancy
FROM
bigquery-public-data.census_bureau_international.mortality_life_expectancy
WHERE
year = 2016) age
INNER JOIN (
SELECT
country_name,
country_area
FROM
bigquery-public-data.census_bureau_international.country_names_area
where country_area > 25000) size
ON
age.country_name = size.country_name
ORDER BY
2 DESC
/* Limit removed for Data Studio Visualization */
LIMIT
10
Which countries have the largest proportion of their population under 25? Over 40% of the world’s population is under 25 and greater than 50% of the world’s population is under 30! This query retrieves the countries with the largest proportion of young people by joining the age-specific population table with the midyear (total) population table.
SELECT
age.country_name,
SUM(age.population) AS under_25,
pop.midyear_population AS total,
ROUND((SUM(age.population) / pop.midyear_population) * 100,2) AS pct_under_25
FROM (
SELECT
country_name,
population,
country_code
FROM
bigquery-public-data.census_bureau_international.midyear_population_agespecific
WHERE
year =2017
AND age < 25) age
INNER JOIN (
SELECT
midyear_population,
country_code
FROM
bigquery-public-data.census_bureau_international.midyear_population
WHERE
year = 2017) pop
ON
age.country_code = pop.country_code
GROUP BY
1,
3
ORDER BY
4 DESC /* Remove limit for visualization*/
LIMIT
10
The International Census dataset contains growth information in the form of birth rates, death rates, and migration rates. Net migration is the net number of migrants per 1,000 population, an important component of total population and one that often drives the work of the United Nations Refugee Agency. This query joins the growth rate table with the area table to retrieve 2017 data for countries greater than 500 km2.
SELECT
growth.country_name,
growth.net_migration,
CAST(area.country_area AS INT64) AS country_area
FROM (
SELECT
country_name,
net_migration,
country_code
FROM
bigquery-public-data.census_bureau_international.birth_death_growth_rates
WHERE
year = 2017) growth
INNER JOIN (
SELECT
country_area,
country_code
FROM
bigquery-public-data.census_bureau_international.country_names_area
Historic (none)
United States Census Bureau
Terms of use: This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
See the GCP Marketplace listing for more details and sample queries: https://console.cloud.google.com/marketplace/details/united-states-census-bureau/international-census-data